Skip Navigation
 
Follow:
Facebook Twitter LinkedIn YouTube
Share:

Home  >  About IEEE  >  Awards  >  Bios

 

 

 

closeClose

 

2013 - Richard Stephen Muller and Richard White

Richard Stephen Muller and Richard White

The individual and collective contributions of Richard S. Muller and Richard M. White to the development and advancement of micro-electro-mechanical systems (MEMS) have resulted in technologies critical to applications ranging from cell phones to air-bag sensors in automobiles. Dr. White’s development in 1965 of a microfabricated surface acoustic wave (SAW) electric filter is considered an early example of a MEMS device and the first to receive worldwide commercial attention. Today’s mobile phones rely on SAWs based on Dr. White’s work in order to function properly. Dr. Muller’s research in 1965 demonstrating mechanical coupling into microelectronic devices, and his further work on fabrication processes during the 1980s, were fundamental to the growth of MEMS. Dr. Muller and his research group introduced polysilicon as a structural mechanical material and pioneered “surface micromachining” for creating MEMS devices. In 1981, Dr. Muller successfully proposed to IEEE the creation of the Journal of Microelectromechanical Systems and served as its Editor-in-Chief from 1997 to 2012. Together, Drs. Muller and White in 1986 founded the Berkeley Sensor & Actuator Center (BSAC) with the support of the NSF at the University of California. Under the pair’s guidance, together with that of a subsequent growing number of BSAC Directors, this industry/university cooperative research center has educated generations of students, developing some of the premier researchers active today in the MEMS field. BSAC researchers have investigated and contributed in a broad area of MEMS advances, including those making possible the accelerometers and gyroscopes found in automobile safety systems.


Dr. Muller is an IEEE Life Fellow and member of the U.S. National Academy of Engineering. His many honors include the IEEE Cledo Brunetti Award (joint with R.T. Howe in 1998) and Third-Millennium Medal (2000). He is a Professor Emeritus and Professor in the Graduate School in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley, CA, USA.


Dr. White is an IEEE Life Fellow and member of the U.S. National Academy of Engineering. His many honors include the IEEE Cledo Brunetti Award (1996). He is a Professor Emeritus with the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley, CA, USA.

 
 

top of page

 

2012 - Gerhard M. Sessler

Photo of 2012 IEEE/RSE Wolfson James Clerk Maxwell Award recipient Gerhard M. Sessler

Gerhard M. Sessler has helped revolutionize the modern microphone market not once but twice during his career. Dr. Sessler and co-worker James West at Bell Labs invented the first polymer electret condenser microphone in 1962, which provided high performance at a smaller size and lower cost. He discovered that certain polymers could be permanently charged by a number of methods to become stable electrets. When placed between the electrodes of a condenser microphone, the need for external bias was eliminated, resulting in a much simpler, efficient device. The technology was commercialized in 1968 and soon became the world’s dominant microphone, replacing the carbon-button microphone that was used in telephones for 100 years and finding applications wherever microphones are being used. Working with Dietmar Hohm at the Darmstadt University of Technology, Dr. Sessler designed the first microelectromechanical systems (MEMS) condenser microphone based on silicon micromachining in 1983 (the first all-silicon and first one-chip microphone). His lab developed refined micromachining techniques, enabling creation of miniaturized microphones with superior electroacoustics. These microphones were introduced to the market in 2002 and are used mostly in mobile phones but also in laptops, PDA’s, MP-3 players, and hearing aids. At Darmstadt, Dr. Sessler also developed the laser-induced pressure-pulse method for investigating charge and polarization distributions in thin polymer films with micrometer resolution. This has become a leading method for mapping electroactive polymers and polymers used for cable insulation, leading to improved properties of power cables.

An IEEE Life Fellow, Dr. Sessler is currently a professor of electroacoustics with Darmstadt University of Technology, Germany.

 
 

top of page

 

2011 - Marcian E. Hoff

Photo of 2011 Maxwell medal recipient Hoff

As one of the inventors of the first microprocessor, Marcian E. Hoff revolutionized the computing and electronics industries, and other contributions have helped usher in the digital age of communications. Dr. Hoff is best known for his role in developing the first microprocessor (the Intel 4004) with Stanley Mazor and Federico Faggin in 1969. Dr. Hoff also applied the microprocessor concept to programmable digital devices that revolutionized telephony, opened the door to mobile communications, and enabled digital delivery of music and photos as well. From 1975 to 1980, Dr. Hoff led a team at Intel that moved signal processing from the analog domain to the digital domain. Working with Matt Townsend, Stephen Dryer, and John Huggins, the first commercially available monolithic CODEC (the Intel 2910) was released in 1978 for converting voice signals between analog and digital formats. Today, this process is taken for granted, but this work helped launch the digital age of communications. In 1979, Dr. Hoff’s team released the Intel 2920, which was an early digital signal processing chip. Dr. Hoff’s impact began well before inventing the first microprocessor. As a doctoral student at Stanford University in 1960, he developed the least mean squares (LMS) adaptive algorithm with thesis advisor Bernard Widrow. The LMS algorithm became one of the enabling technologies of the Internet, and it is now used in some form in most modems and adaptive signal processors for echo cancellation, channel equalization, and adaptive antennas.

An IEEE Life Fellow, Dr. Hoff retired from Teklicon, Inc., San Jose, Calif., in 1997, where he served as chief technologist.

 
 

top of page

 

2010 - Amar G. Bose

photo of Dr. Bose

Amar G. Bose is an engineer, educator and entrepreneur whose name is synonymous with high-end sound systems that produce lifelike audio.

