
	
IEEE SIG

N
A

L PRO
CESSIN

G
 M

A
G

A
ZIne	


 	

V
O

LU
M

E 35 N
U

M
BER 6   |  N

O
V

EM
BER 2018

35msp06-cover1.indd   1 11/7/18   11:51 AM



Learn about IEEE Collabratec at 
ieee-collabratec.ieee.org

Introducing IEEE Collabratec™

The premier networking and collaboration site for technology 
professionals around the world.

Network.  
Collaborate.  

Create. 

IEEE Collabratec is a new, integrated online community where IEEE members,  

researchers, authors, and technology professionals with similar fields of interest  

can network and collaborate, as well as create and manage content.

Featuring a suite of powerful online networking and collaboration tools,  

IEEE Collabratec allows you to connect according to geographic location,  

technical interests, or career pursuits. 

You can also create and share a professional identity that showcases key  

accomplishments and participate in groups focused around mutual interests,  

actively learning from and contributing to knowledgeable communities.  

All in one place!



1IEEE SIGNAL PROCESSING MAGAZINE   |   January 2018   |

Vo l u m e  3 5   |   N u m b e r  6   |   N o v e m b e r  2 0 1 8

Contents

ON THE COVER

COVER IMAGE: ©ISTOCKPHOTO.COM/SELIM DÖNMEZ

Three feature articles have been selected for this issue of 
the magazine. The first article examines model selection 
algorithms for which efficiency/sparsity is  a factor; the 
second article presents low-complexity, efficient methods 
for radar; and the third article looks at intelligent methods 
for the smart grid. 

PG. 8

16	 �	 �MODEL SELECTION  
TECHNIQUES
Jie Ding, Vahid Tarokh,  
and Yuhong Yang

35	 �	 �SUB-NYQUIST RADAR SYSTEMS
Deborah Cohen and  
Yonina C. Eldar

59		  �PRIVACY-AWARE  
SMART METERING
Giulio Giaconi, Deniz Gündüz,  
and H. Vincent Poor

	 8	 Special Reports
		�  Something to Talk About: Signal Processing 

in Speech and Audiology Research
		  John Edwards
		�  Signal Processing Leads to New Clinical 

Medicine Approaches
		  John Edwards

One
Pooled Map

To Next Stage

A
B

C

Acti
va

tio
n

Feature Maps Vol

Pooled Maps Vol
RGB

Image

All Feature Maps

One Feature Map
RGB Channels

All Pooled Maps

Add
 B

ias

Con
vo

lut
ion

Poo
lin

g

Input Maps Vol

= Kernel Volume

96 Feature Maps

04 35

39 45

23 10 16

04

16

39 45

35

23

10

PG. 79

Digital Object Identifier 10.1109/MSP.2018.2866004

IEEE SIGNAL PROCESSING MAGAZINE  (ISSN 1053-5888) (ISPREG) is published bimonthly by the Institute of Electrical and Electronics Engineers, Inc., 3 Park Avenue, 17th Floor, New York, 
NY 10016-5997 USA (+1 212 419 7900). Responsibility for the contents rests upon the authors and not the IEEE, the Society, or its members. Annual member subscriptions included in Society fee. 
Nonmember subscriptions available upon request. Individual copies: IEEE Members US$20.00 (first copy only), nonmembers US$241.00 per copy. Copyright and Reprint Permissions: Abstracting is 
permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of U.S. Copyright Law for private use of patrons: 1) those post-1977 articles that carry a code at the bottom of 
the first page, provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA; 2) pre-1978 articles without fee. Instructors 
are permitted to photocopy isolated articles for noncommercial classroom use without fee. For all other copying, reprint, or republication permission, write to IEEE Service Center, 445 Hoes Lane, 
Piscataway, NJ 08854 USA. Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Periodicals postage paid at New York, NY, and at additional mailing offices.  
Postmaster: Send address changes to IEEE Signal Processing Magazine, IEEE, 445 Hoes Lane, Piscataway, NJ 08854 USA. Canadian GST #125634188 � Printed in the U.S.A.

1IEEE SIGNAL PROCESSING MAGAZINE   |   November 2018   |

FEATURES 	 79	� Lecture Notes
		�  Deep Convolutional Neural Networks
		  �Rafael C. Gonzalez
		�  Sliding Discrete Fourier Transform  

with Kernel Windowing
		  �Zafar Rafii

	 93	� Tips & Tricks
		�  Utility Metrics for Assessment and  

Subset Selection of Input Variables  
for Linear Estimation

		  �Alexander Bertrand
		�  Observer-Based Recursive Sliding  

Discrete Fourier Transform
		  �Zsolt Kollár, Ferenc Plesznik,  

and Simon Trumpf

	 128	 In the Spotlight
		�  Spotlight on Bioimaging  

and Signal Processing
		�  Erik Meijering and  

Arrate Muñoz-Barrutia
		�  An Overview of the IEEE SPS Speech  

and Language Technical Committee
		�  Michiel Bacchiani and Eric Fosler-Lussier

COLUMNS



IEEE SIGNAL PROCESSING MAGAZINE   |   January 2018   |

EDITOR-IN-CHIEF
Robert W. Heath, Jr.—The University of Texas  

at Austin, U.S.A.

AREA EDITORS
Feature Articles
Matthew McKay—Hong Kong University of 

Science and Technology, Hong Kong SAR  
of China

Special Issues
Namrata Vaswani—Iowa State University, U.S.A.
Columns and Forum
Roberto Togneri—The University of Western 

Australia 
e-Newsletter
Ervin Sejdic—University of Pittsburgh, U.S.A.
Social Media and Outreach
Tiago Henrique Falk—INRS, Canada
Special Initiatives
Andres Kwasinski—Rochester Institute of 

Technology, U.S.A.

EDITORIAL BOARD
Daniel Bliss—Arizona State University, USA
Danijela Cabric—University of California,  

Los Angeles
Volkan Cevher—École polytechnique fédérale de 

Lausanne, Switzerland
Mrityunjoy Chakraborty—Indian Institute of 

Technology, Kharagpur, India
George Chrisikos—Qualcomm, Inc., U.S.A.
Elza Erkip—New York University, U.S.A.
Alfonso Farina—Leonardo S.p.A., Italy 
Clem Karl—Boston University, U.S.A.
C.-C. Jay Kuo—University of Southern California, 

U.S.A.
Erik Larsson—Linköping University, Sweden
David Love—Purdue University, USA
Maria G. Martini—Kingston University, U.K.
Helen Meng—City University of Hong Kong, 

Hong Kong SAR of China
Meinard Mueller—Friedrich-Alexander Universität 

Erlangen-Nürnberg, Germany
Alejandro Ribeiro—University of Pennsylvania, 

U.S.A.
Douglas O’Shaughnessy—INRS Universite de 

Recherche, Canada
Osvaldo Simeone—Kings College London, U.K.
Milica Stojanovic—Northeastern University, USA
Ananthram Swami, Army Research Labs, U.S.A.
Jong Chul Ye—KAIST, South Korea
Qing Zhao—Cornell University, USA
Josiane Zerubia—INRIA Sophia-Antipolis 

Mediterranee, France

ASSOCIATE EDITORS—COLUMNS AND FORUM 
Ivan Bajic—Simon Fraser University, Canada
Balázs Bank—Budapest University of Technology 

and Economics, Hungary
Panayiotis (Panos) Georgiou—University of 

Southern California, U.S.A.
Hana Godrich—Rutgers University, U.S.A.

Rodrigo Capobianco Guido—São Paulo  
State University, Brazil

Yuan-Hao Huang—National Tsing Hua University, 
Taiwan

Euee Seon Jang—Hanyang University,  
Republic of Korea

Vishal Patel—Rutgers University, U.S.A.
Christian Ritz—University of Wollongong, Australia
Changshui Zhang—Tsinghua University, China
H. Vicky Zhao—Tsinghua University, China

ASSOCIATE EDITORS—e-NEWSLETTER
Csaba Benedek—Hungarian Academy 	

of Sciences, Hungary 
Yuhong Liu—Penn State University at Altoona, 

U.S.A.
Andreas Merentitis—University of Athens,  

Greece
Michael Muma—TU Darmstadt, Germany
Le Yang—Harbin Institute of Technology, China
Xiaorong Zhang—San Francisco State University, 

U.S.A.

ASSOCIATE EDITOR—SOCIAL MEDIA/OUTREACH
Guijin Wang—Tsinghua University, China

IEEE SIGNAL PROCESSING SOCIETY
Ali H. Sayed—President
Ahmed Tewfik—President-Elect
Fernando Pereira—Vice President,  

Conferences
Nikos D. Sidiropoulos—Vice President, 

Membership
Sergio Theodoridis—Vice President, Publications 
Walter Kellerman—Vice President,  

Technical Directions

IEEE SIGNAL PROCESSING SOCIETY STAFF
William Colacchio—Senior Manager, Publications 

and Education Strategy and Services
Rebecca Wollman—Publications Administrator

IEEE PERIODICALS MAGAZINES DEPARTMENT
Jessica Welsh, Managing Editor
Geraldine Krolin-Taylor,  

Senior Managing Editor
Janet Dudar, Senior Art Director
Gail A. Schnitzer, Associate Art Director
Theresa L. Smith, Production Coordinator
Mark David, Director, Business Development - 

Media & Advertising
Felicia Spagnoli, Advertising Production Manager
Peter M. Tuohy, Production Director
Kevin Lisankie, Editorial Services Director
Dawn M. Melley, Staff Director,  

Publishing Operations

SCOPE:  IEEE Signal Processing Magazine publishes tutorial-style articles on signal processing research and 
applications as well as columns and forums on issues of interest. Its coverage ranges from fundamental principles 
to practical implementation, reflecting the multidimensional facets of interests and concerns of the community. Its 
mission is to bring up-to-date, emerging and active technical developments, issues, and events to the research, 
educational, and professional communities. It is also the main Society communication platform addressing important 
issues concerning all members.

IEEE Signal Processing Magazine

Digital Object Identifier 10.1109/MSP.2018.2866005

2

IEEE prohibits discrimination, harassment, and bullying. 
For more information, visit 
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.

Promoting Sustainable Forestry

SFI-01681

IEEE SIGNAL PROCESSING MAGAZINE   |   November 2018   |

DEPARTMENTS
	 3	 From the Editor
		�  Making Papers, Code, and Data Accessible
		  Robert W. Heath, Jr.

	 5	 President’s Message
		  Twinkle, Twinkle, Little Star
		  Ali H. Sayed

	 107	 Dates Ahead

	 108	 2018 Index 

	 127	 Humor
		  Conference Planning for Professors
		�  Nuria González-Prelcic and  

Robert W. Heath, Jr.

The 44th IEEE International Conference on Acoustics, 
Speech, and Signal Processing will be held 12–17 May 
2019 in Brighton, United Kingdom.

©
IS

TO
C

K
P

H
O

TO
.C

O
M

/M
A

R
T

IN
LI

S
N

E
R

PG. 107



3IEEE SIGNAL PROCESSING MAGAZINE   |   November 2018   |

FROM THE EDITOR
Robert W. Heath, Jr.  |  Editor-in-Chief  |  rheath@utexas.edu

Making Papers, Code, and Data Accessible 

There have been three key revolutions 
in the way that research has become  
accessible: publishing, code, and data. 

The second and third revolutions are still 
taking place, particularly driven by the rise 
of machine-learning and artificial intel-
ligence research in the last decade. When 
I started my research career in 1995, the 
World Wide Web was still in its infancy. 
The popular Netscape browser had just 
been launched. Search engines were 
not widely used. While many academ-
ics owned e-mail addresses, few had web 
pages. If they did, they were not kept cur-
rent. If you wanted to look at a paper, you 
had to make the trek to the dusty library 
stacks. Or perhaps your research group 
maintained hard copies of journals and 
conference proceedings. In short, papers 
were available, but it was tedious to find 
them and obtain a copy for reading.

The first main revolution in acces-
sibility came with the World Wide Web. 
Research groups began creating and 
maintaining research pages with publica-
tion lists. Articles subsequently appeared 
in electronic format, becoming available 
through databases like IEEE Xplore. 
Search engines began crawling such 
data sources so that research queries 
could be processed instantly, rather than 
enduring a long wait for the results of a 
careful library search. Publication times 
also decreased. Conference proceed-
ings appeared online more quickly with 

each year. The submission-to-publication 
time for journals was reduced through 
online review management software 
and by having the authors take more 
responsibility for the formatting of their 
papers. Researchers also started sharing 
preprints of their research through their 
websites or through preprint servers. As 
a result, research has become easier to 
access, more widely available, and much 
more current.

The second big revolution in acces-
sibility has come through sharing code. 
When I was a graduate student, it was 
part of the learning process to reproduce 
the results from anoth-
er paper. I still believe 
this is an important 
part of research. But 
I do see the value 
of sharing code for 
research reproducibil-
ity. As algorithms and 
simulations become 
more complicated, having code available 
on the web enables other authors to more 
easily replicate the simulations in prior 
work and to justify their innovations. It 
encourages innovation by avoiding incre-
mental research that does not improve 
upon what has already been performed. 
Of course, the authors who share code 
also benefit. Researchers cite the paper 
that describes the algorithm (or they 
should do so), which improves the usual 
publication metrics. 

I believe we are still in the early 
stages of making code available. In the 

past, most researchers were posting code 
somewhere on their webpage and includ-
ing a link. More recently, researchers 
have been making code available online 
at places like GitHub to encourage more 
open-source development and refine-
ment. Finally, the IEEE has also joined 
the game through Code Ocean. This 
allows for source code to be linked with 
the paper in IEEE Xplore, and it is sup-
ported by IEEE Signal Processing Maga-
zine (SPM). In a quick survey of my own 
research, I realize that I have not put much 
source code online. But I am encouraging 
my students to make code available. In 

summary, I think the 
community is mak-
ing good progress in 
this area, although 
code is not shared for 
every paper or in the 
same way and is hard 
to search.

The third main re
volution in accessibility has been shar-
ing data. When I was a graduate student 
working in signal processing for com-
munications, there was not much interest 
in data. If you had the source code for a 
paper, you could reproduce the neces-
sary data to make simulation compari-
sons, e.g., bit error rate or mean squared 
error plots. I do remember trying to do 
some audio experiments from a record, 
but this required receiving a data tape in 
the mail (and, in any case, I was never 
able to get my algorithms to work on 
the data). With the substantial interest 
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now in data-driven signal processing, sharing 
data has never been so relevant. In SPM’s March 
2018 “President’s Message” column, IEEE Signal 
Processing Society President Ali H. Sayed’s arti-
cle “Big Ideas or Big Data?” makes the case that 
signal processing and data science have always 
been intimately connected [1]. 

I think that we are still in the early stages of 
making data accessible. Many researchers make 
data sets available on their web pages. But such 
links may expire as their careers change. IEEE 
DataPort offers an option to make data sets avail-
able through a subscription model similar to 
IEEE Xplore. These fees help to offset the costs 
of long-term storage and accessibility of very 
large data sets. Much work on big data happens 
outside of IEEE publications, and it is unclear to 
me if there are similar offerings targeted toward 
researchers in other communities.

SPM is working on enhanced accessibility of 
our content. The magazine’s articles are in IEEE 
Xplore, and some content (like the “From the Edi-
tor” column) is available for free from the IEEE 
Signal Processing Society’s website. We encour-
age authors to make code available through Code 
Ocean and IEEE DataPort or through other 
means, as you prefer. If you submit to SPM, I 
hope that you will see at least the selfish value of 
sharing and consider making your code and data 
available to future researchers.

Reference
[1] A. H. Sayed, “Big ideas or big data?” IEEE Signal Process. 
Mag., vol. 35, no. 2, pp. 5–6, 2018.
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Twinkle, Twinkle, Little Star

The title of this editorial is borrowed 
from a popular children’s lullaby from 
the 1800s, which reads “Twinkle, 

twinkle, little star, how I wonder what you 
are!” It reminds me of the vast expanse 
of unexplored space (and science) that lie 
before us. 

The human race has always been fas­
cinated by space—and who would not 
be? Its shining stars continually chal­
lenge us to get closer and unravel their 
mysteries. Civilizations old and new 
have been defined by their relationship 
with space and by their contribution 
to astronomy.

This past August, NASA launched 
its first mission to explore a star. It will 
travel for six long years and explore the 
atmosphere of the sun at a safe distance 
of almost 4 million miles. Another Japa­
nese spacecraft, with rovers built in coop­
eration with German and French space 
centers, will be exploring the surface of 
a 1­km­wide asteroid after traveling for 
more than three years. Earlier, in 2003 
and 2011, NASA launched the rov­
ers Spirit, Opportunity, and Curiosity to 
explore areas on the surface of the planet 
Mars. These efforts are fantastic examples 
of creative feats of engineering. Imagine 
flying robotic machines into far­away 
planets or asteroids in dark space, landing 
them on predetermined spots, and con­
trolling them remotely. Significant inge­
nuity drives these accomplishments.

Our scientific community should be 
proud of these achievements. It is not 
a secret that signal processing theory 
and methods have been deeply entren ­
ched in space exploration since its early 
days, providing powerful tools for collect­
ing, transmitting, and processing data. 
The least­squares method itself, and its 
famous recursive version, are the outcome 
of a data fitting exercise by Gauss in 1795 
while trying to predict the location of the 
comet Ceres from past rudimentary tele­
scope measurements. More recently, in 
a lecture given by the French mathema­
tician Yves Meyer (of wavelets fame) at 
EPFL in Switzerland in September 2017, 
the speaker’s opening 
statement was to show 
how “signal process­
ing has played a role 
in the detection of 
gravitational waves!”

The observation of 
these waves is consid­
ered one of the most 
important discoveries of recent times [1]. 
For the uninformed reader, the existence 
of gravitational waves, which amount to 
invisible ripples in the space–time fabric, 
was predicted in the early 1900s, but their 
detection has remained elusive for more 
than a century until their discovery in Feb­
ruary 2016. It is no wonder that three of 
the scientists involved in the discovery 
were awarded the 2017 Nobel Prize in 
Physics almost instantly. The gravita­
tional waves they detected resulted from 
the collision of two black holes a mere 

1.3 billion years ago! Space exploration 
at this level has often enabled the dis­
covery, testing, and validation of deep 
scientific theories including Einstein’s 
theory on how planets and stars distort 
space and time. Experimental valida­
tion of scientific theories is a precious 
exercise because it tests our hypotheses, 
deepens our understanding, and propels 
us to explore more confidently. Space 
exploration has also led to many tech­
nological advances that have benefited 
humanity right here on Earth.

Still, and oddly enough, we have been 
shamefully less successful at explor­
ing our own planet Earth. According to 

the National Ocean 
Service of the U.S. 
De  partment of Com­
merce [2], o c e a n s 
cover 70% of the sur ­
face of our planet , 
and yet about 80% of 
them remain unex­
plored and their floors 

largely unmapped to accurate mea­
sures. Stated another way, we are igno­
rant about half of the planet on which we 
live! Imagine if all the water covering 
our oceans and seas were to disappear, 
what would you get? You would be left 
with vast expanses of land. If you were 
to drive your car through this wilderness, 
you will be on your own for almost half 
of the earth’s surface; no online maps 
would be available to guide you!

There are, of course, many reasons 
why we have not explored our oceans 

Digital Object Identifier 10.1109/MSP.2018.2869963
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more vigorously. Besides the extreme 
environment that one encounters as 
we move deeper into the oceans, and 
the more limited resources available 
for ocean exploration, humans appear 
to have a natural fascination for space 
exploration. Just observe how some 
of the most successful entrepreneurs 
of our times have marched almost by 
inertia toward commercial enterprises 
to explore spaceflight opportunities. 
These include, according to data from 
Wikipedia, companies such as Blue Ori­
gin founded in 2000 by Jeff Bezos (of 
Amazon), SpaceX founded in 2002 by 
Elon Musk (of Tesla), and Virgin Galac­
tic founded in 2004 by Richard Branson 
(of Virgin Group). To a lesser degree, 
some entrepreneurs have ventured into 
exploring the deep sea, including the 
impressive 2012 Deep Sea Challenger 
submersible of Canadian filmmaker 
James Cameron (of the Titanic film), 
and the Schmidt Ocean Institute found­

ed in 2009 by the former Google chair­
man Erich Schmidt.

