Skip Navigation
 
Follow:
Facebook Twitter LinkedIn YouTube
Share:

Home  >  About IEEE  >  Awards  >  Bios

 

 

 

closeClose

 

2013 - Irwin Mark Jacobs

Irwin Mark Jacobs

A pioneering engineer and visionary business leader, Irwin Mark Jacobs has played a central role in advancing modern digital communications with revolutionary innovations critical to the development of today’s wireless communications systems. From his beginnings as a communications theorist, Dr. Jacobs’ success lies in his ability to take ideas that advance digital technology from theory to practice and successful commercialization.

As a co-founder of technology companies that have provided important innovations, Dr. Jacobs has played a key role in the shift from analog to digital communications experienced during the past 40 years. Dr. Jacobs co-founded Qualcomm, Inc. in 1985 and grew it from a small technology firm to a Fortune 500 company. He helped lead revolutionary developments such as the Code Division Multiple Access (CDMA) technology that greatly improved cellular communications efficiency compared to analog systems. Dr. Jacobs overcame the initial skepticism and controversy involved with introducing the new technology and guided CDMA to successful implementation and standardization. CDMA would become the foundation of third-generation (3G) wireless systems. Dr. Jacobs was also instrumental in Qualcomm’s development of a satellite communications and tracking system for the trucking industry. Using spread-spectrum technology, advanced signal processing, and innovative antenna designs, the system provided the first two-way communication and positioning system for fleet management. Known commercially as OmniTRACS, the system is still in use around the world today. Prior to Qualcomm, Dr. Jacobs co-founded LINKABIT Corporation in 1968, which provided innovative semiconductor technology and programmable devices that were important to the development of satellite-to-home television services. While at the Massachusetts Institute of Technology, Dr. Jacobs co-authored (with John Wozencraft) Principles of Communication Engineering (Wiley, 1965), which is considered one of the best communications theory textbooks ever written and is still in use today.

An IEEE Life Fellow, former Chairman of the U.S. National Academy of Engineering, and Fellow of the American Academy of Arts and Sciences American Association for the Advancement of Science, Dr. Jacobs’ many honors include the U.S. National Medal of Technology (1994) and the inaugural IEEE Vehicular Technology Society Hall of Fame Award (2009). Dr. Jacobs is Founding Chairman and Chief Executive Emeritus of Qualcomm, Inc., San Diego, CA, USA.

 
 

top of page

 

2012 - John L. Hennessy 

photo of John L. Hennessy, 2012 IEEE Medal of Honor recipient

One of the world’s top leaders in computer engineering, John L. Hennessy’s pioneering work at Stanford University as one of the early proponents of the Reduced Instruction Set Computer (RISC) architecture helped revolutionize how computing is performed. At a time when the industry favored the Complex Instruction Set Computer (CISC) architecture, Dr. Hennessy assembled a team of researchers in 1981 at Stanford to focus on the RISC architecture. He thought that computing would be more efficient with a simpler instruction set that could be processed in one clock cycle compared to the many clock cycles required for CISC. He created his MIPS (Microprocessor without Interlocked PipestageS) processor, which was well liked by academics but did not gain interest from industry, which was attached to CISC. To help RISC fulfill its potential and transfer the technology to industry, Hennessy took a sabbatical from Stanford University to found MIPS Computer Systems (now MIPS Technologies) in 1984. By the end of the 1990s, seeing MIPS’ success, most major microprocessor companies introduced RISC-based products of their own. MIPS would become one of the top computer processing architectures in the world and it is used in nearly all of today’s mobile applications as well as in gaming consoles.
 
A member of Stanford’s faculty since 1977 and having held positions including provost and dean of the School of Engineering, Dr. Hennessy was named Stanford University’s 10th president in 2000. As the first engineer to hold the position, Dr. Hennessy has expanded University programs related to the environment, energy, and human health. He has created a “21st Century university” with an interdisciplinary approach to addressing global concerns, changing Stanford in fundamental ways. Dr. Hennessy follows a belief in not only changing technology for the better but ensuring that technical innovations change the world for the better. He has strived to bring important research to realization and make it accessible to those who will benefit from it. In 2005, he was named the first holder of Stanford’s Bing Presidential Professorship.
 
An IEEE Fellow, Dr. Hennessy is currently president of Stanford University, Calif.

