A Novel Multi Agent System Dynamic Cooperation & Automated Negotiation Model

Xu Yuhui
School of Art Layout, Hunan University of Commerce Changsha, China Xyh5866@163.com

Zhong Gang
School of Computer and Electronic Hunan University of Commerce Changsha, China jlwxjh@163.com

Abstract—The communication between agents has some special requirements. One of them is asynchronous communication. Used communication sequence process (CSP) to descript a model of agents communication with shared buffer channel. The essence of this model is very suitable for the multi-agents communication, so it is a base for our next step job. Based on the communication model, explored the distributed tasks dealing method among joint intention agents and with description of relation between tasks we give a figure of agents’ organization. Agents communicate with each other in this kind of organization. The semantics of agent communication is another emphasis in this paper. With the detailed description of agents’ communication process, given a general agent automated negotiation protocol based on speech act theory in MAS, then we use CSP to verify this protocol has properties of safety and live ness, so prove it is logic right. At last a frame of this protocol’s realization was given.

Keywords- multi-agent system(MAS), joint intention, automated negotiation, dynamic cooperation

I. INTRODUCTION

The theory of Multi-Agent Automated Negotiation involves extensive applying fields and many kinds of methods[1]. The theory mainly lies in Argument Based Negotiation, Game Theoretic Models and Heuristic Approaches[2]. In application, it can be divided into two categories, Agent’s Negotiation within MAS and Self-interested between different MAS[3-5]. Those theories supporting the interior collaboration of MAS are like Self-interested[6], Joint Intentions and Shared Plans, no matter which are have differences[7], they have been working under the premise of identical intention and target of Agent within MAS[8]. This text will discuss the Joint Intentions in Multi-Agent Automated Negotiation.

If Multi-Agent in MAS interacts successfully, there must be three conditions demanded to be satisfied as below: a) Communication Structure, that is, how to dispatch and take over information between Agent; b) Communication Language, that is, Agent is required to understand the significiation of the information[9,10]; c) Interaction Rules, that is, how to organize the conversation between Agent[11].

Regarding to the research of Agent Communication Structure, we have proposed MAS communication model in the previous parts. In the second section, it will be stressed to analyze Agent’s asynchronous communion mechanism[12]. Then, research of Interaction Rules is the second emphasis in the text. In the third part, the text will set forth the agreement of Agent Automated Negotiation and its validation. In the forth part, it illustrates and analyzes the complete frame of Agent Automated Negotiation. The fifth is the conclusion of the text.

II. MAS COMMUNICATION MODEL

Definition 1 Agent is a status course which can accomplish the task automatically with the ability and agreement of communication, for example, \(P_A \) represents the course of Agent A.

Definition 2 The course of Agent make the Agent’s ability which can be marked as \(Ability_{\text{ps}} \) and \(TASK_{\text{ps}} \) means to be able to fulfill the task.

The moving status of the static Agent in MAS can be classified as Active, Wait and Run. Agent in the Wait status will be activated after receiving the requests from other Agent and then run. Agent in Run status will negotiate with other Agent or provide services according to the Try-best principle. \(State_{\text{outer}} \) stands for the Run status of Agent:

\[
State_{\text{outer}} := \text{Wait} | \text{Active} | \text{Run}
\]

Agent’s collaborating course observed from the outer MAS is the process that Agent runs in the \(I_{\text{outer}}=Stae_{\text{outer}} \).

Theorem 1 In an Agent’s collaborating process with Safety and Liveness, the circulation of Wait \(\rightarrow \text{Active} \rightarrow \text{Run} \rightarrow \text{Wait} \) in \(I_{\text{outer}} \) will appear at least once to Agent’s launch and acceptance.

Attestation: Obviously, in the circulation of Wait \(\rightarrow \text{Active} \rightarrow \text{Run} \rightarrow \text{Wait} \), if any one part of Agent can not fulfill the circulation, it means something happened unexpectedly cause the deadlock or livelock to the system during the collaborating process, so the theorem attested.

More and more application systems ask both corresponding sides of each other in a position to realize asynchronous communication mode. As a self-contained MAS communication structure, it is not only in a position to realize Agent's synchronous communication, but able to realize asynchronous communication. Miner’s \(\pi \) figuring has realized transfer calculations by communication passage, which makes out that we can utilize Agent’s asynchronous communication mode to realize synchronous.
The asynchronous communication’s ideal mode means that both corresponding sides own one infinite buffer queue. However, it is unpractical to deploy such infinite buffer queue to each Agent, whereas to share buffer channel may realize Agent’s transfer between asynchronous communication and synchronous communication better.

Definition 3 Buffer channel C is such an Agent which set independent state switch and message buffer to all its relevant Agents and transmit messages for these Agents.

The above process shows that Agent can realize asynchronous communication between Agents by use buffer passage. P_t stands for buffer channel tenor.

The synchronous communication between Agents asks Agents themselves shall be clear about each other’s corresponding location. If a MAS system owning N (numerous) Agents would like to realize point-to-point communication between Agents, there will be N^2 channels needed to set up, of which so many will complicate the realization of Agent extremely. Using shared buffer channel can be good for realizing channel’s transmission between Agents.