That said, whether in space or on 
our planet, we readily identify a fron­
tier calling out for attention. There is a 
clear need for the development of more 
science, technology, and methods for the 
exploration of extreme environments. 
Signal processing 
scientists can and will 
play an impor tant 
role in enabling these 
developments. Why? 
Because, by train­
ing, we are experts at 
drawing inferences about unobservable 
variables from indirect measurements. 
There are many success stories, includ­
ing scattering methods for detecting 
layer boundaries in geophysics or oil 
exploration applications, and noninva­
sive imaging techniques such as MRIs 
for biomedical applications, and sonar 
technology. In fact, this latter technol­
ogy is already one of the main techni­
ques used to map the ocean floor up to 
100 meter resolution. However, only 
10% of the oceans’ floors have been 
mapped by the technology and the map­
ping that exists for the remaining surface 
has a poor resolution in the order of 5 km 
[3]. With this state of affairs, one can bet­
ter understand why it has been such a 
daunting task to locate the aircraft of 
Malaysia Airlines f light 370, which 
tragically disappeared back in March 
2014. Imagine how much discovery is 
awaiting us in the unexplored oceans: 
new materials, precious metals or min­
erals that may have gone undiscovered, 
species with wondrous biomechanisms 
that may motivate new technologies, and 
even undiscovered substances that may 
lead to new medical treatments.

These facts are humbling. We pride 
ourselves on the technological advances 
of the 21st century, such as the ability 
to track (whether legal or not, right or 
wrong) every online click and every 
cell phone user, and yet we still cannot 
locate a missing aircraft! Even more 
humbling, there is so much we do not 
know right here on Earth. I am always 
amazed at the discovery of new species. 
We are desperately looking for the tini­
est forms of life on remote planets, and 

yet we continue to be ignorant of the full 
biodiversity that encircles us. Accord­
ing to [4], it is estimated that 18,000 
new species are named every year. 
And we are not talking about tiny spe­
cies. In 2018, a new species of the great 
apes was discovered called the Pongo 
Tapanuliensis orangutan (only 800 of 

them are left in the 
Indonesian island of 
Sumatra). According 
to the United Nations 
Environmental Pro­
gramme [5], it is be­
l ieve d  t ha t  about 

150–200 species become extinct every 
day. How many of these extinct species 
belong to a group that we may not have 
discovered yet?

Even while working on this column, 
it was announced on CNN’s website in 
August 2018 that a “Never before seen 
Amazon tribe” has been spotted on 
drone video. Isn’t that astonishing? We 
are referring to spotting unseen human 
beings, like you and me, on planet 
Earth in 2018! The indigenous people 
spotted in this video live in a large pro­
tected area in the Javari Valley in Bra­
zil. Almost a week later, the same CNN 
website announced the discovery of an 
85-mile long deep-sea coral reef off 
the east coast of the United States; one 
of the most technologically advanced 
nations on Earth! All of this was hiding 
in plain sight. 

You can now understand why I feel 
frustrated and surprised when someone 
asks, “what else is there to do?” Their 
argument is that we live in the 21st cen­
tury and our “advanced” civilization has 
attained so much sophistication in its 
technology from the online revolution, 
to intelligent machines, to deep space 
exploration, that there is not much more 
to discover. Some use this argument 
broadly referring to science in general, 
and others are more specific and target 
our signal processing discipline. Luckily 
enough, there is so much we do not know 
and may not even come to understand 
fully. There are so many unanswered 
questions, and so much opportunity for 
new methods in science, including 
in signal and information processing, 
that the path forward is limitless. We 

Whether in space or on 
our planet, we readily 
identify a frontier calling 
out for attention. 

The University of Vermont 
(UVM) seeks applicants for 
a tenure-track hire in signal 
processing with a research 
focus on hardware and/or soft-
ware implementations (e.g., 
cognitive communication and 
sensing, cyber physical sys-
tems, environmental monitoring, 
medical devices, robotics, 
internet of things, or artificial 
intelligence). UVM is an EO/
AA Employer. All qualified 
applicants will receive consid-
eration for employment without 
regard to race, color, religion, 
sex, sexual orientation, gender 
identity, national origin, disabil-
ity, protected veteran status, 
or any other category legally 
protected by federal or state 
law.  Full details are available 
at: http://www.uvmjobs.com/
postings/31457.
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have only explored the tiniest fraction of 
space and a fraction of planet Earth. Not 
to mention many other areas of explora­
tion in biology, basic and natural scienc­
es, social sciences, and so forth.

Discovery never ends. The unin­
formed sees an obstacle where there is a 
wall. The scientist wants to see through 
the wall or jump over 
it. This is also true at 
a more abstract level. 
I would assume that 
many of you have 
shared a similar expe­
rience with me. When 
I derive a new result, I often sit back in awe 
wondering at how “the more we learn, the 
less we actually know!” In other words, 
similar to how this new result was hid­
ing in some invisible space waiting for 
someone to discover it, many more dis­
coveries are awaiting their chance to be 
brought forward for all of us to admire. 
How many more unknowns are there? 
Enough to keep our curious minds busy 
for ages.

The human race has always been 
fascinated by exploration including in 
many literary works. Jules Verne’s 1870 
classic Twenty Thousand Leagues Under 
the Sea chronicled the adventures of a 
fictional submarine and its exploration 
of the world’s oceans. Interestingly, his 
book was preceded by Verne’s 1864 ear­
lier classic Journey to the Center of the 
Earth. That is another frontier yet to be 
explored. Exploration and discovery will 
never end. For as long as we look up into 
the skies, we will continue to wonder at 
the twinkling stars and the mysteries 
that lie beyond them.

Once, two new graduate students 
walked into my office showing interest 
in joining my research team. One stu­
dent had just completed his undergradu­
ate studies while the second student 
had completed his master-level studies. 
I printed a research article and asked 
them to return in a week to present it 
to me. The undergraduate student was 
understandably concerned that the other 
student is better prepared to read the 
article given his more advanced studies. 
I assured them that my criterion to judge 
their presentations would be different. 

The undergraduate student would need 
to convince me that he understood what 
was written in the paper, while the master 
student would need to convince me that he 
understood what was not written in the 
paper (such as discussing any assump­
tions or approximations that could be 
relaxed or are limiting). The students 

were expected to ap­
proach and critique 
the paper from differ­
ent perspectives. Even 
here, in this simple 
exercise of reading a 
paper, one can find 

opportunities to push knowledge and 
discovery further.
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Speech, the expression of thoughts and 
feelings by articulating sounds, is an 
ability so taken for granted that few 

people bother to think about how complex 
and nuanced the process actually is. Yet, 
as more devices gain the ability to listen 
to and interpret what speakers are saying, 
speech and audiology technologies are 
attracting the interest of a growing num-
ber of academic researchers. Signal pro-
cessing is now playing a critical role in 
making speech detection and recognition 
more accurate, flexible, and reliable for 
use in a wide range of research and every-
day applications.

Singing mice
Vocalization plays a critical role in social 
communication across many species. Male 
mice, for example, generate ultrasonic 
vocalizations (USVs) in the presence 
of females. Both male and female mice 
“sing” during friendly social encounters.

Although mice are extensively used 
for research into autism and other areas, 
studying their USVs has long challenged 
experts. Fortunately, researchers may 
soon have access to a sophisticated new 
investigatory technology. A joint col-
laboration between the Children’s Hos-
pital Los Angeles and the University 
of Southern California’s (USC’s) Vit-
erbi School of Engineering has led to a 
new signal processing tool that aims to 

enable unbiased, data-driven analyses of 
mouse vocalizations.

“Signal processing methods hold the 
promise of offering objective, scalable, 
and reproducible means for characteriz-
ing animal behavior, such as communica-
tion patterns,” says Shrikanth Narayanan, 
the Niki and C.L. Max Nikias Chair in 
Engineering at USC. “This opens up tre-
mendous possibilities for researchers in 
scaling up and accelerating research in 
many domains, such as neurosciences, 
genetics, and pharmacology.” Narayanan 
is an electrical engineering professor, 
computer scientist, and trained linguist 
who oversees the school’s signal analy-
sis and interpretation laboratory, which 
developed the software.

The interdisciplinary project focused 
on creating accurate and efficient high-
throughput computational methods and 
tools for discovering and extracting social 
communication profiles from the USVs 
of mice. “We are automating procedures 
that are often done manually,” Narayanan 
states. “Specifically, using a fully auto-
mated and unsupervised signal process-
ing approach, Mouse Ultrasonic Profile 
ExTraction (MUPET) measures, learns, 
and compares syllable patterns in USVs, 
enabling users to assess the fine details 
of syllable production objectively and use 
it across large numbers of mouse strains 
and experimental conditions.”

The new signal processing tool (Fig-
ure 1), featuring a graphical interface, 
is designed to offer rapid, automated, 
and unsupervised analysis of ultrasonic 

mouse vocalizations. With a time and 
date stamp attached to the vocalizations, 
the researchers believe that that their tool 
will prove useful in correlating vocaliza-
tions with video-recorded behavioral 
interactions, allowing additional infor-
mation to be mined from mouse models 
relevant to the social deficits experi-
enced by people with autism.

“Our MUPET approach employs unbi-
ased discovery of hundreds of unnamed 
syllable patterns, while other approaches 
and tools that are available generate a 
smaller number of named categories 
based on predefined rules,” Narayanan 
says. The team is now offering MUPET 
as an open-access software tool to the 
research community.

“Signal processing is core to my 
laboratory’s work, to analyze and under-
stand the science of human and, some-
times, animal communication and to 
develop technologies that support and 
enhance human experiences,” Naray-
anan explains. “In research, I deal with 
many types of signals, such as audio, 
video, movement sensors, and physi-
ological data streams.”

The approach involves several signal 
processing methods, including audio 
preprocessing and signal condition-
ing, spectral-domain feature extraction 
using a gammatone-scaled filterbank, 
automatic syllable segmentation and 
clustering (i.e., k-means), and automatic 
repertoire generation. “We are continu-
ing to explore new signal processing 
and machine-learning approaches for 

Something to Talk About: Signal Processing  
in Speech and Audiology Research
Promising investigations explore new opportunities in human communication
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FIGURE 1. The computational framework for syllable repertoire learning and repertoire analysis functions. (a) The mouse USV recordings are loaded 
into the MUPET tool, and the syllable detector segments individual syllables by measuring the power spectrum (black lines) in the ultrasonic range and 
comparing it with a noise threshold. The regions of vocalized activity/nonactivity (red boxes, top panel) are used to extract the syllable shapes to form the 
gammaton filter ultra sonic vocalization (GFUSV) spectral representation (bottom panel). The center (dashed blue line) and duration (red horizontal line) 
of the GFUSV and key spectrotemporal features are automatically measured. (b) During processing, the extracted syllable shapes are centered along the 
time and frequency axes and subsequently vectorized before being stacked into a data matrix. Iterative clustering is then performed with (c) and (d). The 
algorithmic output (c) is a collection of exemplar repertoire units (RUs) (i.e., cluster centroids), which show the average shape of the different syllables 
that recur in the data set. RUs learned from noise [the red box in (c)] are removed during syllable repertoire refinement in (d). (e) and (f) The MUPET 
compares the shapes of RUs from different repertoires using two similarity metrics. (e) The cross repertoire similarity matrix gives the Pearson correla-
tions between RU pairs from two different repertoires, which are sorted from highest to lowest shape similarity (see diagonal), regardless of frequency of 
RU use in each repertoire. (f) The cross repertoire similarity boxplot gives the Pearson correlations between collections of RUs, which represent the top 
5%, 25%, 50%, 75%, and 95% of most the frequently used RUs in each repertoire. (g) To compare the frequency of use of similar and unique RU types 
across different data sets, the MUPET performs a cluster analysis of RU types to generate a master repertoire of RU clusters (top panel). The MUPET 
provides information on the frequency of use of each RU cluster, enabling the user to identify shared and unique RU types and usage across strains or 
conditions (bottom panels). (Figure courtesy of the Signal Analysis and Interpretation Laboratory, Viterbi School of Engineering, USC.)
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discovering primitives, or basic units, in 
the recorded data and how they temporal-
ly pattern,” Narayanan says. “We are also 
extending the methods … to look at mul-
timodal data, such as video, in conjunc-
tion with USVs, modeling the temporal 
patterning of the primitives, and [creating] 
predictive models using these features to 
predict outcomes. The potential of signal 
processing and machine learning as both 
tools for providing scale and efficiency 
as well as novel discovery in biomedical 
sciences is exciting,” she states. “We are 
also looking at applying these methods to 
analyzing behavior in other species.”

Recording the inaudible
Researchers at the Coordinated Science 
Laboratory at the University of Illinois 
have created a unique type of sound that is 
entirely inaudible to people at 40 kHz or 
higher, yet can be detected by virtually 
any microphone. The sound combines 
multiple tones that, when interacting with 
the microphone’s circuitry, create what 
researchers describe as a shadow, a sound 
that microphones can easily detect.

The research team, including Ph.D. 
degree students Nirupam Roy and Sheng 
Shen, as well as Prof. Romit Roy Choud-
hury and Prof. Haitham Hassanieh, 
anticipates the development of multiple 
commercial and government applica-
tions based on their work.

“We show that these high-frequen-
cy sounds can be designed to become 

recordable by unmodified microphones 
while remaining inaudible to humans,” 
Shen states. The technology focuses 
on exploiting nonlinearities in micro-
phone hardware. 

“We design the sound and play it on a 
speaker such that, after passing through 
the microphone’s nonlinear diaphragm 
and power amplifier, the signal creates a 
shadow in the audible frequency range,” 
Shen explains. The shadow can be con-
figured to carry data bits, adding an 
acoustic, yet inaudible, communication 
channel to current microphone technol-
ogy. “We designed a system called Back-
Door that develops the technical building 
blocks for harnessing this opportunity.”

BackDoor can utilize a microphone’s 
entire spectrum for communication pur
poses, as shown in Figure 2. “Thus, 
Internet-of-Things devices could find 
an alternative channel for communi-
cation, reducing the growing load on 
Bluetooth,” Shen says. Museums and 
shopping malls, for instance, could use 
BackDoor to power acoustic beacons 
that broadcast information about near-
by artworks or products. Other applica-
tions include the live watermarking of 
concert music, stealthily tagging songs, 
and enhanced navigation systems. 
“Various ultrasound ranging schemes 
that compute the time of flight of sig-
nals could benefit from the substan-
tially higher bandwidth in BackDoor,” 
he observes.

BackDoor also has the potential to 
be misused. Shen observes that inau-
dible jammers can use the technology 
to disable hearing aids and cell phones 
without being detected. “For example, 
during a robbery, the perpetrators can 
prevent people from making 911 calls 
by silently jamming all of the phones’ 
microphones,” he explains.

Shen notes that an attacker could also 
design an inaudible BackDoor signal to 
mimic a human voice. “This can empow-
er an adversary to stand on the road 
and silently control Amazon Echo and 
Google Home-like devices in people’s 
homes,” Shen warns. “A voice command 
like, ‘Alexa, open the garage door,’ can 
be a serious threat.”

Signal processing played an impor-
tant role in resolving several signifi-
cant challenges BackDoor’s developers 
faced. “The nonlinearities we intend to 
exploit are not unique to the microphone; 
they are also present in speakers that 
transmit the sounds,” Shen notes. “As a 
result, the speaker also produces a shad-
ow within the audible range, making its 
output audible to humans.” 

The researchers addressed this issue 
by using multiple speakers and then iso-
lating the signals in frequency across the 
speakers. “We show, both analytically 
and empirically, that none of these iso-
lated sounds create a shadow as they pass 
through the speaker’s diaphragm and 
amplifier,” he reports. “However, once 
these sounds arrive and combine nonlin-
early inside the microphone, the shadow 
emerges within the audible range.”

Another important challenge the re
searchers resolved is allowing standard 
modulation and coding schemes to be 
used directly in communication app
lications. “We show how appropriate 
frequency modulation, combined with 
inverse filtering, resonance alignment, 
and ringing mitigation, is needed to 
boost achievable data rates,” Shen says.

Finally, for security applications, 
jamming requires transmitting noisy sig-
nals that cover the entire audible frequen-
cy range. “With audible jammers, this 
requires speakers to operate at very high 
volumes,” Shen explains. “We leverage 
the adaptive gain control in microphones, 
in conjunction with selective frequency 
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FIGURE 2. BackDoor, developed by the Coordinated Science Laboratory at the University of Illinois, 
utilizes a microphone’s entire spectrum to create an alternative communication channel. A video 
presentation of the technology can be viewed at https://youtu.be/_FrKySibcb8. (Figure courtesy of 
the Coordinated Science Laboratory, University of Illinois.)
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distortion, to improve jamming at mod-
est power levels.”

Shen is confident that BackDoor 
will eventually find many useful appli-
cations. “Nonlinearity is typically an 
enemy,” he says. “We are beginning to 
think there is a way to make nonlinear-
ity a friend.”

A cognitive hearing aid
Hearing-impaired people often struggle 
to follow conversations in busy, noisy 
environments, such as crowded res-
taurants and offices. Although current 
hearing aids are generally useful for 
suppressing background noise, they’re 
relatively helpless at assisting a listener 
detect who is talking in a conversation 
being conducted between multiple indi-
viduals. A cognitive hearing aid that con-
stantly monitors its user’s brain activity to 
determine whether a subject is convers-
ing with a specific speaker would effec-
tively solve this problem.

Tapping into deep neural network 
(DNN) models, researchers at Columbia 
University’s Fu Foundation School of 
Engineering and Applied Science claim 
they have made a breakthrough in audi-
tory attention decoding (AAD) methods 
and are coming closer to making cog-
nitively controlled hearing aids a reality 
(Figure 3). The research, led by Nima 
Mesgarani, an associate professor of 
electrical engineering, was conducted in 
collaboration with Columbia University 
Medical Center’s Department of Neu-
rosurgery, Hofstra-Northwell School of 
Medicine, and the Feinstein Institute for 
Medical Research.

“This work combines the state of the 
art from two disciplines: speech signal 
processing and auditory attention decod-
ing,” Mesgarani says. “We developed an 
end-to-end system that receives as input 
a single audio channel containing a mix-
ture of speakers heard by a listener along 
with the listener’s neural signals.” The 
system then automatically separates the 
individual speakers, determines which 
speaker is being listened to, and ampli-
fies that speaker’s voice to assist the lis-
tener. The entire process is completed in 
fewer than 10 s.

“We came up with the idea of a cog-
nitively controlled hearing aid after we 
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demonstrated it was possible to decode 
the attended target of a listener using 
neural responses in the listener’s brain 
[via] invasive neural recordings,” Mesg-
arani reports. “Later, we showed that we 
could decode attention with noninvasive 
methods as well.”

Several other research groups are also 
working on cognitively controlled hear-
ing aid technologies, Mesgarani notes. 
“However, our current study is a break-
through in removing a major obstacle 
toward real-world implementation of this 
idea, which is to remove the need to have 
clean sources.”

The system works with two distinct 
signal types: neural and acoustic. The 
neural signal is recorded at a high sam-
pling frequency. Wavelet decomposi-
tion is then used to isolate the signal’s 
high-frequency component, since that 
is the most relevant part of the signal 
for attention decoding. “The high-fre-
quency part of the neural signal reflects 
mostly the neural spiking activity in the 
brain near the electrodes,” Mesgarani 
explains. “We then use a Hilbert trans-
form to estimate the envelope of the high-
frequency components.”