 
 
 

2011 - Morris Chang

Morris Chang

Morris Chang’s visionary leadership shaped the technology policy for an entire nation and revolutionized how the semiconductor industry does business around the world. With pioneering concepts such as the dedicated IC foundry, “fabless” IC design and virtual fabrication services, he revolutionized Taiwan’s semiconductor development and impacted the global semiconductor industry. Dr. Chang was recruited by the Taiwan government to help strengthen its semiconductor industry and became president of Taiwan’s Industrial Technology Research Institute in 1985. He founded the Taiwan Semiconductor Manufacturing Company (TSMC) in 1987 as the world’s first dedicated IC foundry company. By focusing on manufacturing other companies’ ICs, TSMC met the needs of chip manufacturers requiring outside contractors for overflow and specialty work and provided services for companies lacking the resources to do their own fabrication work. While there was skepticism concerning the viability of such a business model, Dr. Chang was persistent and was able to demonstrate its advantages. TSMC became the template for fabrication houses that followed, and through Dr. Chang’s leadership it developed into the largest silicon foundry in the world.


The creation of TSMC sparked the development of fabless IC companies during the 1990s. Dedicated foundries reduce the cost of entry for these companies by manufacturing their chips but without competing with them. Utilizing the strengths of the foundry concept, Chang’s “virtual fab” service model incorporates cutting-edge information technology to provide companies with the same benefits and convenience as if they had their own dedicated IC fabs, while still maintaining confidentiality. However, the virtual fab reduces the burdens of capital investment, research and development and intellectual property efforts normally required.

While at Texas Instruments (TI) during the 1960s and 1970s, Dr. Chang managed the world’s largest semiconductor business. Under his leadership, TI’s “TTL” electronic logic circuit was established as the standard logic family, TI’s calculator ICs fueled the growth of the pocket calculator market and TI became a leader in metal-oxide-semiconductor memories. TI also introduced the innovative Speak & Spell handheld educational device under Dr. Chang’s management.

An IEEE Life Member, Dr. Chang is currently the chairman and chief executive officer of the Taiwan Semiconductor Manufacturing Company, Ltd., Hsinchu, Taiwan.
 
 

top of page

 

2010 - Andrew J. Viterbi

headshot of Dr. Viterbi

As developer of the Viterbi Algorithm and co-founder of Qualcomm Incorporated, Andrew J. Viterbi’s contributions to communications technology have impacted people’s lives throughout the world.

There is a Viterbi detector in practically every disk drive and high-capacity MP3 player, images transmitted from deep space are made possible by the Viterbi algorithm, and third-generation mobile telephones employ one or more of Dr. Viterbi’s systems. He developed the Viterbi Algorithm in 1967, which was a breakthrough in wireless technology that separated information (voice and data) from background noise. Fundamentally changing how digital communications are processed, the algorithm is used in most digital cellular phones and satellite receivers as well as in such diverse fields as magnetic recording, voice recognition and DNA sequence analysis. Dr. Viterbi co-founded Qualcomm Incorporated, San Diego, Calif., with Irwin Jacobs in 1985. His vision and technical leadership at Qualcomm pioneered the revolutionary Code Division Multiple Access (CDMA) system as a more efficient method for digital mobile communications. Utilizing spread-spectrum technology, CDMA allows many users to occupy the same time and frequency allocations. It provides more efficient use of power and bandwidth, enables more calls in the same geographic region and emits a lower level of radiated power in the phone/device.
 

An IEEE Life Fellow, Dr. Viterbi holds memberships in the National Academy of Engineering, the National Academy of Sciences and the American Academy of Arts and Sciences. He has received the National Medal of Science in 2008 from U.S. President George W. Bush as well as several IEEE awards and honors from other international organizations. The University of Southern California (USC), Los Angeles, renamed its school of engineering the Viterbi School of Engineering in 2004. Dr. Viterbi is currently president of the Viterbi Group, San Diego, Calif., which invests in startup companies in the wireless communications and network infrastructure sectors, and he also holds the titles of Presidential Chair Visiting Professor at USC and Distinguished Visiting Professor at the Technion, Haifa, Israel.
 

 
 

top of page

 

2009 - Robert N. Dennard

photo of Robert Dennard

Robert H. Dennard has been a pioneering figure in the semiconductor industry. His invention of one-transistor dynamic random access memory (DRAM) and contributions to principles of scaling MOS devices brought about far-reaching and fundamental changes in science and technology, impacting a broad range of industries from aviation to telecommunications.

He was granted a patent for DRAM in 1968, and it first began to appear in products in the 1970s. Now used by all computer component and system manufacturers, DRAM requires less power and costs much less than previous magnetic memory and also is less complex and, therefore, denser than the other semiconductor memory cells previously developed. At the time of its development, the largest memory configuration in a computer was 1 MB, requiring several kilowatts of power, while today 1 to 2 GB of DRAM is common, requiring only a few watts of power.