III. MAS COOPERATION MODEL

A. Cooperating Principle

When Multi-Agent in MAS begins cooperation, for the reason that there is a conform joint intention between Agent, the process of Multi-Agent in MAS works according to the principal of "From each according to his ability, abide by the law and behave oneself", that is, each Agent is trying its best to cooperated with other Agent.

The cooperation between Agents is aimed at fulfilling a certain tasks. Because tasks can be divided into different but related sub tasks, the tasks from Agent’s point of view can be described as following: a material task can be regarded as sub-tasks’ assembling depending on different ability of Agent in MAS. Combining divided-task-oriented Agent in compliance with sub tasks will be in position to form a furcation tree of Agent in MAS. Combining divided-task-oriented Agent in compliance with sub tasks will be in position to form a furcation tree of $k(k \geq 2)$. Relation between sub tasks is relation with or to time sequence. Agent’s organizing relation is determined by the relation between tasks. Description of sub tasks as below:

1) The sequential relationship of the tasks $(<_C)$, manifests that Agent B’s task can not be begun before fulfilling Agent A’s task. Formalization to be described below: $\text{TASK } P_a < \text{TASK } P_b$

Thereinto: TASK P_a and TASK P_b respectively means the start-up tenor P_a and P_b of Agent A and Agent B are used to fulfill tasks.

2) The relation of “AND” between tasks (\land), indicates that Agent A and Agent B perform simultaneously sub task P_a and P_b. After completing the sub tasks, Agent C begins their common and subsequential task P_c. Formalization described as below:

\[
\text{TASK } P_a \land \text{TASK } P_b = (P_a < \text{TASK } P_c \land P_b < \text{TASK } P_c)
\]

From the above mentioned: MAS is a task processing distributive system. The Agent’s ability can be realized by its corresponding tenor. The relations between tasks in MAS have determined that Agent is organized according to its dendriform communication topology which is the precondition for Agent’s automatic negotiation.

B. MAS Automatic Negotiation Protocol

Agent automatic negotiation is the main method for multi-Agent to negotiate, which focus on three aspects lying in negotiation protocol, negotiation object and negotiation policy. Negotiation protocol and negotiation object act as the textual points, but the negotiation policy is clamped how to look for in Agent each from of negotiation space best in order to reach consistence, concretion content visible literature cited.

Present hypotheses 1 to 2 ensure negotiation agent could each other have partner faith in against due to MAS interior Agent according to Try-Best principle proceed synergic, furthermore MAS possess concurrent combine intent.

Hypotheses 1 Negotiation Agent knows each other in negotiation policy.

Be on the negotiation with the result that decision agent toward internetwork communication negotiatory condition of Agent automatic negotiatory course mission due to specific assignment require different communication quality guarantee AND specific network insurance. Text take mission negotiation AND internetwork communication negotiation as agent automatism negotiation in process two phase.

Definition 4 MAS interior agent automatic negotiation course could include two phases. The first phase is based on multi-Agent automatic negotiation whose negotiation object includes task starting time, task ending time and the relation of the tasks; The second phase is the negotiation of Agent’s communicating conditions whose negotiation object include corresponding security policy and network service quality (Q_oS).

Underneath is negotiation procedure of Agent A with B running tasks:

A: Can you run the task T1? (request)
B: No, I can’t. Because I am running the task T2. (reject and state reasons)
A: Can you run the task T1 after completing T2 ? (conditional request)
B: Yes. (commitment combine confirmation)

In the above dialogue, when Agent A request Agent B to run task T1, Agent B rejects and presents rejective reasons. Because of the reasons presents by Agent B, Agent
A put forth a request again to Agent B, and then Agent B reply Agent B with commitment.

Agent A, B keep on the above dialogue:
A: can you keep executing task T2 according to constant rate? (conditional request)
B: I can uninterruptedly execute T2 within 5% at bit rate variation range. (suggestion)
A: I accept your suggestion. (acceptance)

The conditional request set one recommend, at the suggest agent B make amendment of agent A toward bit rate claim, be the last agent A take of agent B, negotiation success finish upon to for of the upper agent dialogue, agent B toward agent A.

According to the top analysis talks about with the correlative language behavior academic theories, we say the Agent automatic negotiation correspondnece in the procedure to state row word certain for: request, promise, refuse, advise, counter advise. In view of agreement presence overtime event and agent unsolicited message transmission, so increase overtime (timeout) status and inform (inform) state row word that. Communication protocol engine of the communication process state as follows of the agent:

State_\text{start}: Started Requested | Accepted | Refused | Promised | Informed | Advised | CAdvised | Timeout | Stopped

See Fig.1: Agent automatic negotiation protocol can be divided into information transmission layer, buffer channel layer and Agent negotiation protocol layer from bottom to top, of which buffer channel layer C is one of the needed layers between Agents to realize asynchronous communication. If it will realize point-to-point synchronous communication between Agents, it can do communication directly through channel C. As to the description of Agent automatic negotiation, it mostly focus on Agent negotiation protocol layer, while for the other layers, it only describes their services and running environment in brief. In essence, the function of Agent negotiation protocol layer is the description of process.