On the acoustic side, the incom-
ing sound is decomposed into different 
frequencies using a Fourier transform. 
The sound’s magnitude then goes 
through several neural network models 
that are designed to separate the signal 
of a particular speaker among many. 
The networks in effect modify the mag-
nitude of the Fourier transform, which is 
then combined with the original phase 
to perform an inverse Fourier transform 
to reconstruct the modified audio. Sig-
nal correlation analysis is used to find 
the similarity of the brain signals with 
the acoustic signal of each neural net-
work; the separated audio that most 
resembles the neural activity is chosen 
and subsequently amplified.

The team recently tested the technolo-
gy by using invasive electrocorticography 
recordings obtained from neurologi-
cal subjects undergoing epilepsy surgery. 
The recordings enabled the researchers 
to locate the precise regions of the audi-
tory cortex that contribute to AAD. Using 
this information, they discovered that 
their system decoded the attention of the 
listener and amplified the voice he or she 
wanted to hear using just the mixed audio.

Several technical barriers must still 
be overcome before a commercial ver-
sion of the technology can be brought 
to market. Leading the list is the devel-
opment of new algorithms to process 
local sounds and synthesize which voice 
is ideal for the listener to hear based 
on the engaged task. The project also 
needs to find a way to provide sufficient 
computational power to implement the 
sophisticated technology inside a small, 
wearable device.

“All of these are active areas of 
research and have seen significant im
provements in recent years,” Mesgarani 
notes. “There is no theoretical reason 
prohibiting the implementation of this 
technology in an actual hearing aid 
and, in fact, several hearing aid compa-
nies have already started research-
ing this idea and expressed interest in 
our approach.”

Author
John Edwa rd s  (j edwards@john 
edwardsmedia.com) is a technology 
writer based in the Phoenix, Arizona 
area. Follow him on Twitter @Tech 
JohnEdwards.

Signal Processing Leads to New Clinical Medicine Approaches
Innovative methods promise improved patient diagnoses and treatments

Popular consumer and business tech-
nologies, such as smartphones, tablets, 
wearable devices, and sophisticated 

photoimaging—all driven or supported 
by signal processing—are leading to a 
generation of powerful new diagnostic 
tools designed to help physicians working 
in clinical medicine. In Rochester, New 
York, for instance, a team of engineers 
and clinicians at the Rochester Institute 
of Technology (RIT) and the University 
of Rochester Medical Center (URMC) 

is developing a video-based smartphone/
tablet-based health app (Figure 1) that 
is designed to serve as a clinical tool to 
assess atrial fibrillation (AF), a heart-
rhythm disorder that afflicts millions of 
people worldwide. Co-project leaders 
are Gill Tsouri, an associate professor 
of electrical engineering in RIT’s Kate 
Gleason College of Engineering, who is 
developing both the app and its video sys-
tem algorithm, and Jean Philippe Coud-
erc, a biomedical engineer and assistant 
director of the University of Rochester 
Heart Research Follow-Up Program Lab, 
who will head the clinical trials.

The prime task of the app is to detect 
AF in high-risk populations. “In order to 
detect AF, we monitor the heart rate and 
its variability,” Tsouri says. “This means 
that other applications that rely on these 
biometrics are possible, too, such as mon-
itoring stress, providing biofeedback, 
and detecting other types of arrhyth-
mias.” The app’s video plethysmogra-
phy technology is designed to replace 
sensors utilizing skin contact, such as 
pulse oximeters, with noncontact video 
cameras. “It takes advantage of subtle 
blushing in skin color as blood is being 
pumped by the heart to and from the 
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face,” Tsouri reports. He continues, “Our 
basic approach in this project is to have 
the frontal camera (on the smartphone 
or tablet) take periodic recordings of the 
face of the user to track cardiac activity 
and use it to detect and monitor AF.” The 
monitoring occurs in the background, 
leaving the user free to do other things, 
such as read e-mail or watch a movie. 
“This approach has significant advan-
tages, among them the ability to provide 
an AF monitoring service to virtually 
anyone just by providing a downloadable 
app,” Tsouri notes. “The physician does 
not have to rely on patient compliance to 
receive the required measurements.”

The approach is also inexpensive 
since there is no need for a dedicated 
sensor. Cardiac-monitoring technolo-
gies that are currently available rely 
on cumbersome and costly dedicated 
sensors that require either continuous 
skin contact or active subject participa-
tion. Signal processing is used to detect 
the subject’s face in the video images, 
extract signals from the images, and pre-
process the signals using filtering and 
detrending. “We then apply our signal 
processing algorithms to extract cardiac 
signals and activity from the prepro-
cessed signals,” Tsouri says. “We also 
use signal processing algorithms to iden-
tify and mitigate the effects of motion, 
shaking, and varying ambient light con-
ditions.” He goes on, “Typically, we use 
face detection algorithms to identify the 
face in the video image; extract the red, 
green, and blue pixels from the face; and 
use basic signal processing to generate 
three signals corresponding to the three 
colors.” Tsouri further explains, “We 
then apply our signal processing algo-
rithms to infer cardiac activity based on 
these three signals.”

For the critical step of extracting 
a cardiac signal from red-green-blue 
(RGB) signals, the researchers favor 
color conversion over blind deconvolu-
tion. “We noticed in past research that 
the pulsating heart is expressed better in 
color spaces with the trace hue,” Tsouri 
says. “Conversion from RGB to hue is 
much simpler than applying blind decon-
volution methods, and it provides an 
immediate signal per frame, unlike blind 
deconvolution that relies on processing 

a block of frames thereby introducing 
high complexity and latency.”

To test the approach and its algo-
rithms, the team conducted a large-
scale clinical study with partners at 
the URMC, led by Couderc. The study 
involved 300 subjects, who each received 
a tablet containing the app for a period of 
two weeks. Cardiac activity was moni-
tored by both the app and a U.S. Food 
and Drug Administration-approved 
electrocardiogram patch attached to the 
subject’s chest as a reference source. 
Tsouri notes that the research is still in 
the learning phase. “We would need to 
improve our algorithms based on the 
data we receive to make sure we obtain 
reliable measurements.” He cautions that 
the project should be perceived as just 
one element in a growing digital health-
care trend that is rapidly moving clini-
cians from disease-based medicine to 
preventative medicine. “The technology 
we are developing provides a low-cost 
and easily accessible cardiac-monitoring 
solution that relies on the smart devices 
people already have in their possession,” 
Tsouri states, noting that the approach 
can help detect cardiac problems well 
before they manifest as a disease and 
leverage the smart devices’ Internet 

connection to send data to cloud ser-
vices. “With the growing proliferation of 
smartphones and tablets, this technology 
can become ubiquitous and accessible to 
all populations regardless of their geo-
graphical location and social and finan-
cial status.”

Mood monitor
Rose T. Faghih, an assistant professor 
of electrical and computer engineer-
ing at the University of Houston, Texas 
(Figure 2), is investigating whether 
wrist-worn wearable devices, similar to 
models offered by Fitbit and Apple, can 
be used to monitor stress and related 
conditions. She believes they can. “We 
are developing algorithms to monitor 
mental-stress-related arousal and fatigue 
using measured galvanic skin response 
(GSR) and cortisol, respectively,” Faghih 
says. While numerous consumer-level 
stress-tracking wearables already exist, 
they can’t interpret brain activity related 
to stress. “The ones currently available 
track heart rate as an indicator of stress,” 
she notes.

The project uses state-space model-
ing and Bayesian filtering methods to 
extract stress from skin conductance 
and cortisol measurements. “We also 

FIGURE 1. Engineers and clinicians at RIT and URMC are developing a video-based smartphone/
tablet-based health app. The software is designed to serve as a clinical tool to assess AF, a heart-
rhythm disorder that afflicts millions of people worldwide. (Photo courtesy of the RIT and URMC.)
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use compressed sensing methods in this 
research due to the sparse nature of the 
secretory events that underlie the mea-
sured signals,” Faghih explains. While 
sweat-based cortisol wearable devices 
have been developed in research la
boratories, such sensors have not yet 
been integrated into commercial smart 
watches. “Once smart watches on the 
market integrate a cortisol sensor…our 
algorithms can be worked into the exist-
ing smart watches to monitor fatigue,” 
Faghih says.

Decoding brain states using wrist-
worn wearable devices also promises 
to transform how mental-stress-related 
conditions are diagnosed and treated. 
“The transformative tool sets developed 
could be used by individuals in track-
ing their brain dynamics-related fatigue 
and arousal using wearable devices and 
by clinicians for monitoring patients’ 
physical health,” Faghih explains. “Our 
method relates a person’s internal stress 
state to the probability that tiny bursts 
of sweat are released by the body, result-
ing in the occurrence of spikes in a skin 
conductance signal,” she says. “Relat-
ing the internal stress state to this spike 

occurrence probability, we perform 
Bayesian filtering and smoothing to 
extract stress from skin conductance.” 
Faghih further adds, “Increases in 
spike probability indicate an increase in 
stress.” The stress level is then quanti-
fied in terms of an offline certainty level 
that indicates when the spike probabil-
ity is above its baseline. “In our analy-
sis, we noted high stress levels when 
subjects are involved in active cognitive 
tasks, while a gradual decline occurs 
when they’re only engaged passively, 
such as when watching a clip from a 
horror movie,” Faghih explains.

The GSR algorithms could soon be 
worked into existing smart watches. 
“For example, Microsoft Band already 
measures conductivity of the wearer’s 
GSR to determine if the individual is 
wearing the band,” Faghih says. “Our 
algorithms can use the measured GSR 
data collected by Microsoft Band to 
examine brain activity.”

Examining brain connectivity
The TrueBrainConnect project takes an
other approach to analyzing brain activity. 
Hosted by Charité–Universitatsmedizin 

Berlin, Germany, and its Center for 
Advanced Neuroimaging, the project 
aims to systematically study connections 
between different areas of the brain, 
potentially drawing conclusions regard-
ing possible disease patterns. A team of 
researchers, headed by Stefan Haufe, a 
computer scientist and machine-learn-
ing expert, plans to generate complex 
models capable of forecasting various 
mental states.

Funded by the European Research 
Council, TrueBrainConnect’s primary 
goal is to enable the reliable analy-
sis of functional brain connectivity. 
Using electroencephalography (EEG) 
and magnetoencephalography (MEG), 
the technology promises to help clini-
cians and others determine which brain 
regions send information to which other 
brain regions during a given mental task. 
“By relating such information to task 
parameters, behavior, and potentially 
clinical variables, using classical statis-
tics and machine learning, we hope to 
better understand how the brain works in 
health and disease,” Haufe states.

Two-thirds of the project, Haufe 
notes, is focused on the development 
of data analysis methods. “This work 
touches the fields of inverse problems, 
machine learning, and, of course, signal 
processing, such as statistical source 
separation, spectral decompositions, and 
analysis of causal interactions between 
time series,” he explains. The rest of 
the project is devoted to its potential 
clinical applications. “We hope that the 
developed methods are useful to derive 
neurophysiologically interpretable pre-
dictions (and) diagnoses of disease 
states,” Haufe adds.

The project is based on the premise 
that many neurological disorders have 
roots that are well established before the 
onset of any symptoms or before they 
produce noticeable changes in brain 
structure or behavior. Team members 
believe that these disorders reveal their 
presence through irregularities in the 
way different areas of the brain com-
municate with each other. In the hope of 
improving the prognosis of pathologi-
cal conditions affecting the brain, the 
researchers are developing a method 
(Figure 3) capable of reliably estimating 

FIGURE 2. Rose T. Faghih, assistant professor of electrical and computer engineering at the Uni-
versity of Houston, Texas, is investigating whether wrist-worn wearable devices, similar to models 
offered by Fitbit and Apple, can be used to monitor stress and other emotions. (Photo courtesy of 
the University of Houston, Texas.)
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and localizing brain interactions. “Most 
importantly, we could show that some of 
the most established analysis methods 
have serious shortcomings, which ren-
ders them problematic for the purpose 
of EEG/MEG analysis,” Haufe says.

Existing techniques for analyzing 
neuroimaging data are not yet sufficient-
ly developed, and robust conclusions can-
not be drawn from them. The researchers 
believe that new signal processing and 
machine-learning techniques will allow 
them to make precise determinations 
regarding brain signal sources and actual 
nerve-cell interactions. The research-
ers are primarily focusing on EEG data, 
Haufe says, because it is the only neuro-
imaging technique that is noninvasive, 
has a high temporal resolution (which 
enables the study of functional interac-
tions at the temporal scale of actual neu-
ronal activity), is inexpensive, mobile, 
and offers direct measurements of neu-
ronal activity. “These advantages also 
make it an attractive candidate for clini-
cal diagnosis,” he observes.

Many of the world’s most prevalent 
diseases are age-related neurological 
conditions, such as Parkinson’s disease 
and dementia. “These conditions do 
not have cures yet, and even diagnosis 
is typically possible only at late disease 
stages,” Haufe notes. Current diagnostic 
tools, such as nuclear imaging and tis-
sue probes, tend to be expensive and/or 
invasive, which limits their use in pre-
emptive medical screening. The True-
BrainConnect project is based on the 
hypothesis that many brain diseases are 
characterized, if not caused by, impaired 

communication between different brain 
sites. “If we would be able to see such 
early signs of miscommunication using 
EEG, this would open the door to early 
diagnosis,” Haufe reports.

The biggest challenge facing the 
researchers is the fact that using the EEG 
tends to be a very difficult way to handle 
the signals. “The EEG data analysis 
pipeline is very complex, and nearly all 
parts require more or less advanced sig-
nal processing,” Haufe says. Although 
the EEG is the oldest neuroimag-
ing technique—developed in the late 
1920s—and there has been a recent 
surge of research on using the approach 
for neuroimaging, there has been no 
breakthrough yet. “My hypothesis is that 
there is still a lack of appropriate meth-
ods for extracting the relevant nontrivial 
brain dynamics related to clinical brain 
states,” Haufe notes.

Haufe says that the researchers are 
testing all of their approaches with 
extensive numerical simulations. “Based 
on these simulations, we choose the 
approach that best recovers the ground 
truth with as little variance as possible,” 
he adds, noting that, over the years, some 
understanding inevitably emerges about 
which approaches work and don’t work 
and why. Handling data complexity is 
a key challenge for the team. “We are 
dealing with multivariate time series 
sampled at several hundred hertz and 
evaluated at potentially several thousand 
brain sites; thus, a data set can easily 
comprise several gigabytes of memory,” 
Haufe explains. “Having memory- 
and runtime-efficient algorithms are, 

therefore, critical, especially when inter-
actions between brain sites need to be 
analyzed,” he notes.

An even larger challenge affecting 
the analysis of EEG and other neuro-
physiological time series data is the 
low signal-to-noise ratio (SNR) of brain 
signals as well as the mixing of brain 
signals into EEG channels and recon-
structed sources. “The latter can also 
be seen as a problem of low SNR—
brain activity of interest versus other 
brain processes and artifacts—or as a 
problem of spatially correlated noise,” 
Haufe says. It is the correlated noise that 
makes the data analysis so difficult, he 
notes. “Correlated noise can effectively 
obfuscate the interpretation of multivar-
iate prediction models, which would be 
important in order to understand.”

Challenges aside, Haufe believes 
that his team’s research could ultimately 
lead to advancements in many different 
clinical areas. “In general, the devel-
oped methods could be useful for all 
disciplines that use EEG/MEG data,” he 
states. It is also possible that some of the 
yet-to-be-developed methods will find 
applications in other domains, e.g., the 
methods for estimating nontrivial inter-
actions between time series or for solv-
ing electromagnetic inverse problems, 
Haufe notes.

Author
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FIGURE 3. The planned methodology of TrueBrainConnect, an approach for reliably estimating and localizing brain interactions with the goal of improving 
the prognosis of pathological conditions affecting the brain. (Image courtesy of Stefan Haufe.)
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I
n the era of big data, analysts usually explore various statis-
tical models or machine-learning methods for observed 
data to facilitate scientific discoveries or gain predictive 
power. Whatever data and fitting procedures are employed, 

a crucial step is to select the most appropriate model or meth-
od from a set of candidates. Model selection is a key ingredi-
ent in data analysis for reliable and reproducible statistical 
inference or prediction, and thus it is central to scientific stud-
ies in such fields as ecology, economics, engineering, finance, 
political science, biology, and epidemiology. There has been a 
long history of model selection techniques that arise from 
researches in statistics, information theory, and signal process-
ing. A considerable number of methods has been proposed, 

following different philosophies and exhibiting varying per-
formances. The purpose of this article is to provide a compre-
hensive overview of them, in terms of their motivation, large 
sample performance, and applicability. We provide integrated 
and practically relevant discussions on theoretical properties 
of state-of-the-art model selection approaches. We also share 
our thoughts on some controversial views on the practice of 
model selection.

Why model selection
Vast developments in hardware storage, precision instrument 
manufacturing, economic globalization, and so forth have 
generated huge volumes of data that can be analyzed to extract 
useful information. Typical statistical inference or machine-
learning procedures learn from and make predictions on data 
by fitting parametric or nonparametric models (in a broad 
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sense). However, there exists no model that 
is universally suitable for any data and 
goal. An improper choice of model or 
method can lead to purely noisy discover-
ies, severely misleading conclusions, or 
disappointing predictive performances. 
Therefore, a crucial step in a typical data 
analysis is to consider a set of candidate 
models (referred to as the model class) and 
then select the most appropriate one. In 
other words, model selection is the task of 
selecting a statistical model from a model 
class, given a set of data. We may be interested, e.g., in the 
selection of

■■ variables for linear regression
■■ basis terms, such as polynomials, splines, or wavelets in 

function estimation
■■ order of an autoregressive (AR) process
■■ number of components in a mixture model
■■ most appropriate parametric family among a number of 

alternatives
■■ number of change points in time series models
■■ number of neurons and layers in neural networks
■■ best choice among logistic regression, support vector machine, 

and neural networks
■■ best machine-learning techniques for solving real-world data 

challenges on an online competition platform.
There have been many overview papers on model selection 

scattered in the communities of signal processing [1], statistics 
[2], machine learning [3], epidemiology [4], chemometrics [5], 
and ecology and evolution [6]. Despite the abundant literature 
on model selection, existing overviews usually focus on deriva-
tions, descriptions, or applications of particular model selec-
tion principles. In this article, we aim to provide an integrated 
understanding of the properties and practical performances of 
various approaches by reviewing their theoretical and practical 
advantages, disadvantages, and relations.

Some basic concepts

Notation
We use { : }pM Hm m mm !i= i  to denote a model (in the for-
mal probabilistic sense), which is a set of probability density 
functions to describe the data , , .z zn1 f  Here, Hm  is the 
parameter space associated with .Mm  A model class, 
{ } ,Mm m M!  is a collection of models indexed by .m M!  The 
number of models (or the cardinality of M ) can be fixed or 
depend on the sample size .n  For each model ,Mm  we de
note by dm  the dimension of the parameter in model .Mm  
Its log-likelihood function is written as ( ),m n m m7 ,i i =

( , , ),log p z zn1m fi  and the maximized log-likelihood value is

	 ( ), ( , , ),argmax p z zwith,n m m m n1
Hm m

m, fi i =
!i

i
t t � (1)

the maximum likelihood estimator (MLE) under model .Mm  We 
will write ( ),n m m, it  as ,n m,t  for simplicity. We use p* and E* to 

denote the true data-generating distribution 
and expectation with respect to the true data-
generating distribution, respectively. In the 
parametric framework, there exists some 
m M!  and some Hm!i*  such that p* is 
exactly .p *i  In the nonparametric framework, 
p* is excluded in the model class. We some-
times call a model class { }Mm m M!  well-
specified (respectively, misspecified) if the 
data-generating process is in a parametric 
(respectively nonparametric) framework. We 
use p"  and d"  to denote convergence in 

probability and in distribution (under p*), respectively. We use 
( , )VN n  to denote a Gaussian distribution of mean n and cova-

riance ,V  2|d  to denote a chi-squared distribution with d degrees 
of freedom, and · 2 to denote the Euclidean norm. The word va
riable is often referred to as the covariate in a regression setting.