Dr. Dennard’s development of scaling theory has also been a driving force in microelectronics. Along with some researchers, Dr. Dennard developed a concept of MOS transistor and circuit scaling that provides for systematic reduction of MOS integrated circuit dimensions and predicts the benefits of such reduction in improved circuit performance, lower power and greater density. They showed how to design devices and highly integrated circuits at the micrometer level at a time when device fabrication was at much larger dimensions. In the 1980s, he generalized the original work to show how to design devices down to submicrometer dimensions with further improvements in performance and density. The scaling concept led the way from the 5-µm devices of the early 1970s to today’s 0.045-µm devices used in Gigabit memory chips and powerful microprocessors.

Dr. Dennard’s research career spans over 50 years and includes 52 U.S. patents and many awards and recognitions, including the IEEE Cledo Brunetti Award, the IEEE Edison Medal, the National Medal of Technology and induction into the National Inventors Hall of Fame. In 2009, Dr. Dennard was named recipient of the Charles Stark Draper Prize. An IEEE Life Fellow, Dr. Dennard is an IBM Fellow at the IBM T.J. Watson Research Center in Yorktown Heights, New York, where he continues to investigate the limits of scaling and future evolution of microelectronics.
 

 
 

top of page

 

2008 - Gordon E. Moore

photo of Gordon Moore

Gordon E. Moore, co-founder and chairman of the board, emeritus, of Intel Corporation, is one of the pioneers of semiconductor and microprocessor technology. He is the namesake of Moore’s Law, one of the guiding principles of the global semiconductor industry. Introduced in 1965, Moore’s Law stipulated that the number of transistors on a silicon chip would double each year for ten years. In 1975, he revised the theory, stating that the complexity of chips would double every two years. Moore’s Law remains an industry guidepost today for a US$200 billion per year industry that feeds a trillion dollar a year electronics industry.

In addition to his engineering contributions, Moore is among those responsible for the formation of two of the semiconductor industry’s best-known companies – Intel Corporation and Fairchild Semiconductor.

Dr. Moore was among a group of eight scientists and engineers that founded Fairchild in 1957, to develop and manufacture a diffused silicon transistor. As head of Fairchild’s research and development department, Dr. Moore led the creation of the first family of integrated logic circuits. Capitalizing on the almost simultaneous inventions of the integrated circuit and the MOSFET (Metal Oxide Field Effect Transistor), Fairchild became the leading producer of bipolar integrated logic circuits and was responsible for much of the device understanding for MOSFETs, which are used in most microprocessors.

To manufacture integrated circuit memories using the MOSFET transistor, Dr. Moore left Fairchild in 1968 with Robert Noyce to co-found Intel Corporation. Dr. Moore later led Intel from being simply a memory company to one focused on microprocessor development. Under his leadership, Intel has produced a number of products based on LSI technology, including the world’s first microprocessor. The development of the microprocessor is considered among the most significant developments in all of technology, and Intel’s success in this area has made it the largest semiconductor company in the world.

An IEEE Life Fellow and member of the National Academy of Engineering, Dr. Moore has received numerous awards, recognitions and honors, including the IEEE Founders Medal, the U.S. National Medal of Technology and the Presidential Medal of Freedom, America’s highest civilian honor. He most recently received the EE Times ACE Awards Lifetime Achievement Award. In 2000, Dr. Moore and his wife created the Gordon and Betty Moore Foundation to focus on the environment, higher education and science and the San Francisco Bay Area. He holds a bachelor’s degree in chemistry from the University of California, Berkeley, and a doctorate in chemistry and physics from the California Institute of Technology.
 
 
 

top of page

 

2007 - Thomas Kailath

photo of Thomas Kailath

In a career spanning more than 40 years, Thomas Kailath has distinguished himself with significant accomplishments as a scholar, academic and entrepreneur. Currently Hitachi America Professor of Engineering, Emeritus, at Stanford University, Dr. Kailath is a respected leader in digital signal processing and system theory. In addition to influencing modern work in semiconductor manufacturing and wireless communications, he has also mentored and personally trained several generations of electrical engineers and applied mathematicians.

Dating back to his early writings in the late 1950s, Dr. Kailath recognized that engineering theory would play a critical role in meeting technological challenges in the disciplines of communication, computation, control and signal processing. Since then, his theoretical work has led to fundamental breakthroughs in communications, information theory, signal detection and estimation, sensor array signal processing, VLSI architectures for signal processing and semiconductor manufacturing. He also contributed to probability and statistics, linear algebra, and matrix and operator theory.