(1) The service provided by each protocol layer
See Fig.1:

![Figure 1. MAS automatic negotiation protocol.](image)

a. Information transmission layer: being in position to transmit information data between Agents in sequential way and correctly;
b. Buffering channel C0 and C1 layer: providing Agent automatic negotiation layer with the service;

c. Agent automatic negotiation protocol layer: supplying Agent with credibility, efficient negotiation control and policy.

(2) Description of Agent negotiation protocol layer functions:

Fig.2 receive agreement on state vicissitude chart, from the view of agent negotiation starter Among them: arrowhead direction are the flow direction of Agent information; The Recv means a certain message in roger in right connecting; send stand for exactness forward to some information; Following behind the Recv/ Send is a message type, both state vicissitude picture with state refused and accepted implication negotiatory amphi-with the result that; negotiation the rough and smooth, along with it show that negotiatory terminal status.

![Figure 2. MAS negotiation protocol statement vicissitude.](image)

The Agent A describe with Agent B whole negotiation procedural not formal as follows: Agent A first of all dispatch negotiation beg of Agent B received solicit aback, toward request message proceed analyses, could as per three strain scene dispose to: the first thing, in the event of Agent B receivability the solicit of Agent A, those Agent B to Agent A dispatch take send , else dispatch thumb advise, down through upon, the service request block mode, of the such negotiation scene as conventional C / S. the second thing, Provide some Agent B can provide serve of instruct, such negotiation scene as conventional C / S. the third thing, in the event of Agent B can't receive the solicit of Agent A, the request message proceeds analyses, kind of negotiation scene as conventional C / S. the second thing, in the event of Agent B can't receive the solicit of Agent A, the request message proceeds analyses, kind of negotiation scene as conventional C / S. the second thing, Provide some Agent B can provide serve of instruct, such negotiation scene as conventional C / S. the second thing, Provide some Agent B can provide serve of instruct, such negotiation scene as conventional C / S. the second thing, Provide some Agent B can provide serve of instruct, such negotiation scene as conventional C / S.
with P_S standing for negotiatory sponsor tenor, P_R express negotiatory take tenor, adopt timeout by way of differ state subaltern overtime event, II for consultative interior select, I for consultative external selection, the µ pass to return to calculate the son for the CSP, negotiating the run - time that inside affect time-out event, reset clock wait for, in third time retreat out negotiation, because of start with stop is interactive behavior that Agent negotiation protocol machine and Agent, combine can't very much negotiation protocol, the country contract gets after passing conceal the operation the Agent negotiation interactive procedure describe;

Because the whole Agent on the basis of intention of uniting consults the agreement automatically (Joint Intention based Agent Automated Negotiation Protocol, JIAANP) the one that can show for a lot of Agent process is

$$JIAANP = \{ (\mu, \alpha) \mid (P_S \mid P_R) \}$$

among them $i \in \mathbb{N}$

(3) Agent consults the working environment that the protocol needs

- a. Agent consult agreement lower floor information transmission layer of layer can is it is it spread mistake travel the mistake to the upper strata agreement to get to measure automatically. Namely the information transmission layer has fault-tolerant ability.

- b. The array of every part of one layer of news transmitted of the information transmission should be correct.

Because the protocol in information transmission layer is standard, this text assumed information transmission layer it transmits is reliable. This is the basic demand of Agent Negotiation Protocol in working.

IV. THE REALIZED PROTOCOL FRAME

Systematic analysis of performance of the protocol: The performance of this system is decided by size of the capacity that the blackboard serves the module and operational efficiency. The blackboard serves the route of information by offering a lot of Agent and transmission controlling, the speed that information transmission influences the establishment of the protocol overtime directly. Generally speaking, certain blackboard of capacity served structure can support quantity of Agent limited, realizing course is it restrains from related Agent quantity so as to ensure the execution efficiency of the protocol and consult to become with specific blackboard structure of scale to want in system Power.

Expansibility analysis of the protocol system: We may know the blackboard structure scale restricts MAS’ scale according to the previous analysis. But in the tree-like internet topology, we may use the steps of blackboard service structure to enlarge the scale of MAS system so that we can realize distributing control with convergence to Agent communication.

V. CONCLUSIONS

This text provides a common and communication-based Agent cooperation mode by studying mutual behavior of Agent cooperation. The text also uses some effective format ways to depict automatic negotiation protocol of Agent process and verify the validity of the protocol’s logic. Finally, the text makes an implementation frame for this agreement. While using blackboard mode to realize buffer channel in this implementation frame, it provides a deployed agreement stack extra and at last it presents performance analysis and expandable analysis. In addition, as to negotiation between Agent in MAS, because the advantage difference of Agent group negotiating with Agent which has a conform joint intension has great differences on negotiation principle and strategy, the self-interested Agent’s negotiation agreement between MAS is our next work under research.

ACKNOWLEDGMENT

This paper is supported by the Sci. and Technology Plan Project of China under of Hunan Grant No.2009GK2002, and the Technology Innovation Foundation under Science and Technology Ministry Grant No. 09C26214301947.

REFERENCES