A typical data analysis can be thought of as consisting of 
two steps.

■■ Step 1: For each candidate model { , },pM Hm m mm !i= i  
fit all of the observed data to that model by estimating its 
parameter .Hm m!i

■■ Step 2: Once we have a set of estimated candidate models 
( ),p m Mm !iu  select the most appropriate one for either in

terpretation or prediction.
We note that not every data analysis and its associated model 

selection procedure formally rely on probability distributions. 
Examples of model-free methods are nearest-neighbor learn-
ing, certain reinforcement learning, and expert learning. Before 
we proceed, it is helpful to first introduce the following two 
concepts: the model fitting and the best model.

The model fitting 
The fitting procedure (also called parameter estimation) given 
a certain candidate model Mm  is usually achieved by mini-
mizing the following (cumulative) loss:

	 ( , ) .arg min s p zm
t

n

t
1Hm m

mi =
!i

i

=

u / 	 (2)

In (2), each p mi  represents a distribution for the data, and ( , ),s $ $  
referred to as the loss function (or scoring function), is used to 
evaluate the goodness of fit between a distribution and the obser-
vation. A commonly used loss function is the logarithmic loss

	 ( , ) ( ),logs p z p zt t=- � (3)

the negative logarithm of the distribution of .zt  Then, (2) pro-
duces the MLE for a parametric model. For time series data, 
(3) is written as , , ,log p z z zt t1 1f- -^ h  and the quadratic loss 

( , ) , ,s p z z E z z zt t p t t1 1
2

f= - -^ h" ,  is often used, where the 
expectation is taken over the joint distribution p  of , , .z zt1 f

The best model
Let p pm m= it u  denote the estimated distribution under model 

.Mm  The predictive performance can be assessed via the 
out-sample prediction loss, defined as

Vast developments 
in hardware storage, 
precision instrument 
manufacturing, economic 
globalization, and so forth 
have generated huge 
volumes of data that can 
be analyzed to extract 
useful information.
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	 , ( ), ( ) ,E s p Z s p z z p z dzm m=* *t t^ ^^ h hh # � (4)

where Z  is independent with and identically distributed as the 
data used to obtain .pmt  Here, Z  does not have the subscript t  
as it is the out-sample data used to evaluate the predictive per-
formance. There can be a number of variations to this in terms 
of the prediction loss function [8] and time dependency. In 
view of this definition, the best model can be naturally defined 
as the candidate model with the smallest out-sample predic-
tion loss, i.e.,

, .arg minm E s p Z
m

m0
M

=
!

*t t^ ^ hh

In other words, Mm0t  is the model whose predictive power 
is the best offered by the candidate models. We note that the 
best is in the scope of the available data, the class of models, 
and the loss function.

In a parametric framework, typically the true data-generat-
ing model, if not too complicated, is the best model. In this vein, 
if the true density function p*  belongs to 
some model Mm  or, equivalently, p p *= i*  
for some Hm!i*  and ,m M!  then we 
seek to select such Mm  (from { } )MMm m!

with probability going to one as the sample 
size increases, which is called consistency 
in model selection. In addition, the MLE 
of p mi  for Hm m!i  is known to attain 
Cramer–Rao lower bound asymptotically. 
In a nonparametric framework, the best 
model depends on the sample size—typically 
the larger the sample size, the larger the 
dimension of the best model because more 
observations can help reveal weak variables 
(whose effects are relatively small) that are out of reach at a 
small sample size. As a result, the selected model is sensitive to 
the sample size, and selection consistency becomes statistically 
unachievable. We revisit this point in the “Because All Models 
Are Wrong, Why Pursue Consistency in Selection?” section.

We note that the aforementioned equivalence between the 
best model and the true model may not hold for regression set-
tings where the number of independent variables is large rela-
tive to the sample size. Here, even if the true model is included 
as a candidate, its dimension may be too high to be appropri-
ately identified based on relatively small data. Then the para-
metric framework becomes practically nonparametric. We will 
emphasize this point in the “An Illustration on Fitting and the 
Best Model” section.

Goals of data analysis and model selection
There are two main objectives in learning from data. One is 
for scientific discovery, understanding of the data-generation 
process, and interpretation of the nature of the data. A scien-
tist, e.g., may use the data to support a physical model or id
entify genes that clearly promote early onset of a disease. 
Another objective of learning from data is for prediction, i.e., 
to quantitatively describe future observations. Here the data 

scientist does not necessarily care about obtaining an accurate 
probabilistic description of the data. Of course, one may also 
be interested in both directions.

In tune with the two different objectives, model selection 
can also have two directions: model selection for inference 
and model selection for prediction. The first one is intended to 
identify the best model for the data, which hopefully provides 
a reliable characterization of the sources of uncertainty for sci-
entific insight and interpretation. And the second is to choose a 
model as a vehicle to arrive at a model or method that offers top 
performance. For the former goal, it is crucially important that 
the selected model is not too sensitive to the sample size. For 
the latter, however, the selected model may simply be the lucky 
winner among a few close competitors, yet the predictive per-
formance can still be (nearly) the best possible. If so, the model 
selection is perfectly fine for the second goal (prediction), but 
the use of the selected model for insight and interpretation may 
be severely unreliable and misleading. Associated with the 
first goal of model selection for inference or identifying the 

best candidate is the following concept of 
selection consistency.

Definition 1
A model selection procedure is consistent if 
the best model is selected with probability 
going to one as .n " 3  In the context of 
variable selection, in practical terms, model 
selection consistency is intended to mean 
that the important variables are identified 
and their statistical significance can be as
certained in a follow-up study of a similar 
sample size but the rest of the variables can-
not. In many applications, prediction accu-

racy is the dominating consideration. Even when the best 
model as defined earlier cannot be selected with high proba-
bility, other models may provide asymptotically equivalent 
predictive performance. The following asymptotic efficiency 
property demands that the loss of the selected model or meth-
od is asymptotically equivalent to the smallest among all of 
the candidates.

Definition 2
A model selection procedure is asymptotically efficient if

	 ,min n1 as
L
L

m

m m
p

M
" " 3!

t
� (5)

where mt  is the selected model, ,E s p ZL *m m= -t^ ^ hh
,E s p Z** ^ ^ hh is the adjusted prediction loss, and pmt  denotes 

the estimated density function under model .m
The subtraction of ,E s p Z** ^ ^ hh allows for better compari-

son of competing model selection methods. Another property 
often used to describe model selection is minimax-rate opti-
mality, which will be elaborated on in the “Theoretical Prop-
erties of the Model Selection Criteria” section. A related but 
different school of thought is the structural risk minimization 
in the literature of statistical learning theory. In that context, 

In this article, we aim 
to provide an integrated 
understanding of the 
properties and practical 
performances of various 
approaches by reviewing 
their theoretical and 
practical advantages, 
disadvantages, and 
relations.
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a common practice is to bound the out-sample prediction loss 
using in-sample loss plus a positive term (e.g., a function of 
the Vapnik–Chervonenkis dimension [9] for a classification 
model). The major difference of the current setting compared 
with that in statistical learning is the (stronger) requirement 
that the selected model should exhibit prediction loss com-
parable to the best offered by the candidates. In other words, 
the positive term plus the in-sample loss should asymptoti-
cally approach the true out-sample loss (as sample size goes 
to infinity).

The goals of inference and prediction as assessed in terms 
of asymptotic efficiency of model selection can often be well 
aligned in a parametric framework, although there exists an 
unbridgeable conflict when a minimax view is taken to assess 
the prediction performance. We will elaborate on this and 
related issues in the “War and Peace—Conflicts Between AIC 
and BIC and Their Integration” section.

In light of all of the preceding discussions, we note that the 
task of model selection is primarily concerned with the selec-
tion of ( ),m MMm !  because once m  is identified, the model 
fitting part is straightforward. Thus, the model selection pro-
cedure can also be regarded as a joint estimation of both the 
distribution family Mm^ h and the parameters in each family 

.Hm m!i^ h
A model class { }Mm m M!  is nested if smaller models are 

always special cases of larger models. For a nested model 
class, the model selection is sometimes referred to as the 
order selection problem. The task of model selection in its 
broad sense can also refer to method (or modeling procedure) 
selection, which we shall revisit in the “Modeling Procedure 
Selection” section.

An illustration on fitting and the best model
We provide a synthetic experiment to illustrate the general 
rules that 1) better fitting does not imply better predictive per-

formance, and 2) the predictive performance is optimal at a 
candidate model that typically depends on both the sample 
size and the unknown data-generating process. As a result, an 
appropriate model selection technique is important to single 
out the best model for inference and prediction in a strong, 
practically parametric framework or to strike a good balance 
between the goodness of fit and model complexity on the 
observed data to facilitate optimal prediction in a practically 
nonparametric framework.

Example 1 
Suppose that a set of time series data { : , , }z t n1t f=  is ob
served, and we specify an AR model class with order at most 

.dn  Each model of dimension (or order) ( , , )k k d1 nf=  is in 
the form of

	 ,z z,t k i
i

k

t i t
1

} f= +
=

-/ � (6)

referred to as the AR(k), where R,k i !}  , ,( ),i k1 f=  ,0,k k !}  
and tf s are independent Gaussian noises with zero mean 
and variance .2v  Adopting quadratic loss, the parameters 

, ,, ,k k k1 f} }  can be estimated by the method of least sq
uares. When the data-generating model is unknown, one 
critical problem is the identification of the (unknown) order 
of the AR model. We need to first estimate parameters with 
different orders , , d1 nf  and then select one of them based on 
a certain principle.

Experiment
In this experiment, we first generate time series data using 
each of the following three true data-generating processes, 
with the sample sizes , , , , , .n 100 500 2 000 3 000=  We then fit 
the data using the model class in Example 1, with maximal 
order .d 15n =
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FIGURE 1. The parametric framework: the best predictive performance is achieved at the true order three. (a) The in-sample loss for each sample size n 
monotonically decreases as the order (model complexity) increases. (b) The predictive performance is only optimal at the true order (circled). (c) The 
most efficient model (circled) is therefore the true model.
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1)	 Parametric framework: The data are generated in the way 
described by (6) with true order k 30 =  and parameters 

.0 7,3} =,
,  ( , , ) .1 2 3,=

Suppose that we adopt the quadratic loss in Example 1. 
Then we obtain the average in-sample loss

( ) .( )e n k z z,k
t k

n

t k i t i
i

k
1

1

2

1

}= - -
=

-

= +

-t t/ /

In Figure 1(a), we plot ekt  against k  for , , ,k d1 nf=  aver-
aged over 50 independent replications. The curve for each 
sample size n  is monotonically decreasing, because larger 
models fit the same data better. We compute and plot in Figure 1(b) 
the out-sample prediction loss in (4), which is equivalent to 

,E s p Z E Z Z* ,
k

k t t k i t ii 1

2
}= - -=*t t^ ^ `hh j/  in this example. The 

above expectation is taken over the true stationary distribution 
of an independent process of .Zt  (An alternative definition is 
based on the same-realization expectation that calculates the 
loss of the future of an observed time series [10].)  The curves 
in Figure 1(b) show that the predictive performance is only 
optimal at the true order.

Under the quadratic loss, we have , ,E s p Zt
2v=* *^ ^ hh  and 

the asymptotic efficiency (Definition 2) requires that

	
min

E Z Z

E Z Z

,

, , * ,

t k j t jj
k

k d t k i t ii

k

1

2 2

1 1

2 2
n

} v

} v

- -

- -f

-=

= -=

* t

t

t
t`

`
j

j
/
/

� (7)

converges to one in probability. To describe how the predictive 
performance of each model deviates from the best possible, 
we define the efficiency of each model of order kl to be the 
quantity in (7) with kt  being replaced with kl ( , , ).k d1 nf=l   
Note that the concepts of efficiency and asymptotic efficiency 
in model selection are reminiscent of their counterparts in 

parameter estimation. We plot the efficiency of each candidate 
model in Figure 1(c). Similarly to Figure 1(b), the curves here 
show that the true model is the most efficient model. We note 
that the minus- 2v  adjustment of out-sample prediction loss in 
the above definition makes the property highly nontrivial to 
achieve (see, e.g., [11]–[13]). Consider, e.g., the comparison 
between AR(2) and AR(3) models, with the AR(2) being the 
true data-generating model. It can be proved that without sub-
tracting ,2v  the ratio (of the mean square prediction errors) for 
each of the two candidate models approaches one; by subtract-
ing ,2v  the ratio for AR(2) still approaches one, whereas the 
ratio for AR(3) approaches 2/3.
2)	 Nonparametric framework: The data are generated by the 

moving average (MA) model . ,z 0 8t t t 1f f= - -  with tf  
being independent standard Gaussian.
Similarly to case 1, we plot the results in Figure 2. Dif-

ferent from case 1, the predictive performance is optimal at 
increasing model dimensions as n increases. In such a non-
parametric framework, the best model is sensitive to the sam-
ple size, so that pursuing an inference of a fixed good model 
becomes unrealistic. The model selection task aims to select 
a model that is asymptotically efficient [see Figure 2(c)]. Note 
that Figure 2(b) and (c) is drawn based on the information 
of the underlying true model, which is unavailable in prac-
tice; hence, we need a model selection method to achieve the 
asymptotic efficiency.
3)	 Practically nonparametric framework: The data are gener-

ated in the same way as in case 1, except that .k 100 =

We plot the results in Figure 3. For , ,  , ,n 2 000 3 000=  the 
sample sizes are large enough to support the evidence of a 
true model with a relatively small model dimension. Similarly 
to experiment 1, this is a parametric framework in which the 
optimal predictive performance is achieved at the true model. 
For ,  ,n 100 500=  where the sample sizes are not large enough 
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FIGURE 2. The nonparametric framework: the best predictive performance is achieved at an order that depends on the sample size. (a) The in-sample loss 
for each sample size n monotonically decreases as the order (model complexity) increases. (b) The predictive performance is optimal at increasing orders 
(circled) as n increases.  (c) The order of the most efficient model (circled) therefore increases as n increases.
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compared to the true model dimension, however, fitting too 
many parameters actually causes an increased variance that 
diminishes the predictive power. In such a scenario, even though 
the true model is included as a candidate, the best model is 
not the true model, and it is unstable for small or moderate 
sample sizes as if in a nonparametric setting. In other words, 
the parametric framework can turn into a practically nonpara-
metric framework in the small data regime. It can also work 
the other way around, i.e., for a true nonparametric framework, 
for a large range of sample sizes (e.g., 100– , ),2 000  a relatively 
small parametric model among the candidates continues to be 
the best model [14].

Principles and approaches  
from various philosophies or motivations
A wide variety of model selection methods have been pro-
posed in the past few decades, motivated by different view-
points and justified under various circumstances. Many of 
them originally aimed to select either the order in an AR 
model or a subset of variables in a regression model. We 
review some of the representative approaches in these contexts 
in this section.

Information criteria based on likelihood functions
Information criteria generally refer to model selection methods 
that are based on likelihood functions and applicable to paramet-
ric model-based problems. Here we introduce some information 
criteria whose asymptotic performances are well understood.

Akaike information criterion (AIC) is a model selection 
principle proposed by Akaike [15]. A detailed derivation of it 
from an information theoretic perspective can be found in [1]. 
Briefly speaking, the idea is to approximate the out-sample 
prediction loss by the sum of the in-sample loss and a correc-

tion term. We refer to [1] for a detailed derivation of this correc-
tion term. In the typical setting where the loss is logarithmic, 
the AIC procedure is to select the model Mm  that minimizes

	 ,d2 2AIC ,m n m m,=- +t � (8)

where ,n m,t  is the maximized log likelihood of model Mm  
given n  observations as defined in (1), and dm  is the dimen-
sion of model .Mm  It is clear that more complex models 
(with larger dm ) will suffer from larger penalties.

In the task of AR order selection, it is also common to use

	 logn e k2AICk k= +t � (9)

for the model of order ,k  where ekt  is the average in-sample 
loss based on the quadratic loss. In fact, (9) can be derived 
from (8) by assuming that AR noises are Gaussian and by 
regarding ARs of different orders as .Mm m M!" ,  A predeces-
sor of AIC is the final prediction error criterion (FPE) [16] (also 
by Akaike). An extension of AIC is the Takeuchi’s information 
criterion [17], derived in a way that allows model misspecifica-
tion, but it is rarely used in practice due to its computational 
complexity. In the context of generalized estimating equations 
for correlated response data, a variant of AIC based on quasi-
likelihood is derived in [18].

Finite-sample corrected AIC (AICc) [19] was proposed as a 
corrected version of the AIC for small-sample study. It selects 
the model that minimizes

{ }{ }
.

n d
d d

2
2 1 2

AIC AICcm m
m

m m
= +

- -
+ +

Unless the sample size n  is small compared with model 
dimension ,dm  there is little difference between AICc and 
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FIGURE 3. The practically nonparametric framework: the best predictive performance is achieved at an order that depends on the sample size in the small 
data regime. (a) The in-sample loss for each sample size n monotonically decreases as the order (model complexity) increases. (b) The predictive per-
formance is optimal at increasing orders (circled) as n increases in a certain range. (c) The order of the most efficient model (circled) therefore depends 
on n in a certain range. 
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.AIC  Another modified AIC that replaces the constant two 
with a different positive number has also been studied in [20].

Bayesian information criterion (BIC) [21] is another popular 
model selection principle. It selects the model m that minimizes

	 .logd n2BIC ,m n m m,=- +t � (10)

The only difference with AIC is that the constant two in the 
penalty term is replaced with the logarithm of the sample size. 
The original derivation of BIC by Schwarz turned out to have 
a nice Bayesian interpretation, as its current name suggests.

To see the interpretation, we assume that , ,z zn1 f  are 
the realizations of independent, identically distributed ran-
dom variables, and (·)r  is any prior distribution on i  that 
has dimension .d  We let ( ) ( )log p zn

n i i1, i R= i=  be the log-
likelihood function and nit  the MLE of .i  Based on classical 
Bayesian asymptotics we have (see, e.g., [22, eq. (1.5)]) under 
regularity conditions

	
( ) ( ( ) ( ))

( ) ( ) ( )

exp

det log

n r n r dr

E p z2*
/ /

n n n n n

p
d 2 2 1 2

Rd
2
1

2
1

"

, ,

d

r i i i

r i r

+ + -

- i i

- -

-
* *

t t t

^ h" ,
#

�
(11)

as ,n " 3  for some constant .*i  Note that the right-hand side of 
(11) is a constant that does not depend on n and the left-hand side 
of (11) equals

	 ( , , ) ( ( ) ) .exp logp z z d n
2

n n n1 f , i- +t � (12)

Therefore, selecting a model with the largest marginal like-
lihood ( , , )p z zn1 f  (as advocated by Bayesian model compari-
son) is asymptotically equivalent to selecting a model with the 
smallest BIC in (10). It is interesting to see that the marginal 
likelihood of a model does not depend on the imposed prior at all 
in the large sample limit. Intuitively speaking, this is because, 
in the integration of ( , , ) ( ) ( , , ) ,p z z p z z dn n1 1f 8 fr i i= ii  
the mass is concentrated around nit  with radius ( )O n /1 2-  and 
dimension ,d  so its value is proportional to the maximized 
likelihood value multiplied by the volume approximately at the 
order of ,n /d 2-  which is in line with (12).

Hannan and Quinn (HQ) criterion [23] was proposed as 
an information criterion that achieves strong consistency in 
AR order selection. In other words, if the data are truly gen-
erated by an AR model of fixed order ,k0  then the selected 
order k  converges almost surely to k0  as the sample size 
goes to infinity. We note that strong consistency implies (the 
usual) consistency. In general, this method selects a model 
by minimizing log logc d n2 2HQ ,m n m m,=- +t  (for any con-
stant c 12 ). It can be proved under some conditions that any 
penalty no larger than log logd n2 m  is not strongly consistent 
[23]; therefore, HQ employs the smallest possible penalty to 
guarantee strong consistency.