He has written several books, authored or co-authored over 300 journal articles and papers, and shared in the development of 13 patents. Specific contributions by him and his over ninety Ph.D. students and postdoctoral scholars include algorithms for feedback communications, universal estimator-correlator detector structures for random signals in noise and the concept of displacement structure leading to fast algorithms in many fields, such as estimation, control, direction of arrival estimation, adaptive filtering, channel identification and equalization, VLSI systems for signal processing, matrix theory and linear algebra. Much of his early work outpaced what could be implemented at the time. As technology advanced, Dr. Kailath and his students were able to successfully address industrial issues in areas such as optical lithography and multiple antenna wireless communications.

An IEEE Life Fellow, he is a past president of the IEEE Information Theory Society and a recipient of its Shannon Award. Other honors include - IEEE James H. Mulligan Jr, Education and the IEEE Jack S. Kilby Signal Processing Medals, Guggenheim and Churchill fellowships, and election to the National Academy of Engineering, the American Academy of Arts and Sciences, the National Academy of Sciences, the Indian National Academy of Engineering and the Silicon Valley Engineering Hall of Fame. Dr. Kailath received his bachelor’s from the College of Engineering in Pune, India, and a master’s and doctorate degree from the Massachusetts Institute of Technology. 

 
 

top of page

 

2006 - James D. Meindl

photo of James Meindl

During his career as a scientist, educator and high-level technology executive, Dr. James D. Meindl, Director and Pettit Chair Professor of the Joseph M. Pettit Microelectronic Research Center at Georgia Institute of Technology in Atlanta, has logged a string of exceptional accomplishments.

Early in his career, Dr. Meindl developed micropower integrated circuits for portable military equipment at the U.S. Army Electronics Laboratory in Fort Monmouth, New Jersey. He then joined Stanford University in Palo Alto, California, where he developed low-power integrated circuits and sensors for a portable electronic reading aid for the blind, miniature wireless radio telemetry systems for biomedical research, and non-invasive ultrasonic imaging and blood-flow measurement systems. Dr. Meindl was the founding director of the Integrated Circuits Laboratory and a founding co-director of the Center for Integrated Systems at Stanford. The latter was a model for university and industry cooperative research in microelectronics. 

From 1986 to 1993, Dr. Meindl was senior vice president for academic affairs and provost of Rensselaer Polytechnic Institute in Troy, New York. In this role he was responsible for all teaching and research.  

He joined Georgia Tech in 1993 as director of its Microelectronic Research Center. In 1998, he became the founding director of the Interconnect Focus Center, where he led a team of more than 60 faculty members from MIT, Stanford, Rensselaer, SUNY Albany, and Georgia Tech in a partnership with industry and government. His research at Georgia Tech includes exploring different solutions for solving interconnectivity problems that arise from trying to interconnect billions of transistors within a tiny chip.

Over his career, Dr. Meindl has supervised over 80 Ph.D. graduates at Stanford University, Rensselaer Polytechnic Institute and Georgia Tech, who have gone on to have a profound impact on the semiconductor industry.

An IEEE Life Fellow, Dr. Meindl is the recipient of the Benjamin Garver Lamme Medal of the American Association for Engineering Education, the J.J.Ebbers Award of the IEEE Electron Devices Society, the IEEE Education Medal and the IEEE Solid State Circuits Award. 

 
 

top of page

 

2005 - James L. Flanagan

Dr. James L. Flanagan has profoundly influenced our understanding of how humans speak and hear. A pioneer in the areas of speech analysis, speech transmission and acoustics, his early research led to increased understanding of how the human ear processes signals, the development of advanced methods to assist hearing and improved voice communication systems. These achievements, which are in addition to his primary telecommunications work, include an electronic artificial larynx, playback recording techniques for the visually impaired, and automatic speech recognition to help the motor impaired.

Formerly director of the Information Principles Research Laboratory at Bell Laboratories in Murray Hill, New Jersey, Dr. Flanagan was one of the first researchers to see the potential of speech as a means for human-machine communication.He has contributed to current techniques for automatic speech synthesis and recognition, and to signal coding algorithms for telecommunications and voicemail systems, including voicemail storage, voice dialing and call routing. He also created auto-directive microphone arrays for high-quality sound capture in teleconferencing and pioneered the use of digital computers for acoustic signal processing.

More recently, as vice president  for Research and director of the Center for Advanced Information Processing at Rutgers University in Piscataway, New Jersey, he has been a leader in the development of global systems for human-computer interfaces that are actuated by speech and which incorporate sight and touch modalities.

An IEEE Life Fellow, Dr. Flanagan is a former president of the IEEE Signal Processing Society and received its Achievement Award. He is also the recipient of the IEEE Centennial Medal, the U.S. National Medal of Science and is a member of the U.S. National Academy of Engineering and the U.S. National Academy of Sciences. 

 
 

top of page