Although primarily known for his acoustics patents, there is more to Dr. Bose than meets the ear. As a professor, he is considered a legend at MIT, having influenced thousands of electrical engineering students and even attracting to his classes students pursuing other fields. The teaching award named in his honor is one of the most coveted in MIT’s Electrical Engineering Department. His research on nonlinear control theory led to an electromagnetic active control suspension for automobiles. The Bose suspension system uses motors, power amplifiers, and control algorithms to provide superior comfort by gliding smoothly over bumpy roads, and superior control by keeping the car body level during aggressive maneuvers. 

Dr. Bose is an IEEE Life Fellow. He was a professor at MIT from 1956 to 2001, and is currently the Chairman and Technical Director of Bose Corporation.

 
 

top of page

 

2009 - Alberto Sangiovanni-Vincentelli

photo of Alberto Sangiovanni-Vincentelli

As both an academic and entrepreneur, Alberto Sangiovanni-Vincentelli propelled electronic design automation (EDA) into an indispensable engineering discipline with his groundbreaking scientific contributions, collaborations with industry and by co-founding the two largest EDA companies in the world. Dr. Sangiovanni-Vincentelli continues to be a driving force in the EDA industry, which has enabled integrated circuit design to progress from a few hundred transistors in the 1970s to today’s integrated circuits containing billions of transistors.

A world-renowned authority on all aspects of integrated circuit and system design such as numerical algorithms, circuit simulation, verification, layout, logic synthesis and distributed system analysis, Dr. Sangiovanni-Vincentelli was instrumental in bringing EDA technology to market and ensuring its commercial success. In 1983, he co-founded SDA Systems–one of two companies that merged to form Cadence Design Systems. In 1986, he went on to help found Synopsys. During the 1990s, Sangiovanni-Vincentelli developed the foundations of “platform-based design,” a comprehensive design and analysis methodology for electronic systems. In 2001, he received the Kaufman Award for his pioneering contributions to EDA from the Electronic Design Automation Consortium.

Dr. Sangiovanni-Vincentelli presently serves on the Board of Directors of Cadence Design Systems Inc., where he is Chair of the Technology Committee. An advisor to leading companies such as Intel, United Technologies, General Motors and Pirelli, he is a member of the National Academy of Engineering and an IEEE Fellow. He has served on the faculty of the University of California, Berkeley since 1976 and currently holds the Edgar L. and Harold H. Buttner Chair of Electrical Engineering. He has published 800 papers and 15 books in the areas of EDA, design methodologies, control, hybrid systems and system-level design.

 
 

top of page

 

2008 - Sir Timothy Berners-Lee

2008_maxwell.jpg

Timothy Berners-Lee developed the foundation for the World Wide Web while working at the European Organization for Particle Research (CERN) in Geneva, Switzerland. There he wrote
his first program for storing information, which he named “Enquire.” The program turned out to be the conceptual basis for the future World Wide Web. In 1994, Sir Tim founded the World Wide Web Consortium (W3C), an international organization that creates standards for Web technology. Sir Tim serves as its Director. He became the first holder of the 3Com Founders Chair at MIT Laboratory for Computer Science, which merged with the Artificial Intelligence
Lab to become “CSAIL,” the Computer Science and Artificial Intelligence Laboratory. Sir Tim serves as Senior Research Scientist at CSAIL. He is a Chair in the Computer Science
Department at the University of Southampton, UK and co-director of the New Web Science Research Initiative, launched in 2006.

Sir Tim is a Distinguished Fellow of the British Computer Society, a Fellow of the Royal Society, and a Foreign Associate of the National Academy of Engineering. He has been knighted by the Queen of England for his contributions to the development of the Internet, was awarded the Order of Merit, and received the Charles Stark Draper Prize. He was named one of the 100 greatest minds of the 20th century by Time Magazine. He holds his bachelors in physics from Oxford University, England and holds nine honorary doctorates.

 
 

top of page

 

2007 - Irwin M. Jacobs and Andrew Viterbi

2007_maxwell.jpg

Irwin Jacobs and Andrew Viterbi have been instrumental in the growth and evolution of the wireless communications industry. As two of the co-founders of QUALCOMM Incorporated, Jacobs and Viterbi pioneered Code Division Multiple Access (CDMA) technology, used in a variety of applications including cellular telecommunications, global positioning systems (GPS) and satellite-based transportation logistics systems.

 Under the leadership of Jacobs and Viterbi, QUALCOMM grew into a Fortune 500 company, with annual revenues in excess of $7.5 billion. The company has introduced numerous technologies that are key elements, including the Binary Runtime Environment for Wireless (BREW) applications platform, dedicated to enabling development and deployment of wireless data applications and service; the MediAFLO technology and network for supporting multiple channels of high quality television to cellular handsets; QChat push-to-talk technology; Eudora e-mail software; digital cinema systems and satellite systems for applications such as wireless fleet management.

Dr. Jacobs served as QUALCOMM’s CEO until 2005 and currently serves as its chairman. An IEEE Fellow and member of the National Academy of Engineering and the American Academy of Arts and Sciences (AAAS), he has received numerous awards and holds 13 CDMA patents. He currently is chairman of the Salk Institute for Biological Studies, La Jolla, CA. Dr. Jacobs holds a bachelor’s in electrical engineering from Cornell University, Ithaca, N.Y. and masters and doctorate in electrical engineering from MIT, Cambridge, MA.

Dr. Viterbi held the positions of chief technology officer until 1996 and vice-chairman at QUALCOMM until his retirement in 2000, when he founded Viterbi Group, LLC. An IEEE Fellow, he was elected to the National Academy of Sciences, the National Academy of Engineering and the American Academy of Arts and Sciences. He has received six honorary doctorates and numerous awards in the U.S. and internationally. Dr. Viterbi holds both a bachelor’s and masters of science from MIT, Cambridge, MA and a doctorate from the University of Southern California, Los Angeles, all in electrical engineering.

 
 

top of page