Bridge criterion (BC) [24], [25] is a recently proposed infor-
mation criterion that aims to bridge the advantages of both 
AIC and BIC in the asymptotic regime. It selects the model 

Mm  that minimizes c d2 1 2BC ,m n m n m
1 1, g=- + + + +- -t ^ h 

(with the suggested c n /
n

2 3= ) over all of the candidate models 
whose dimensions are no larger than ,dmAIC  the dimension of 
the model selected by AIC. Note that the penalty is approxi-
mately ,logc dn m  but it is written as a harmonic number to 
highlight some of its nice interpretations. Its original deriva-
tion was motivated by a recent finding that the information loss 
of underfitting a model of dimension d  using dimension d 1-  
is asymptotically d2|1  for large ,d  assuming that nature gen-
erates the model from a noninformative uniform distribution 
over its model space (in particular the coefficient space of all 
stationary autoregressions) [24, Appendix A]. BC was proved 
to perform similarly to AIC in a nonparametric framework and 
similarly to BIC in a parametric framework. We further dis-
cuss BC in the “War and Peace—Conflicts Between AIC and 
BIC and Their Integration” section.

Methods from other perspectives
In addition to information criteria, some other model selection 
approaches have been motivated from either Bayesian, infor-
mation-theoretic, or decision-theoretic perspectives.

Bayesian posterior probability is commonly used in Bayes-
ian data analysis. Suppose that each model m M!  is assigned 
a prior probability p 0Mm 2^ h  (such that 1Mm mMR =! ^ h ), 
interpreted as the probability that model Mm  contains the 
true data-generating distribution .p*  Such a prior may be 
obtained from scientific reasoning or knowledge from his-
torical data. For each ,m M!  we also introduce a prior, with 
density ( )pm m m7i i  ,Hm m!i^ h  and a likelihood of data 

,p zm m; i^ h  where [ , , ] .z z zn1 f=  A joint distribution on 
, ,z Mm mi^ h is therefore well defined, based on which vari-

ous quantities of interest can be calculated. We first define the 
marginal likelihood of model Mm  by

	 ( ) ( ) .p z p z p dMm m m m m m
Hm

; ; i i i=^ h # 	 (13)

Based on (13), we obtain the following posterior probabili-
ties on models by Bayes formula:

	 .p z
z p

p z p
p

M
M M

M M
m

m mm

m m

M

;
;

;
=

!
l ll

^ ^
^

^
^h h
h
h
h/ 	 (14)

The maximum a posteriori approach [26] would select the 
model with the largest posterior probability.

Bayes factors are also popularly adopted for Bayesian model 
comparison, defined for a pair of models ,M Mm ml^ h by

( | )
(

( )
( )

( | )
( | )

.
| )

B
p z
p z

p
p

p z
p z

M

M

M

M

M

M
,m m

m

m

m

m

m

m
= =l

l l l

The model Mm  is favored over Mml if .B 1,m m 2l  Bayes 
factors remove the impact of prior probabilities on the models 
from the selection process to focus on the ratio of marginal 
likelihoods. Compared with the Bayesian posterior probability, 
Bayes factors are appealing when it is difficult to formulate 
prior probabilities on models.
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Bayesian marginal likelihood, defined in (13), also referred 
to as the evidence or model evidence, is a quantity naturally 
motivated by Bayes factors. In the presence of multiple models, 
the one with the largest Bayesian marginal 
likelihood is favored over all other models 
in terms of the Bayes factor. Moreover, it 
can be seen that the model with the high-
est marginal likelihood is the model with 
the highest posterior probability given that 
the Bayesian prior probabilities on mod-
els are all equal. Interestingly, this Bayes-
ian principle using marginal likelihood is 
asymptotically equivalent to the BIC (as we 
have introduced in the “Information Criteria Based on Likeli-
hood Function” section). In practice, the preceding Bayesian 
model selection methods can be computationally challenging. 
Calculation of the quantities in (13) and (14) are usually imple-
mented using Monte Carlo methods, especially sequential 
Monte Carlo (for online data) and Markov chain Monte Carlo 
(for batch data) (see, e.g., [27]). It is worth noting that improper 
or vague priors on the parameters of any candidate model can 
have a nonnegligible impact on the interpretability of marginal 
likelihood and Bayes factors in the nonasymptotic regime, and 
that has motivated some recent research on Bayesian model 
selection (see, e.g., [28] and the references therein).

The minimum message length (MML) principle [29] was 
proposed from an information-theoretic perspective. It favors 
the model that generates the shortest overall message, which 
consists of a statement of the model and a statement of the data 
concisely encoded with that model. Specifically, this criterion 
aims to select the model that minimizes

( ) ( ) ( ) ( ),log log log logp p x I d
2
1

2
1 d; ;;i i i l- - + + +

where ( )p i  is a prior, p x ; i^ h is the likelihood function, 
( ) ( ) ( )logI p x p x dx2

2 28 ; ;i i i i= " ,  is the Fisher informa-
tion, d is the dimension of i , and kd  is the so-called optimal 
quantizing lattice constant that is usually approximated by 

.1 121l =  A detailed derivation and application of MML 
can be found in [30].

The minimum description length (MDL) principle [31]–[34] de
scribes the best model as the one that leads to the best compression  
of a given set of data. It was also motivated by an informa-
tion-theoretic perspective (which is similar to MML). Differ-
ent from MML, which is in a fully Bayesian setting, MDL 
avoids assumptions on prior distribution. Its predictive extension, 
referred to as the predictive minimum description length criterion 
(PMDL), is proposed in [35]. One formulation of the principle is 
to select the model by minimizing the stochastic complex-
ity ( ) ( , , ),log logp z p z z zn

t t t1 2 1 1t1 f;R- -i i= -  in which ti ’s 
are restricted to the same parameter space (with the same 
dimension). Here, each t 1t 2i ^ h is the MLE calculated using 

, , ,z zt1 1f -  and (·)p 1i  can be an arbitrarily chosen prior distri-
bution. The above PMDL criterion is also closely related to the 
prequential (or predictive sequential) rule [36] from a decision-
theoretic perspective.

Deviance information criterion (DIC) [37] was derived as a 
measure of Bayesian model complexity. Instead of being de
rived from a frequentist perspective, DIC can be thought of as 

a Bayesian counterpart of AIC. To define 
DIC, a relevant concept is the deviance under 
model :m  ( ) ,logD p y C2m m ;i i=- +^ h  
where C  does not depend on the model 
being compared. Also, we define the effec-
tive number of parameters of the model 
to  be  ( ) ( ( )),p E D D ED z m m zi i= - ;;i i  
where ( )E z $;i  is the expectation taken 
over i  conditional on all of the observed 
data z  under model .Mm  Then the DIC 

selects the model Mm  that minimizes

	 ( ) .D E p2DICm m z Di= +;i^ h 	 (15)

The conceptual connection between DIC and AIC can be 
readily observed from (15). The MLE and model dimension in 
AIC are replaced with the posterior mean and effective number 
of parameters, respectively, in DIC. Compared with AIC, DIC 
enjoys some computational advantage for comparing complex 
models whose likelihood functions may not even be in analytic 
forms. In Bayesian settings, Markov chain Monte Carlo tools 
can be utilized to simulate posterior distributions of each can-
didate model, which can be further used to efficiently compute 
DIC in (15).

Methods that do not require parametric assumptions
Cross validation (CV) [38], [39] is a class of model selection 
methods widely used in machine-learning practice. CV does 
not require the candidate models to be parametric, and it 
works as long as the data are permutable and one can assess 
the predictive performance based on some measure. A specific 
type of CV is the delete-1 CV method [40] [or leave-one-
out (LOO)]. The idea is as follows. For brevity, let us con-
sider a parametric model class as before. Recall that we 
wish to select a model Mm  with as small out-sample loss 

,E s p Zmi* u^ ^ hh  as possible. Its computation involves an un
known true data-generating process, but we may approximate it 
by , ,sn p zn

i i
1

1 ,m iR i
-

= -
t^ h  where ,m ii -

t  is the MLE under model 
Mm  using all of the observations except .zi  In other words, 
given n observations, we leave each one observation out in 
turn and attempt to predict that data point by using the n 1-  
remaining observations, and we record the average prediction 
loss over n rounds. Interestingly, the LOO was shown to be asymp-
totically equivalent to either AIC/Takeuchi’s information crite-
rion under some regularity conditions [40].

In general, CV works in the following way. It first ran-
domly splits the original data into a training set of nt  data 

n n1 1t# # -  and a validation set of n n nv t= -  data; each 
candidate model is then trained from the nt  data and vali-
dated on the remaining data (i.e., to record the average vali-
dation loss). This procedure is independently replicated a 
few times (each with a different validation set) to reduce 
the variability caused by splitting. Finally, the model with the 

Interestingly, the LOO 
was shown to be 
asymptotically equivalent 
to either AIC/Takeuchi’s 
information criterion 
under some regularity 
conditions. 
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smallest average validation loss is selected, and it is retrained 
using the complete data for future prediction.

A special type of CV is the so-called k -fold CV (with k  being 
a positive integer). It randomly partitions data into k  subsets 
of (approximately) equal size; each model is trained on k 1-  
folds and validated on the remaining one fold. The procedure is 
repeated k  times, and the model with the smallest average valida-
tion loss is selected. The k -fold CV is perhaps more commonly 
used than LOO, partly due to the large computational complexity 
involved in LOO. The holdout method, as often used in data com-
petitions (e.g., Kaggle competition), is also a special case of CV. 
It does data splitting only once, one part as the training set and 
the remaining part as the validation set. We note that there exist 
fast methods, such as generalized cross validation (GCV) [90], as 
surrogates to LOO to reduce the computational cost. Some addi-
tional discussion on CV will be provided in the “Clarification of 
Some Misconceptions” section.

Methods proposed for specific types of applications
There have been some other criteria proposed for specific 
types of applications, mostly for time series or linear regres-
sion models.

The predictive least-squares (PLS) principle proposed by 
Rissanen [41] is a model selection criterion based on his PMDL 
principle. PLS aims to select the stochastic regression model 
by minimizing the accumulated squares of prediction errors 
(in a time-series setting), defined as

,y xPLS , ,m t m t
T

m t
t t

n

1
1

2

0

b= - -

= +

^ h/

where yt  is each response variable, x ,m t  is the vector of covari-
ates corresponding to model ,m  and ,m t 1b -  is the least-squares 
estimate of model Mm  based on data before time .t  The time 
index t0  is the first index such that tb  is uniquely defined. 
Conceptually, PLS is not like AIC and BIC, which select the 
model that minimizes a loss plus a penalty. It seems more like 
the counterpart of LOO in sequential contexts. Interestingly, it 
has been proved that PLS and BIC are asymptotically close, 
both strongly consistent in selecting the data-generating model 
(in a parametric framework) [42]. Extensions of PLS where the 
first index t0  is a chosen sequence indexed by n  have also been 
studied. It has been shown, e.g., that PLS with /t n 10 "  shares 
the same asymptotic property of AIC under some conditions 
(see, e.g., [43, Example 8]).

Generalized information criterion GIC nm^ h [12], [44] repre-
sents a wide class of criteria whose penalties are linear in 
model dimension. It aims to select the regression model Mm  
that minimizes

.e
n

dGIC ,m m
n n m

2

n
m v

= +m t
t

Here, n
2vt  is an estimator of ,2v  the variance of the noise, 

and e n y ym m
1

2
2= --t t  is the mean square error between 

the observations and least-squares estimates under regression 
model .Mm  nm  is a deterministic sequence of n  that controls 
the tradeoff between the model fitting and model complexity. 

If we replace n
2vt  with ( ) ,n d nem m

1- - t  it can be shown under 
mild conditions that minimizing GIC nm  is equivalent to mini-
mizing [12, p. 232]

	 .log e
n
d

m
n mm

+t � (16)

In this case, 2nm =  corresponds to AIC, and log nnm =  
corresponds to BIC. Mallows’s Cp  method [45] is a special 
case of GIC with ( )n d nen m m

2 1v = -
D -t tr r  and ,2nm =  where mr  

indexes the largest model that includes all of the covariates.

Theoretical properties of the model selection criteria
Theoretical examinations of model selection criteria have cen-
tered on several properties: consistency in selection, asymptotic 
efficiency, and minimax-rate optimality. Selection consistency 
targets the goal of identifying the best model or method on its 
own for scientific understanding, statistical inference, insight, 
or interpretation. Asymptotic efficiency and minimax-rate opti-
mality (defined in Definition 3, which follows) are in tune with 
the goal of prediction. Before we introduce the theoretical prop-
erties, it is worth mentioning that many model selection meth-
ods can also be categorized into two classes according to their 
large-sample performances, represented by AIC and BIC. In 
fact, it has been known that AICc, FPE, and GCV are asymp-
totically close to AIC, whereas Bayes factors, HQ, and the orig-
inal PLS are asymptotically close to BIC. For some other 
methods, such as CV and GIC, their asymptotic behavior usual-
ly depends on the tuning parameters. GIC nm  is asymptotically 
equivalent to AIC when 2nm =  and to BIC when .log nnm =  
In general, any sequence of nm  satisfying n " 3m  would 
exhibit the consistency property shared by BIC. As a corollary, 
the Cp  method (as a special case of GIC2 ) is asymptoti-
cally equivalent to AIC. For CV with nt  training data and 
nv  validation data, it is asymptotically similar to AIC when 

/n n 0v t "  (including the LOO as a special case) and to BIC 
when /n nv t " 3 [12, eq. (4.5)].

In general, AIC and BIC have served as the golden rules 
for model selection in statistical theory during their existence. 
Though cross validations or Bayesian procedures have also 
been widely used, their asymptotic justifications are still rooted 
in frequentist approaches in the form of AIC, BIC, and so forth. 
Therefore, understanding the asymptotic behavior of AIC and 
BIC is crucial in both theory and practice. We thus focus on 
the properties of AIC and BIC in the rest of this section and the 
“War and Peace—Conflicts Between AIC and BIC and Their 
Integration” section. It is remarkable that the asymptotic water-
shed of AIC and BIC (and their closely related methods) simply 
lies in whether the penalty is a fixed, well-chosen constant or 
goes to infinity as a function of .n

First of all, AIC is proved to be minimax-rate optimal for 
a range of variable selection tasks, including the usual subset 
selection and order selection problems in linear regression and 
nonparametric regression based on series expansion with such 
bases as polynomials, splines, or wavelets (see, e.g., [46] and 
the references therein). Consider, e.g., the minimax risk of esti-
mating the regression function f F!  under the squared error
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where ft  is over all estimators based on the observations and 
( )f xi  is the expectation of the ith response variable (or the ith 

value of the regression function) conditional on the ith vector 
of variables .xi  Each xi  can refer to a vector of explanatory 
variables, or polynomial basis terms, and so on. For a model 
selection method ,o  its worst-case risk is , ,sup R f nf F o =! ^ h

{ ( ) ( )} ,n E f x f xn
i ii

1 2
1

-o
-

= *
t/  with fot  being the least-squares 

estimate of f  under the variables selected by .o

Definition 3 
A method o  is said to be minimax-rate optimal over F  if 

, ,sup R f nf F o! ^ h converges at the same rate as the minimax 
risk in (17).

Another good property of AIC is that it is asymptotically 
efficient [as defined in (5)] in a nonparametric framework (see, 
e.g., [11] and [47]). In other words, the predictive performance 
of its selected model is asymptotically 
equivalent to the best offered by the candi-
date models (even though it is sensitive to 
the sample size).

BIC, on the other hand, is known to be 
consistent in selecting the smallest true 
data-generating model in a parametric 
framework (see, e.g., [12] and [23]). Sup-
pose, e.g., that the data are truly generated 
by an AR(2) and the candidate models are 
AR(2), AR(3), and an MA model that is 
essentially ( ) .AR 3  Then AR(2) is selected with probability 
going to one as the sample size tends to infinity. MA(1) is not 
selected because it is a wrong model, and AR(3) is not selected 
because it overfits [even though it nests AR(2) as its special 
case]. Moreover, it can be proved that the consistency of BIC 
also implies that it is asymptotically efficient in a parametric 
framework [12], [24]. We will elaborate more on the theoretical 
properties of AIC and BIC in the next section.

War and peace—Conflicts between AIC and BIC  
and their integration
In this section, we review some research advances in the under-
standing of AIC, BIC, and related criteria. The choice of AIC 
and BIC to focus on here because they represent two corner-
stones of model selection principles and theories. We are 
only concerned with the settings where the sample size is 
larger than the model dimension. Details of the following dis-
cussions can be found in such original papers as [11], [12], 
[24], [47]–[49], and the references therein.

Recall that AIC is asymptotically efficient for the non-
parametric framework and is also minimax optimal [46]. In 
contrast, BIC is consistent and asymptotically efficient for the 
parametric framework. Despite the good properties of AIC 
and BIC, they have their own drawbacks. AIC is known to be 
inconsistent in a parametric framework where there are at least 
two correct candidate models. As a result, AIC is not asymp-

totically efficient in such a framework. If data are truly gener-
ated by an AR(2), e.g., and the candidate models are AR(2), 
AR(3), and so forth, then AR(2) cannot be selected with prob-
ability going to one by AIC as the sample size increases. The 
asymptotic probability of it being selected can actually be ana-
lytically computed [48]. BIC, on the other hand, does not enjoy 
the properties of minimax-rate optimality and asymptotic effi-
ciency in a nonparametric framework [12], [50].

Why do AIC and BIC work in those ways? Theoretical 
arguments in those aspects are highly nontrivial and have 
motivated a vast literature since the formulations of AIC and 
BIC. Here we provide some heuristic explanations. For AIC, 
its formulation in (8) was originally motivated by searching 
the candidate model p that is the closest in Kullback–Leibler 
(KL) divergence (denoted by DKL ) from p to the data-gener-
ating model .p*  Because ,min D p p*p KL ^ h is equivalent to 

( )min logE pp -*  for a fixed ,p*  AIC is expected to perform 
well in minimizing the prediction loss. But AIC is not con-
sistent for a model class containing a true model and at least 

one oversized model, because fitting the 
oversized model would only reduce the first 
term 2 ,n m,- t  in (8) by a random quantity 
that is approximately chi-square distributed 
(by, e.g., Wilks’s theorem [51]), whereas 
the increased penalty on the second item 

d2 m  is at a constant level, which is not large 
enough to suppress the overfitting gain in 
fitness with high probability. Selection 
consistency of BIC in a parametric frame-
work is not surprising due to its nice Bayes-

ian interpretation (see the “Principles and Approaches from 
Various Philosophies or Motivations” section). However, its 
penalty logd nm  in (10) is much larger than the d2 m  in AIC, so 
it cannot enjoy the predictive optimality in a typical nonpara-
metric framework (if AIC already does so).

To briefly summarize, for asymptotic efficiency, AIC (res
pectively, BIC) is only suitable in nonparametric (respectively, 
parametric) settings. Figure 4 illustrates the two situations. 
There has been a debate between AIC and BIC in model 
selection practice, centering on whether the data-generat-
ing process is in a parametric framework or not. The same 
debate was sometimes raised under other terminology. In a 
parametric (respectively, nonparametric) framework, the 
true data-generating model is often said to be well specified 
(respectively, misspecified) or finite (respectively, infinite) 
dimensional. (To see a reason for such terminology, consider, 
e.g., the regression analysis using polynomial basis function 
as covariates. If the true regression function is indeed a poly-
nomial, then it can be parameterized with a finite number 
of parameters; if it is an exponential function, then it cannot 
be parameterized with any finite dimensional parameter.) 
Without prior knowledge on how the observations were 
generated, determining which method to use becomes very 
challenging. It naturally motivates the following fundamental 
question: Is it possible to have a method that combines the 
strengths of AIC and BIC?

There has been a debate 
between AIC and BIC in 
model selection practice, 
centering on whether the 
data-generating process is 
in a parametric framework 
or not. 
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The combining of strengths can be defined in two ways. 
First, can the properties of minimax-rate optimality and con-
sistency be shared? Unfortunately, it has been theoretically 
shown under rather general settings that there exists no model 
selection method that achieves both optimality and consis-
tency simultaneously [49]. For any model selection procedure 
to be consistent, i.e., it must behave suboptimally in terms of 
minimax rate of convergence in the prediction loss. Second, 
can the properties of asymptotic efficiency and consistency 
be shared? In contrast to minimax-rate optimality, which 
allows the true data-generating model to vary, asymptotic 
efficiency is in a pointwise sense, meaning that the data are 
already generated by some fixed (unknown) data-generating 
model. Therefore, the asymptotic efficiency is a requirement 
from a more optimistic view and thus weaker in some sense 
than the minimaxity. Recall that consistency in a parametric 
framework is typically equivalent to asymptotic efficiency 
[12], [24]. Clearly, if an ideal method can combine asymptotic 
efficiency and consistency, it achieves asymptotic efficiency 
in both parametric and nonparametric frameworks. That 
motivated an active line of recent advances in reconciling the 
two classes of model selection methods [24], [43], [52].

In particular, the new model selection method BC was re
cently proposed (see the “Principles and Approaches from Vari-
ous Philosophies or Motivations” section) to simultaneously 
achieve consistency in a parametric framework and asymptotic 
efficiency in both (parametric and nonparametric) frameworks. 
The key idea of BC is to impose a BIC-like heavy penalty for 
a range of small models but to alleviate the penalty for larger 
models if more evidence is supporting an infinite dimensional 
true model. In that way, the selection procedure is automati-
cally adaptive to the appropriate setting (either parametric or 
nonparametric). A detailed statistical interpretation of how BC 
works in both theory and practice and how it relates to AIC and 
BIC is elaborated in [24].

Moreover, in many applications, data analysts would like to 
quantify to what extent the framework under consideration can 
be practically treated as parametric, or, in other words, how 
likely the postulated model class is well specified. This moti-
vated the concept of the parametricness index (PI) [14], [24], 
which assigns a confidence score to model selection. One defi-
nition of PI, which we shall use in the following experiment, is 
this quantity on [ , ]:0 1

d d d d d dPIn m m m m m mBC AIC BC ICBC AIC B= - - + -^ h

if the denominator is not zero, and 1PIn =  otherwise. Here, 
dmo  is the dimension of the model selected by the method .o  
Under some conditions, it can be proved that 1PIn p"  in a 
parametric framework and 0PIn p"  otherwise.

Experiments
We now revisit Example 1 in the “An Illustration on Fitting and 
the Best Model” section and numerically demonstrate the per-
formances of different methods based on 100 replications and 

.n 500=  For each of the three cases, we compute the means 
and standard errors of the efficiency [defined in (7)], dimension 
of the selected model, and PI and summarize them in Table 1. 
In case 1, BIC and BC perform much better than AIC in terms 
of efficiency, and PI is close to 1. This is expected from theory, 
as we are in a parametric setting. In cases 2 and 3, which are 
(practically) nonparametric, BC performs similarly to AIC, 
much better than BIC, and PI is closer to zero.

In practice, AIC seems more widely used compared with 
BIC, perhaps mainly due to the thinking that all models are wrong 
and minimax-rate optimality of AIC offers more robustness 
in adversarial settings than BIC. Nevertheless, the parametric 
setting is still of vital importance. First of all, being consistent 
in selecting the true model if it is really among the candidates 
is certainly mathematically appealing, and a nonparametric 

The Selection Is Consistent and
Asymptotically Efficient

The Selection Is
Asymptotically Efficient

Well Specified Misspecified

BIC, GICλn
 (with λn → ∞), PLS, HQ,

Delete-d CV (with d /n → 1), BC

GICλn
 

(with a Fixed λn ≠ 2)

Fivefold CV, Tenfold CV

AIC, GIC2, Cp, FPE,

GCV, LOO, BC

FIGURE 4. A graph illustrating a parametric setting where the model class (by large square) includes the true data-generating model (by small red square) 
and a nonparametric setting where the model class (by large circle) excludes the true data-generating model, along with an asymptotically efficient 
model (by red circle) in the second case. It also lists some popular methods suitable for either situation and a class of GIC and CV that are asymptotically 
suboptimal for regression models.
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framework can be a practically parametric framework. More 
importantly, when decisions need to be made on the use of 
certain variables, the concept of consistency that avoids over-
selection of variables is practically very important. If medical 
researchers need to decide if certain genes should be further 
studied in costly experiments, e.g., the protection of overfit-
ting of BIC avoids recommending variables that are hard to be 
justified statistically in a follow-up study, whereas AIC may 
recommend quite a few variables that may have some limited 
predictive values but their effects are too small to be certain 
with the limited information in the data for decision making 
and inference purposes.

The war between AIC and BIC originates from two fun-
damentally different goals: one to minimize certain loss for 
prediction purpose and the other to select the best model for 
inference purpose. A unified view on reconciling two such dif-
ferent goals wherever possible is a fundamental issue in model 
selection, and it remains an active line of research. We have wit-
nessed some recent advances in that direction, and we expect 
more discoveries to flourish in the future.

High-dimensional variable selection
The methods introduced in the “Principles and Approaches 
from Various Philosophies or Motivations” section were 
designed for small models, where the dimension dn  is often 
required to be o n^ h in technical proofs. In this section, we 
elaborate on high-dimensional regression variable selection, an 
important type of model selection problems in which dn  can 
be comparable with or even much larger than .n  To alleviate 
the difficulties, the data-generating model is often assumed to 
be a well-specified linear model, i.e., one of the following can-
didate models.

Each model M  assumes that ,y xi i iMb fR= +!  with 
f  being random noises. Here, with a slight abuse of nota-
tion, we have also used M  to denote a subset of { , , },d1 nf  
and each data point is written as , , , ,z y x xd1 nf= 6 @  with y  
being the observed response and xi  being the (either fixed or 
random) covariates. Here, dn  instead of d  is used to highlight 
that the number of candidate variables may depend on the 
sample size .n

The variable selection problem is also known as support 
recovery or feature selection in different literature. The main-
stream idea to select the subset of variables is to either solve a 
penalized regression problem or iteratively pick up significant 
variables. The proposed methods differ from each other in terms 
of how they incorporate unique domain knowledge (e.g., sparsi-
ty, multicollinearity, group behavior) or what desired properties 
(e.g., consistency in coefficient estimation, consistency in vari-
able selection) to achieve. The list of methods we will introduce 
is far from complete. Wavelet shrinkage, iterative thresholding, 
Dantzig selector, q, -regularization with ( , )q 0 1!  (see, e.g., 
[53]–[57]), e.g., will not be covered.

Penalized regression for variable selection
In a classical setting, a model class is first prescribed to data 
analysts (either from scientific reasoning or from exhaustive 

search over dn  candidate variables), and then a criterion is used 
to select the final model (by applying any properly chosen 
method explained in the “Principles and Approaches from 
Various Philosophies or Motivations” section). When there is 
no ordering of variables known in advance and the number of 
variables dn  is small, one may simply search over 2dn  possible 
subsets and perform model selection. But it is usually compu-
tationally prohibitive to enumerate all possible subsets for large 

,dn  especially when dn  is comparable with or even larger than 
the sample size .n  Note also that the problem of obtaining a 
sparse representation of signal y through some chosen basis xi  
(say polynomial, spline, or wavelet basis) usually falls under 
the framework of variable subset selection as well (but with a 
different motivation). Such a representation can be practically 
useful in, e.g., compressing image signals, locating radar 
sources, or understanding principal components.

Suppose that we have response Yn  and design matrix Xn

whose entries are n observations of , , , .y x xd1 nf6 @  For high-
dimensional regression, a popular solution is to consider the 
following penalized regression that amalgamates variable 
selection and prediction simultaneously in operation. Solve

	 ; , ,arg min Y X pn n
j

d

j2
2

1

n

; ;b b b m c= - +
b =

t ^ h) 3/ � (18)

and let :i 0i !bt" , be the selected subset of variables. Here, 
the ; ,p b m c^ h is a penalty function of b  with tuning parame-
ters ,m c  (which are usually determined by cross validation). 
It is crucial that the penalty function is not differentiable at 

0b=  so that the resulting solution becomes sparse when m  
gets large.

Least absolute shrinkage and selection operator (LASSO) 
[58] in the form of ;p t; ;b m m=^ h  is perhaps the most com-
monly used penalty function. Here, m  is a tuning parameter 
that controls the strength of the penalty term. Increasing m  
leads to fewer variables selected. In practice, data analysts can 
either 1) numerically sweep over a range of m  or 2) use the 
least-angle regression method [59] to find all of the possible 
candidate models (also called the solution paths) and then 

Table 1. The AR order selection: The average efficiency, dimension,  
and PI (along with standard errors).

AIC BC BIC 

Case 1 Efficiency 0.78 (0.04) 0.93 (0.02) 0.99 (0.01)

Dimension 3.95 (0.20) 3.29 (0.13) 3.01 (0.01)

PI 0.93 (0.03)

Case 2 Efficiency 0.77 (0.02) 0.76 (0.02) 0.56 (0.02)

Dimension 9.34 (0.25) 9.29 (0.26) 5.39 (0.13)

PI 0.13 (0.03)

Case 3 Efficiency 0.71 (0.02) 0.67 (0.02) 0.55 (0.02)

Size 6.99 (0.23) 6.61 (0.26) 4.02 (0.10)

PI 0.35 (0.05)
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select the model with the best cross-validation performance. In 
a time series setting where LASSO solutions need to be con-
tinuously updated, fast online algorithms have been proposed 
(e.g., in [60]). Given that the data are truly generated by a lin-
ear model, tight prediction error bounds have been established 
for LASSO. Though originally designed for linear regression, 
LASSO has been also extended to a wide range of statistical 
models, such as generalized linear models 
(see [61] and the references therein).

Smoothly clipped absolute deviation 
(SCAD) [62] is another penalized regression 
that can correct the bias in LASSO esti-
mates that comes from the 1, -penalty func-
tion being unbounded. It was also shown 
to exhibit oracle property, meaning that, as 
the sample size and model dimension go 
to infinity, all and only the true variables 
will be identified with probability going to 
one, the estimated parameters converge in probability to the 
true parameters, and the usual asymptotic normality holds as 
if all of the irrelevant variables have already been excluded. 
More discussions on such an oracle property will be included 
in the “Clarification of Some Misconceptions” section. The 
penalty of SCAD is in the form of
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In choosing a parsimonious set of variables, LASSO tends 
to overshrink the retained variables. In the SCAD penalty, the 
idea is to let m  and c  jointly control that the penalty first sup-
presses insignificant variables as LASSO does and then tapers 
off to achieve bias reduction. The tuning parameters in SCAD 
can be chosen by sweeping over a range of them and then 
applying cross validation.

Minimax concave penalty (MCP) [63] in the form of
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is a penalized regression that works in a similar way as SCAD. 
Under some conditions, MCP attains minimax convergence 
rates in probability for the estimation of regression coeffi-
cients. Figure 5 illustrates the penalties in LASSO, SCAD, and 
MCP for 1m=  and .3c=

Elastic net [64] in the form of ;p t t1 2
2;;b m m m= +^ h  is 

proposed to address several shortcomings of LASSO when 
the covariates are highly correlated. The 
solution bt  of the elastic net penalty exhib-
its mixed effects of the LASSO and ridge 
penalties. Recall that ridge regression in the 
form of ;p t2b m m=^ h  introduces bias to 
the regression estimates to reduce the large 
variances of ordinary least-squares esti-
mates in the case of multicollinearity, and 
that LASSO tends to select a sparse subset. 
Interestingly, under elastic net, highly cor-
related covariates will tend to have similar 

regression coefficients. This property, distinct from LASSO, is 
appealing in many applications when data analysts would like 
to find all of the associated covariates rather than selecting only 
one from each set of strongly correlated covariates.

Group LASSO [65] is another penalty introduced to res
trict that all of the members of each predefined group of 
covariates are selected together. Different from (18), the pen-
alty of the regression is not a sum of n terms but is replaced 
with ,r

j I1 2jm bR =  where I jb  is a subvector of b  indexed by 
I j  (the jth group), and , ,I Ir1 f  form a partition of { , , } .n1 f  
It can be proved that I jbt  is restricted to be vanishing togeth-
er for each j  [65]. The groups are often predefined using 
prior knowledge.

Adaptive LASSO [66] has been introduced to overcome the 
inconsistency in variable selection of LASSO. It replaces the 
penalty in (18) with ,j

d
j

u
j1

n ; ; ; ;m b bR =
-u  where jbu  is referred 

to as a pilot estimate that can be obtained in various ways 
(e.g., by least squares for d nn 1  or univariate regressions for 
d nn $ ). Adaptive LASSO was shown to exhibit the aforemen-
tioned oracle property. The adaptive LASSO can be solved by 
the same efficient algorithm for solving the LASSO, and it can 
be easily extended for generalized linear models as well.

In addition to the preceding penalized regression, a class of 
alternative solutions is known as greedy algorithms (or step-
wise algorithms), which select a set of variables by making 
locally optimal decisions in each iteration.

Orthogonal matching pursuit (OMP) [67], [68], also referred 
to as the forward stepwise regression algorithm, is a very pop-
ular greedy algorithm that also inspired many other greedy 
algorithms. The general idea of OMP is to iteratively build a 
set of variables that are the most relevant to the response. It 
works in the following way. In each iteration, the variable most 
correlated with the current residual (in absolute value) is added 
to the subset (which is initialized as the empty set). Here, the 
residual represents the component of the observation vector y 
not in the linear span of the selected variables. Stopping crite-
ria that guarantee good asymptotic properties, such as consis-
tency in variable selection, remain an active line of research. 

A unified view on 
reconciling two such 
different goals wherever 
possible is a fundamental 
issue in model selection, 
and it remains an active 
line of research.
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FIGURE 5. The penalties in LASSO, SCAD, and MCP.
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The OMP algorithm can sequentially identify all of the sig-
nificant variables with high probability under some conditions, 
such as weak dependences of the candidate variables (see, e.g., 
[69] and  [70] and the references therein).

Least-angle regression (LARS) [59] is a greedy algorithm 
for stepwise variable selection. It can also be used for comput-
ing the solution paths of LASSO. Different from OMP, it does 
not permanently maintain a variable once it is selected into 
the model. Instead, it only adjusts the coef-
ficient of the most correlated variable until 
that variable is no longer the most correlat-
ed with the recent residual. Briefly speak-
ing, LARS works in the following way. It 
starts with all coefficients ib  being zeros. 
In each iteration, it looks for the variable xi  
most correlated with the current residual r  
and increases its coefficient ib  in the direc-
tion of the sign of its correlation with y. 
Once some other variable x j  has the same 
correlation with r  as xi  has, it increases ib  
and jb  in the direction of their joint least squares until another 
variable has the same correlation with the residual. The proce-
dure is repeated until all of the variables are in the model or the 
residuals have become zero.

Properties of the penalized regression methods
Theoretical examinations of the penalized regression methods 
have mainly focused on the properties of tight prediction error 
bounds and consistency in selection. These asymptotic prop-
erties are mostly studied by assuming a parametric frame-
work, i.e., data are truly generated by a linear regression 
model. Analysis for nonparametric, high-dimensional regres-
sion models has been also investigated in terms of oracle 
inequalities for prediction loss [71] and nonlinear additive 
models [72], [73].

The goal for prediction in high-dimensional regression fo
cuses the control of the prediction loss (usually squared loss) 
bound so that it eventually vanishes even for a very large num-
ber of variables dn  (compared with the sample size n). Sup-
pose that data are generated, e.g., by ,Y Xn nb f= +*  where 

,Y Rn
n!  ,Rdn!b*  and , .I0N n

2+f v^ h  Let * 0b  denote the 
number of nonzero entries in .*b  Then, under certain restrict-
ed eigenvalue assumptions [71], there exist some constants 
c 2 21 2  and c 02 2  such that the LASSO solution satisfies 
n X Xn n

1
2
2
#b b--

*
t  logc n dn2

2
0

1v b -
*  with probability 

at least d1 /
n

c1 81
2

- - , if we choose logc n dn1m v= . Note that 
the choice of m  depends on an unknown c1v  that, though it 
does not scale with ,n  can have an effect for small sample size. 
Notably, the number of variables dn  is allowed to be much 
larger than n to admit a good predictive performance, as long 
as log dn  is small compared with .n  Similar tight bounds can 
be obtained by making other assumptions on b*  and .Xn

Selection consistency, as before, targets the goal of iden-
tifying the significant variables for scientific interpretation. 
The property of asymptotic efficiency we introduced before 
is rarely considered in high-dimensional regressions, because 

it is implied by selection consistency in the parametric setting. 
For any vector ,Rdn!b  let r b^ h denote the indicator vector 
of b  such that for any , , ,j d r1 0n if b == ^ h  if ,0ib =  and 
r 1i b =^ h  otherwise. Selection consistency requires that the 
probability of r rb b=t ^^ hh  converges in probability to one 
(as n " 3). Under various conditions, such as fixed design or 
random design matrices, consistency of LASSO in estimating 
the significant variables has been widely studied under such 

various technical conditions as sparsity, 
restricted isometry [74], mutual coherence 
[75], irrepresentable condition [76], and 
restricted eigenvalue [71], which create the-
oretical possibilities to distinguish the true 
subset of variables from all of the remaining 
subsets for large .n

At the same time, it has been known that 
LASSO is not generally consistent in param-
eter/coefficient estimation. This motivates 
the methods, such as SCAD, MCP, adaptive 
LASSO, and so forth, that correct the esti-

mation bias of LASSO. These three methods are also known 
to enjoy the so-called oracle property. The oracle property is 
perhaps more widely considered than selection consistency for 
high-dimensional regression analysis, because the penalized 
regression methods target simultaneous parameter estimation 
and prediction loss control. An oracle estimator [62] must be con-
sistent in variable selection and parameter estimation, and satis-
fy 1) the sparsity condition, meaning that P r r 1"b b=*

t^ ^h h" ,  
as ,n " 3  where the inequality is componentwise; and 2) the 
asymptotic normality , ,n I0NS S d S

1
"b b b- -t^ ^^h hh  where 

S is the support set of ,b  Sb  is the subvector of *b  indexed by 
,S  and ( )I Sb  is the Fisher information knowing S in advance. 

Intuitively speaking, an oracle estimator enjoys the properties 
achieved by the MLE knowing the true support. We will revisit 
the oracle property in the “Controversy over the Oracle Prop-
erty” section.

Practical performance of penalized regression methods
With the huge influx of high-dimensional regression data, the 
penalized regression methods have been widely applied for 
sparse regression where a relatively small (or tiny) number of 
variables are selected out of a large number of candidates. In 
applications with a gene expression type of data, e.g., although 
the number of subjects may be only tens or hundreds, a sparse 
set of genes is typically selected out of thousands of choices. 
This has created a lot of excitement, with thousands of publica-
tions of such research and applications. This celebrated sparsi-
ty feature of penalized regression methods has generated an 
optimistic view that, even with, e.g., fewer than a hundred 
observations, the modern variable selection tool can identify 
a sparse subset out of thousands or even many more variables 
as the set of the most important ones for the regression prob-
lem. The estimated model is often readily used for data-driv-
en discoveries.

There is little doubt that penalized regression methods have 
produced many successful results for the goal of prediction 

The war between AIC and 
BIC originates from two 
fundamentally different 
goals: one to minimize 
certain loss for prediction 
purpose and the other to 
select the best model for 
inference purpose. 
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(see, e.g., [77]). As long as a proper cross validation is done 
for tuning parameter selection, the methods can often yield 
good predictive performance. However, given the challenge of 
high dimension and diverse data sources, the different penal-
ized regression methods may have drastically different relative 
performance for various data sets. Therefore, proper choice of 
a method is important, to which end cross validation may be 
used, as will be presented in the next section.

For the goal of model selection for inference, however, the 
picture is much less promising. Indeed, many real applications 
strongly suggest that the practice of using the selected model 
for understanding and inference may be far from reliable. It has 
been reported that the selected variables from these penalized 
regression methods are often severely unstable, in the sense 
that the selection results can be drastically different under a 
tiny perturbation of data (see [78] and the references therein). 
Such high uncertainty damages reproducibility of the statis-
tical findings [79]. Overall, being overly optimistic about the 
interpretability of high-dimensional regression methods can 
lead to spurious scientific discoveries.

The fundamental issue still lies in the potential discrepancy 
between inference and prediction, which is also elaborated in 
the “War and Peace—Conflicts Between AIC and BIC and 
Their Integration” and “Controversy over the Oracle Property” 
sections. If data analysts know in advance that the true model 
is exactly (or close to) a stable low-dimensional linear model, 
then the high-dimensional methods with the aforementioned 
oracle property may produce stable selection results not only 
good for prediction but also for inference purposes. Other-
wise, the produced selection is so unstable that analysts can 
only focus on prediction alone. In practice, data analysts may 
need to utilize data-driven tools, such as model averaging [80], 
resampling [81], and confidence set for models [82], or model 
selection diagnostic, such as the parametricness index intro-
duced in the “War and Peace—Conflicts Between AIC and 
BIC and Their Integration” section, to make sure the selected 
variables are stable and properly interpretable. Considerations 
along these lines also lead to stabilized variable selection 
methods [81], [83], [84]. The instability of penalized regression 
also motivated some recent research on postselection inference 
[85], [86]. Their interesting results in specific settings call for 
more research for more general applications.

Modeling procedure selection
The discussions in the previous sections have focused on 
model selection in the narrow sense, where the candidates are 
models. In this section, we review the use of CV as a general 
tool for modeling procedure selection, which aims to select 
one from a finite set of modeling procedures [87]. Multiple 
modeling procedures such as AIC, BIC, and CV could be 
used for variable selection, and one of those procedures 
(together with the model selected by the procedure) is se
lected using an appropriately designed CV (which is at the 
second level). Another example is the emerging online com-
petition platforms, such as Kaggle, that compare new problem-
solving procedures and award prizes using cross validation. 

The best procedure is defined in the sense that it outperforms, 
with high probability, the other procedures in terms of out-
sample prediction loss for sufficiently large n (see, e.g., [13, 
Definition 1]).

There are two main goals of modeling procedure selection. 
The first is to identify with high probability the best procedure 
among the candidates. The property of selection consistency 
is of interest here. The second goal of modeling procedure 
selection is to approach the best performance (in terms of out-
sample prediction loss) offered by the candidates, instead of 
pinpointing which candidate procedure is the best. Note again 
that, in case there are procedures that have similar best per-
formances, we do not need to single out the best candidate to 
achieve the asymptotically optimal performance.

Similarly to model selection, for the task of modeling pro-
cedure selection, CV randomly splits n data into nt  train-
ing data and nv  validation data (so n n nt v= + ). The first 
nt  data are used to run different modeling procedures, and 
the remaining nv  data are used to assess the predictive per-
formance. We will see that, for the first goal, the evaluation 
portion of CV should be large enough. For the second goal, a 
smaller portion of the evaluation may be enough to achieve 
optimal predictive performance.

In the literature, much attention has been focused on 
choosing whether to use the AIC procedure or BIC proce-
dure for data analysis. For regression variable selection, it has 
been proved that the CV method is consistent in choosing 
between AIC and BIC given , ,n n nt v t" "3 3  and some 
other regularity assumptions [87, Th. 1]. In other words, the 
probability of BIC being selected goes to one in a parametric 
framework, and the probability of AIC being selected goes 
to one otherwise. In this way, the modeling procedure selec-
tion using CV naturally leads to a hybrid model selection 
criterion that builds upon strengths of AIC and BIC. Such 
a hybrid selection combines some theoretical advantages 
of both AIC and BIC. This aspect is seen in the context of 
the “War and Peace—Conflicts Between AIC and BIC and 
Their Integration” section. The task of classification is some-
what more relaxed compared with the task of regression. To 
achieve consistency in selecting the better classifier, the split-
ting ratio may be allowed to converge to infinity or any posi-
tive constant, depending on the situation [13]. In general, it is 
safe to let nt " 3  and /n nv t " 3  for consistency in modeling 
procedure selection.

Closely related to this discussion is the following paradox. 
Suppose that a set of newly available data is given to an ana-
lyst. The analyst would naturally add some of the new data in 
the training phase and some in the validation phase. Clear-
ly, with more data added to the training set, each candidate 
modeling procedure is improved in accuracy; with more data 
added to the validation set, the evaluation is also more reli-
able. It is tempting to think that improving the accuracy on 
both training and validation would lead to a sharper compari-
son between procedures. However, this is not the case. The 
prediction error estimation and procedure comparison are two 
different targets.
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The cross-validation paradox says that better training and 
better estimation (e.g., in both bias and variance) of the pre-
diction error by CV together do not imply better modeling 
procedure selection [13], [87]. Intuitively speaking, when com-
paring two procedures that are naturally close to each other, 
the improved estimation accuracy achieved by adopting more 
observations in the training part only makes the procedures 
more difficult to be distinguishable. The consistency in identi-
fying the better procedure cannot be achieved unless the vali-
dation size diverges fast enough.

Experiments
We illustrate the cross-validation paradox using the synthetic 
data generated from the linear regression model y x1 1b= + 

,x x2 2 3 3b b f+ +  where b = [ , , ] ,1 2 0 T  and the covariates X j  
, ,j 1 2 3=^ h and noise f  are independent standard Gaussian. 

Given n observations , , , ,y x x x, , , , ,i i i i i n1 2 3 1 f=^ h  we compare 
the following two different uses of linear regression. The 
first is based on X1  and ,X2  and the second is based on all 
three covariates. Note that, in this experiment, selecting the 
better procedure is equivalent to selecting a better model. 
The data-generating model indicates that x3  is irrelevant for 
predicting ,y  so that the first procedure should be better than 
the second. Suppose that we start with 100 observations. We 
randomly split the data 100 times, each with 20 training data 
and 80 validation data, and record which procedure gives the 
smaller average quadratic loss during validation. We then 
add 50 new data to the training set and 50 to the validation 
set and record again which procedure is favored. We con-
tinuing doing this until the sample size reaches 500. By run-
ning ,0001  independent replications, we summarize the 
frequency of the first procedure being favored in Table 2. As 
the paradox suggests, the accuracy of identifying the better 
procedure does not necessarily increase when more observa-
tions are added to both the estimation phase and the valida-
tion phase.

Clarification of some misconceptions

Pitfall of one-size-fits-all recommendation of data splitting 
ratio of cross validation
There are widespread general recommendations on how to 
apply cross validation for model selection. It is stated in the 
literature, e.g., that tenfold CV is the best for model selection. 
Such guidelines seem to be unwarranted. First, it mistakenly 
disregards the goal of model selection. For prediction purpos-
es, LOO is actually preferred in tuning parameter selection for 
traditional nonparametric regression. In contrast, for selection 
consistency, tenfold often leaves too few observations in eval-
uation to be stable. Indeed, fivefold often produces more sta-
ble selection results for high-dimensional regression. Second, 
k -fold CV, regardless of ,k  in general, is often unstable in the 
sense that a different dividing of data can produce a very dif-
ferent selection result. A common way to improve perfor-
mance is to randomly divide the data into k folds several times 
and use the average validation loss for selection.

For model selection, CV randomly splits n data into nt  
training data and nv  validation data. Common practices using 
fivefold, tenfold, or 30% for validation do not exhibit asymp-
totic optimality (either consistency or asymptotic efficiency) in 
simple regression models, and their performances can be very 
different depending on the goal of applying CV. In fact, it is 
known that the delete-nv  CV is asymptotically equivalent to 
GIC nm  with ( )n n n 1n vm = - +  for linear regression mod-
els under some assumptions [12]. It is also known that GIC nm  
achieves asymptotic efficiency in a nonparametric framework 
only with ,2nm =  and asymptotic efficiency in a parametric 
framework only with n " 3m  (as n " 3). In this context, 
from a theoretical perspective, the optimal splitting ratio /n nv t  
of CV should either converge to zero or diverge to infinity to 
achieve asymptotic efficiency, depending on whether the set-
ting is nonparametric or parametric.

For modeling procedure selection, it is often necessary to 
let the validation size take a large proportion (e.g., half) to 
achieve good selection accuracy. In particular, the use of LOO 
for the goal of comparing procedures is the least trustworthy 
(see the “Modeling Procedure Selection” section).

Experiment
We show how the splitting ratio can affect CV for model 
selection using the Modified National Institute of Standards 
and Technology database [88], which consists of ,00070  
images of handwritten digits (from 0 to 9) with 28 28#  pix-
els. We implement six candidate feed-forward neural network 
models for classification. The first four models have one hid-
den layer, and the number of hidden nodes are 17, 18, 19, and 
20. The fifth model has two hidden layers with 20 and four 
nodes; the sixth model has three hidden layers with 20, two, 
and two nodes. Because the true data-generating model for the 
real data is unavailable, we take ,00035  data (often referred to 
as the test data) out for approximating the true prediction loss 
and use the remaining data to train and validate. For model 
selection, we run CV with different / .n nv t  For each ratio, we 
compute the average validation loss of each candidate model 
based on ten random partitions. We then select the model with 
the smallest average loss and calculate its true predictive loss 
using the remaining ,00035  data. The results recorded in 
Table 3 indicate that a smaller splitting ratio /n nv t  leads to 
better classification accuracy. This is in line with the existing 
theory, because the neural network modeling is likely to be of 
nonparametric nature. This example also provides a comple-
menting message to the cross-validation paradox. At ratio 
0.95, the training sample size is too small to represent the full 

Table 2. The cross-validation paradox: More observations in training 
and evaluation do not lead to higher selection accuracy in selecting the 
better procedure.

Sample size n 100 200 300 400 500 

Training size nt 20 70 120 170 220 

Accuracy 98.3% 94.9% 93.7% 92.3% 92.5%
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sample size, so the ranking of the candidate models estimated 
from training data can be unstable and deviate from the rank-
ing of models estimated from the full data set.

Because all models are wrong, why pursue consistency in 
selection?
Because the reality is usually more complicated than a para-
metric model, perhaps everyone agrees that all models are 
wrong and the consistency concept of selecting the true model 
in a parametric framework cannot hold in the rigid sense. One 
view on such selection consistency is that, in many situations, 
a stable parametric model can be identified, and it can be 
treated as the true model. Such an idealization for theoretical 
investigation with practical implications is no more sinful than 
deriving theories under nonparametric assumptions. The true 
judge should be the performance in real applications. The 
notion of consistency in a nonparametric framework, however, 
is rarely used in the literature. In fact, it was shown that there 
does not exist any model selection method that can guarantee 
consistency in nonparametric regression settings (see, e.g., 
[25]). This partly explains why the concept of asymptotic effi-
ciency (which is a weaker requirement) is more widely used 
in nonparametric frameworks.

Controversy over the oracle property
The popular oracle property (as mentioned in the “Properties 
of the Penalized Regression Methods” section) for high-
dimensional variable selection has been a focus in many 
research publications. However, it has been criticized by some 
researchers (see, e.g., [89]). At first glance, the oracle property 
may look very stringent. But we note that its requirement is 
fundamentally only as stringent as consistency in variable 
selection. In fact, if all of the true variables can be selected 
with probability tending to one by any method, then one can 
obtain MLE or the like restricted to the relevant variables for 
optimal estimation of the unknown parameters in the model. 
To our knowledge, there is neither claim nor reason to believe 
that the original estimator should be better than the refitted 
one by MLE based on the selected model. Though the oracle 
property is not theoretically surprising beyond consistency, it 
is still interesting and nontrivial to obtain such a property with 
only one stage of regression (as SCAD and MCP do). These 
methods, when armed with efficient algorithms, may save the 
computational cost in practice.

It was emphasized in [89] that the oracle estimator does not 
perform well in a uniform sense for point or interval estimation 
of the parameters. A price paid for the oracle property is that 
the risk of any oracle estimator (see [62]) has a supremum that 
diverges to infinity, i.e.,

{ } ,sup E n
T

Rp
" 3b b b b- -

!b
b

t t^ ^h h

as sample size n " 3  (see, e.g., [89]). Here, we let Eb  
denote expectation with respect to the true linear model with 
coefficients .b  In fact, for any consistent model selection 
method, we can always find a parameter value that is small 
enough so that the selection method tends to not include it 
(because it has to avoid overselection), yet the parameter 
value is big enough so that dropping it has a detrimental 
effect in rate of convergence (see, e.g., [49] and [90]). Al
though uniformity and robustness are valid and important 
considerations, we do not need to overly emphasize such 
properties. Otherwise, we are unduly burdened to retain not 
very useful variables in the final model and have to lose the 
ability in choosing a practically satisfying parsimonious 
model for interpretation and inference.

Some general recommendations
Model selection, no matter how it is done, is exploratory in 
nature and cannot be confirmatory. Confirmatory conclusions 
can only be drawn based on well-designed follow-up studies. 
Nevertheless, good model selection tools can provide valu-
able and reliable information regarding explanation and pre-
diction. Obviously there are many specific aspects of the 
data, nature of the models and practical considerations of the 
variables in the models, and so on that make each model 
selection problem unique to some degree. In spite of that, 
based on the literature and our own experiences, we give some 
general recommendations.
1)	 Keep in mind the main objective of model selection. 

First, if one needs to declare a model for inference, model 
selection consistency is the right concept to think about. 
Model selection diagnostic measures need to be used to 
assess the reliability of the selected model. In a high-
dimensional setting, penalized regression methods are 
typically highly uncertain. For selection stability, when 
choosing a tuning parameter by cross validation, e.g., 
fivefold tends to work better than tenfold (see, e.g., [78]). 
Second, if one’s main goal is prediction, model selection 
instability is less of a concern, and any choice among the 
best performing models may give a satisfying prediction 
accuracy. In a parametric framework, consistent selection 
leads to asymptotic efficiency. In a nonparametric frame-
work, selection methods based on the optimal tradeoff 
between estimation error and approximation error lead to 
asymptotic efficiency. When it is not clear if a (practical-
ly) parametric framework is suitable, we recommend the 
use of an adaptively asymptotic efficient method (e.g., the 
BC criterion).

2)	 When model selection is for prediction, the minimax con-
sideration gives more protection in the worst case. If one 
postulates that the nature is adversary, the use of a mini-
max optimal criterion (e.g., AIC) is safer (than, e.g., BIC).

3)	 When prediction is the goal, one may consider different 
types of models and methods and then apply cross validation 

Table 3. The classification for handwritten digits: Smaller tends to give 
better predictive performance.

Ratio 0.95 0.9 0.5 0.1 0.05 

Accuracy 72.24% 90.28% 91.47% 91.47% 92.99%
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to choose one for final prediction. If one needs to know 
which model or method is really the best, a large 
enough proportion (e.g., one-third or even half) for vali-
dation is necessary. If one just cares about the prediction 
accuracy and has little interest in declaring the chosen 
one being the best, the demand on the validation size 
may be much lessened.
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R
adar is an acronym for “radio detection and ranging.” 
However, the functions of today’s radar systems, both in 
civilian and military applications, go beyond simple target 
detection and localization; they extend to tracking, imag-

ing, classification, and more and involve different types of radar 
systems, such as through-the-wall [1], ground-penetration [2], 
automotive [3], and weather [4]. Although radar technology has 
been well established for decades, a new line of compressed 
radars has recently emerged. These aim at reducing the com-
plexity of classic radar systems by exploiting inherent prior 
information on the structure of the received signal from the tar-

gets. The goal of this article is to review these novel sub-Nyquist 
radars and their potential applications.

Conventional radar systems transmit electromagnetic waves 
of near-constant power in very short pulses toward the targets 
of interest. Between outgoing pulses, the radar measures the 
signal reflected from the targets to determine their presence, 
range, velocity, and other characteristics. Different systems use 
different radar waveforms and varying transmit strategies. One 
of the most popular methods is pulse-Doppler radar, which 
periodically transmits identical pulses. In contrast, stepped-
frequency radars (SFRs) [5] vary the carrier frequency of each 
pulse. Some systems rely on simple traditional waveforms 
such as Gaussian pulses while others adopt more complex sig-
nals, such as chirps [6], [7]. Each configuration corresponds 
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to a certain choice in the complexity-performance tradeoff, 
between complex waveform and system designs and target 
detection and estimation.

State-of-the-art radar systems operate with large bandwidths, 
large coherent processing intervals (CPIs), and high number of 
antennas in multiple-input, multiple-output 
(MIMO) settings [8], [9], to achieve high-
range velocity and azimuth resolution, respec-
tively. This, in turn, generates large data sets 
to be sampled, stored, and processed, creating 
a bottleneck in terms of both analog system 
complexity, including high-rate analog-to-dig-
ital converters (ADCs), and subsequent digital 
processing [10].

In the past few years, novel approaches 
to radar signal processing have emerged that 
allow radar signal detection and parameter 
estimation using a much smaller number of 
measurements than that required by spatial 
and temporal Nyquist sampling. While temporal sampling 
refers to taking samples in time intervals determined by the 
sampling rate, spatial sampling extends this notion to placing 
transmit and receive antennas, whose locations are governed 
by the signal wavelength. These works capitalize on the fact 
that, in most radar applications, the reflectivity scene consists of 
a small number of strong targets. That is, the reflected signals 
by only a few targets have high enough power to be detected 
by the radar receiver. In pulse-Doppler radar, the target scene 
is often sparse in the joint time–frequency, or ambiguity, do
main [5]. In synthetic aperture radar (SAR) [11], the scene is 
often sparse in the Fourier or wavelet domain, or even in the 
image domain.

Over the past decade, many works have exploited the inher-
ent sparsity of the target scene to enhance radar-estimation 
capabilities. These rely on the compressed sensing (CS) [10], 
[12] framework, brought to the forefront by the works of Candes, 
Romberg, and Tao [13] and of Donoho [14]. Although the natu-
ral application of CS is typically the reduction of the required 
number of samples to perform a certain signal processing task, 
it was first used by the radar community to increase a target’s 
parameter resolution [15]–[20]. It was later applied to reduce 
the number of samples to be processed [21]–[25] and finally 
to reduce the sampling rate [26], [27] and number of anten-
nas [28] required in radar systems, performing time and spatial 
compression and alleviating the burden on both the analog and 
digital sides. In particular, the recently proposed Xampling, 
i.e., compressed sampling concept [10], [29], has been applied 
to radar [30]–[32] to break the link between bandwidth, CPI, 
and the number of antennas on the one hand, and range, Dop-
pler, and azimuth resolution, respectively, on the other hand.

The reviews of compressive radar [22], [33]–[35] mostly 
deal with radar imaging. The works in [33] and [34] focus on 
SAR imaging and consider sparsity-based radar imagery using 
both greedy algorithms, which iteratively recover the sparse tar-
get scene, and convex relaxations of sparsity-inducing regular-
ization. The special cases of interferometric, polarimetric, and 

circular SAR are presented in [33] for both two-dimensional 
(2-D) and three-dimensional (3-D) images. In [34], diverse SAR 
applications, such as wide-angle SAR imaging, joint imaging, 
and autofocusing from data with phase errors, moving targets, 
analysis, and design of SAR sensing missions, are reviewed. 

A survey of statistical sparsity-based tech-
niques for radar imagery applications is 
presented in [35], including superresolution 
imaging, enhanced-target imaging, auto-
focusing, and moving-target imaging. The 
review of [22] presents three applications of 
CS radars: pulse compression, radar imag-
ing, and airspace surveillance with array 
antennas. At the time it was written, there 
was a small number of publications address-
ing the application of CS to radar, as stated 
by the authors.

In this article, we focus on nonradar-
imaging applications and survey many 

recent works that exploit CS in different radar systems to 
achieve various goals. We consider different transmit wave-
forms and processing approaches, while focusing on pulse-
Doppler radar—one of the most popular systems—and its 
extension to MIMO configurations. Our goal is to review 
the main impacts of compressed radar on parameter reso-
lution as well as digital and analog complexity. The survey 
includes fast time compression schemes, which reduce the 
number of acquired samples per pulse; slow time compres-
sion techniques, which decrease the number of pulses; and 
spatial compression approaches, in which the number of 
transmit and receive antenna elements is reduced. We show 
that, beyond a substantial rate reduction, compression may 
also enable communication and radar spectrum sharing [36]–
[38], as elaborated on in [39]. Throughout this article, we 
consider both theoretical and practical aspects of compressed 
radar and present hardware prototype implementations [40]–
[43] of the theoretical concepts, demonstrating the real-time 
target parameters’ recovery from low-rate samples in pulse-
Doppler and MIMO radars.

Radar systems
Radar systems aim to estimate targets’ parameters to determine 
their location and motion. In its simplest form, the radar trans-
mits a single pulse toward targets in one direction and recovers 
their range, i.e., distance to the radar, which is proportional to 
the received pulse delay. More elaborate systems are able to 
provide additional information on the targets. Pulse-Doppler 
radars transmit several pulses, enabling them to resolve both 
the targets’ ranges and radial velocities, which are proportional 
to the Doppler frequency. Stepped-frequency-based approaches 
achieve highly effective bandwidths that increase range resolu-
tion, while allowing for narrow instantaneous bandwidth. 
MIMO radars use several elements both at the transmitter and 
at the receiver to illuminate the entire target scene and recover 
targets’ azimuths in addition to their ranges and velocities. 
In this article, we consider the application of compression in 
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terms of the number of required samples, 
pulses, and antennas, as well as its im
pact on different aspects of the radar 
system, including parameter resolution 
and system complexity, for several types 
of radars.

Pulse-Doppler radar 
A standard pulse-Doppler radar trans-
ceiver detects targets by transmitting a 
periodic stream of pulses and processing 
its reflections. The transmitted signal 

( )x tT  consists of P  equally spaced puls-
es ( )th  such that

	 ( ) ( ), .x t h t p t P0T
p

P

0

1

# #x x= -
=

-
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The pulse-to-pulse delay x  is the pulse-repetition interval 
(PRI), and its reciprocal /1 x  is the pulse-repetition frequency 
(PRF). The entire span of the signal in (1), i.e., ,Px  is the CPI. 
The pulse time support is denoted by ,Tp  with .T0 p1 1 x  
The pulse ( )h t  is typically a known time-limited baseband 
function with continuous-time Fourier transform (CTFT) 

( ) ( )h t e dtH f j ft28= 3
3 r
-

-  that has negligible energy at fre-
quencies beyond / ,B 2h  where Bh  is referred to as the band-
width of ( ) .h t  An example of a transmitted pulse train is 
illustrated in Figure 1.

It is typically assumed that the target scene is composed 
of L  nonfluctuating point-targets, according to the Swerling-0 
model [5]. This is one of the popular models in the radar signal 
processing literature since, by describing an idealized target, 
it allows simplifying the radar equations while constituting a 
fairly good approximation in many applications [6], [7]. Other 
models, such as Swerling-1, which applies to targets composed 
of many independent scatters, or fluctuating target models, are 
beyond the scope of this article. The pulses reflect off the L  
targets and propagate back to the transceiver. Each target l  is 
defined by three parameters:
1)	 a time delay / ,cr2l lx =  proportional to the target’s dis-

tance to the radar or range ,rl  where c  is the speed of light
2)	 a Doppler-radial frequency / ,fr c2 cl lo = o  proportional to 

the target’s radial velocity to the radar, i.e., the target’s 
velocity radial component ,rlo  and the radar’s carrier fre-
quency fc

3)	 a complex amplitude ,la  proportional to the target’s radar 
cross section (RCS), dispersion attenuation, and other 
propagation factors.
The targets are defined in the radar radial coordinate sys-

tem and are typically assumed to lie in the radar unambigu-
ous time–frequency region: delays up to the PRI and Doppler 
frequencies up to the PRF. When this assumption does not 
hold, several processing techniques have been proposed that 
require the transmission of multiple pulse trains with differ-
ent parameters, e.g., different PRFs. We review this setting in 
the “Range-Velocity Ambiguity Resolution” section.

Based on the three assumptions A1–A3 presented in 
“Targets’ Assumptions,” the received signal can be writ-
ten as
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It will be convenient to express ( )x tR  as a sum of single frames
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An illustration of a received pulse train is shown in Figure 1 
with L 4=  targets. In pulse-Doppler radar, the goal is to recover 
the three L  parameters { , , }l l lx o a  for Ll0 1# # -  from the 
received signal ( ) .x tR  In particular, estimating the time delays lx  
and Doppler frequencies lo  enables an approximation of the targets’ 
distances and radial velocities.

Stepped-radar waveforms
In classic pulse-Doppler radar, high-range resolution re
quires a large signal bandwidth. This technology bottleneck 
is partially overcome by stepped-frequency-based wave-
forms, in which the large bandwidth is obtained sequentially 
by stepping the frequency of each pulse, keeping the instan-
taneous bandwidth low. Two popular examples of such 
waveforms are SFRs and stepped chirps. An SFR [5] system 
transmits P-narrowband pulses, in which each pulse p  has 
carrier frequency

	 ,f f pp f0 D= + � (5)

for ,p P0 1# # -  with f0  the initial frequency and fD  the 
frequency increment. The pth-transmitted pulse is a rectangu-
lar pulse modulated by its carrier .fp  The corresponding 
received signal is then of the form

Tx

Rx

αl αl e
–jvlτ αl e

–j 2vlτ

tτl

τ

FIGURE 1. The pulse-Doppler radar transmitted and received pulse trains with P 3=  pulses and 
L 4=  targets Tx: transmitted; Rx: received.
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To process the received signal, the delay is neglected in the 
signal envelope because of the narrowband assumption. An 
SFR traditionally obtains one sample from each received pulse 
and computes the phase detector output sequence as

	 .y e ep l
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The phase detector signal yp  can be modeled as the product of 
the received signal (6) and the reference signal, followed by a 
low-pass filter (LPF). Conventional processing applies an 
inverse discrete Fourier transform (DFT) on the output to esti-
mate the targets’ time delays lx  and Doppler frequencies .lo   
The range resolution achieved by SFR is / ,c P2 fD  where P fD  
is the total effective bandwidth of the signal over P  pulses.

Another popular stepped waveform is the stepped chirp or 
multifrequency chirp signal. The corresponding transmitted 
signal is given by
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where c  is the common chirp rate and fp  and pz  are the fre-
quency and complex phase of the pth subcarrier. The returned 
signal corresponding to the pth pulse, given by
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is dechirped with a reference linear-frequency waveform of 
fixed frequency equal to the first carrier :f0
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The receive window is ( ) / ,cr r2 max minrx = +  and the refer-
ence delay is ( ) /t r r cmax minr = + , with rmax  and rmin  as the 
maximal and minimal ranges, respectively. The resulting 
dechirped received signal can be written as
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Classic processing of the received signal includes a DFT oper-
ation to recover the targets’ delays .lx

MIMO pulse-Doppler radar
MIMO radar presents significant potential for advancing state-
of-the-art modern radar in terms of flexibility and perfor-
mance. This configuration [8] combines several antenna elements 
both at the transmitter and receiver. Unlike phased-array sys-
tems, each transmitter radiates a different waveform, which 
offers more degrees of freedom (DoF) [9]. There are two main 
configurations of MIMO radar, depending on the location of 
the transmitting and receiving elements; collocated MIMO 

To simplify the received signal model, the following 
assumptions of the targets’ locations and motions are typi-
cally made [5]:
•	 A1: Far targets: The target-radar distance is large com-

pared with the distance change during the coherent 
processing intervals (CPIs), which allows for constant 

la  within the CPI:

	 .r P r P
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•	 A2: Slow targets: The constant-Doppler phase during 
pulse time,

	 ,T 1l p %o � (S2)

and low target velocity allows for constant lx  during the 
CPI. This condition holds when the baseband Doppler 
frequency is smaller than the frequency resolution:
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•	 A3: Small acceleration: The target velocity remains 
approximately constant during the CPI allowing for 

constant .lo  This condition is satisfied when the velocity 
change induced by acceleration is smaller than the 
velocity resolution:
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Although these assumptions may seem hard to comply 
with, they all rely on slow enough relative motion between 
the radar and its targets. Radar systems tracking people, 
ground vehicles, and sea vessels usually comply quite 
easily [6].

In multiple-input, multiple-output settings, two additional 
assumptions are adopted on the array structure and trans-
mitted waveforms:
•	 A4: Collocated array: The target radar cross sections 

la  and li  are constant over the array [44].
•	 A5: Narrowband waveform: A small aperture allows 

lx  to be constant over the channels:
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Targets’ Assumptions
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[46], in which the elements are close to each other relative to 
the signal wavelength, and multistatic MIMO [47], where they 
are widely separated. In this article, we focus on collocated 
pulse-Doppler MIMO systems.

Collocated MIMO radar systems exploit waveform diver-
sity, based on mutual orthogonality of the transmitted signals 
[9]. Consequently, the performance of MIMO systems can be 
characterized by a virtual array constructed by the convolution 
of the locations of the transmit and receive antenna locations. 
In principle, with the same number of antenna elements, this 
virtual array may be much larger than the array of an equiva-
lent traditional system [48].

The standard approach to collocated MIMO adopts a 
virtual uniform linear array (ULA) structure [49], where R  
receivers, spaced by / 2m  and T  transmitters and spaced by 

/R 2m^ h (or vice versa), form two ULAs. Here, m  is the signal 
wavelength. Coherent processing of the resulting TR  chan-
nels generates a virtual array equivalent to a phased array 
with /TR 2 m -^ h spaced receivers and normalized aperture 

/ .TRZ 2=  Denote by { }m m
T

0
1p =
-  and { } ,q q

R
0
1g =
-  the normal-

ized transmitters’ and receivers’ locations, respectively. For 
the traditional virtual ULA structure, denote /q 2qg =  and 

./Rm 2mp =  This standard-array structure and the corre-
sponding virtual array are illustrated in Figure 2 for R 3=  
and .T 5=  The circles represent the receivers, and the squares 
are the transmitters.

Each transmit antenna sends P  pulses, such that the mth-
transmitted signal is given by

	 ( ) , ,s t h t p e t P0m m
p

P
j f t

0

1
2 c # #x x= - r

=

-

^ h/ 	 (12)

where ,( )h m Tt 0 1m # # -  are orthogonal pulses with band-
width Bh  and modulated with carrier frequency .fc  For con-
venience, it is typically assumed that fcx  is an integer, so that 
the initial phase for every pulse e j f p2 cr x-  is canceled in the 
modulation for p P0 1# # -  [6].

MIMO radar architectures impose several requirements on 
the transmitted waveform family. Besides traditional demands 
from radar waveforms such as low sidelobes, MIMO transmit 
antennas rely on orthogonal waveforms. In addition, to avoid 
cross talk between the T  signals and form TR  channels, the 
orthogonality condition should be invariant to time shifts, that 
is s t s t dt i j*

i j 08 x d- = -3
3
- ^ ^ ^h h h for , ,i j T0 1! -6 @ and 

for all .0x  The main waveform families typically considered 
are  time-division multiple access (TDMA), frequency-division 
multiple access (FDMA), and code-division multiple access 
(CDMA), respectively. Time-invariant orthogonality is achieved 
by FDMA and TDMA and approximately achieved by CDMA, 
as the latter involves overlapping frequency bands [50].

Besides the traditional assumptions on the targets, MIMO 
systems present additional requirements on the radar array and 
waveforms with respect to the targets, as described in “Tar-
gets’ Assumptions.” In the MIMO configuration, the goal is 
to recover the targets’ azimuth angles li  in addition to their 
delays lx  and Doppler shifts lo  from the received signals.

Current challenges
Standard radar processing samples and processes the received 
signal at its Nyquist rate .Bh  For example, the pulse-Doppler 
classic radar processing, described in “Classic Pulse-Doppler 
and Multiple-Input, Multiple-Output Processing,” first filters 
the sampled signal by a matched filter (MF). In modern sys-
tems, the MF operation is performed digitally and therefore 
requires an ADC capable of sampling at rate .Bh  Other radar 
systems similarly require sampling the received signal at its 
Nyquist rate. The radar bandwidth Bh  is inversely proportion-
al to the system fast time, or range resolution, and can thus be 
hundreds of megahertz or even up to several gigahertz, requir-
ing a high sampling rate and resulting in a large number of 
samples per pulse N Bhx=  to process.

The slow time (Doppler) resolution is inversely proportion-
al to the CPI P .x  The Doppler processing stage can be viewed 
as an MF in the pulse dimension, i.e., slow time domain, to a 
constant radial velocity target. As such, it increases the signal-
to-noise ratio (SNR) by P  compared to the SNR of a single 
pulse [7]. Since an MF is the linear time-invariant system that 
maximizes SNR, it follows that a factor P  increase is optimal 
for P  pulses. A large number of pulses increases resolution and 
SNR but leads to large time on target and a large total number 
of samples to process, given by .PN

The required computational power corresponds to P  con-
volutions of a signal of length N Bhx=  and N-fast Fourier 
transforms (FFTs) of length P  (see “Classic Pulse-Doppler and 
Multiple-Input, Multiple-Output Processing”). The growing 
demands for improved estimation accuracy and target separa-
tion dictate an ever-growing increase in the signal’s bandwidth 
and CPI. This creates bottlenecks in sampling and processing 
rates in the fast time (intrapulse) domain and in time on target 
in the slow time (interpulse) dimension.

In MIMO radar, the additional spatial dimension increas-
es the system’s complexity, as may be seen in “Classic Pulse-
Doppler and Multiple-Input, Multiple-Output Processing.” 
In such systems, the array aperture determines the azimuth 
resolution. In a traditional virtual array configuration, the 
product between the number of transmit and receive antennas 
scales linearly with the aperture. Consequently, high resolution 
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FIGURE 2. An illustration of MIMO arrays: (a) a standard array and (b) a 
corresponding receiver virtual array [32].
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requires a large number of antennas, thus increasing the sys-
tem’s complexity in terms of hardware and processing.

In the following sections, we review fast time-compressed 
radar systems that allow for low-rate sampling and processing 
of radar signals, regardless of their bandwidth, while retaining 
the same SNR scaling. We then demonstrate how compres-
sion can be extended to the slow time, thereby reducing time 
on target, and to the spatial dimension allowing one to achieve 
resolution similar to a filled array but with significantly fewer 
elements. In reality, the received signal ( )x tR  is further contam-
inated by additive noise and clutter. We will also demonstrate 
the impact of SNR and clutter on compressed radar system pro-
totypes [30], [40], [54]. Finally, we show how compression and 
sub-Nyquist sampling may be used to address other challenges, 
such as communication and radar spectrum sharing.

Increased parameter resolution
In many radar applications, the reflectivity scene consists of a 
small number L  of strong targets. Therefore, CS techniques 
(see “Compressed Sensing Recovery”) are a natural process-
ing tool for radar systems. Shortly after the idea of CS was 
brought forward by the works of Candes, Romberg, and Tao 
[13] and of Donoho [14] a decade ago, it was introduced to 
pulse-Doppler radar [15], [16 ], [55] and SFR [17].

While CS is typically applied to signal processing tasks to 
reduce the associated sampling rate [10], earlier papers that 
applied CS recovery to pulse-Doppler radar and SFR were 
aimed at increasing delay-Doppler resolution [15]–[17], [20] 
using Nyquist samples. More recent approaches use CS recov-
ery techniques on low-rate, or sub-Nyquist samples, which 
enable sampling and processing rate reduction while achiev-
ing the same resolution as traditional Nyquist radars. Later in 
this section, we review radar recovery methods that increase 
delay-Doppler resolution using CS techniques on Nyquist 
samples. In the next sections, we consider the application of 
CS to reduce the fast time-sampling rate and the number of 
pulses and antennas, while preserving the resolution achieved 
by Nyquist systems.

In the works of [15]–[17] and [20], the signal is still sampled 
at its Nyquist rate ,Bh  but the delay and Doppler resolutions are 
determined by the CS grid containing N B> hx  grid points, 
rather than the signal’s bandwidth and CPI, respectively. The 
key idea in [15], which adopts a pulse-Doppler radar model, 
is that the received signal ( )x tR  defined in (2) is generally a 
sparse superposition of time- and frequency-shifted replicas of 
the transmitted waveforms. The time–frequency plane is dis-
cretized into an N N#  grid in which each point represents a 
unique time–frequency shift ,Hi  expressed as the product of 

The classic methods for radar processing typically consist 
of the following stages [5], [45]:
1)	 Sampling: Sample each incoming frame ( )x tp  at its Ny-

quist rate ,Bh  equal to the double-sided bandwidth 
of ( ),th  creating the samples [ ], ,x n n N0 1p # # -  
where .N Bhx=  We assume, for simplicity, that N  is 
an integer.

2)	 Matched filter (MF): Apply a standard MF on each frame 
[ ] .x np  This results in the outputs [ ] [ ] [ ],y n x n h np p )= -  

where [ ]h n  is the sampled version of the transmit-
ted pulse ( )h t  at its Nyquist rate and ) is the convolu-
tion operation. The time resolution attained in this step 
is / .B1 h

3)	 Doppler processing: For each discrete time ,n  perform 
a P-point discrete Fourier transform along the pulse dimen-
sion, i.e., [ ]z k y nDFTn P p= =6 @ " , [ ]y n e /

p
P

p
j pk P

0
1 2R r
=
- -  for 

.k P0 # #  The Doppler resolution is 1/P .x
4)	 Delay-Doppler map: Stacking the vectors zn  and tak-

ing absolute value, we obtain a delay-Doppler map 
, , .absZ z z RN

P N
0 1f != #

-6 @
5)	 Peak detection: A heuristic detection process, in which 

knowledge of the number of targets, targets’ powers, 
clutter location, and so on, may help in discovering 
targets’ positions. For example, if we know there are L  
targets, then we can choose the L -strongest points in 
the map. Alternatively, constant false alarm (FA) rate de-
tectors determine the power threshold, above which a 

peak is considered to originate from a target so that a 
required probability of FA is achieved.

Classic collocated multiple-input, multiple-output radar pro-
cessing traditionally includes the following stages:
1)	 Sampling: At each receiver ,q R0 1# # -  where R  

denotes the number of receivers, the signal ( )txq  is sam-
pled at its Nyquist rate Btot. In code-division multiple 
access and time-division multiple access, B Bhtot =  as all 
waveforms overlap in frequency, whereas in frequency-
division multiple access, ,B TBhtot =  where Bh  denotes 
the bandwidth of a single waveform in both cases, and 
T  is the number of transmitters.

2)	 MF: The sampled signal is convolved with a sampled 
version of ( ),h tm  for .m T0 1# # -  The time resolution 
attained in this step is / .B1 tot

3)	 Beamforming: The correlations between the observa-
tion vectors from the previous step and the steering vec-
tors corresponding to each azimuth on the grid defined 
by the array aperture are computed. The spatial resolu-
tion attained in this step is .TR2

4)	 Doppler detection: The correlations between the result-
ing vectors and Doppler vectors, with Doppler frequen-
cies lying on the grid defined by the number of pulses, 
are computed. The Doppler resolution is 1/P .x

5)	 Peak detection: This is similar to classic radar, but de-
tection is performed on the three-dimensional range-
azimuth-Doppler map.

Classic Pulse-Doppler and Multiple-Input, Multiple-Output Processing
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time-shift and frequency-modulation matrices, denoted by T(.)  
and ,M(.)  respectively. In particular,

	 ,H M T /mod
i

i N i N= 6 @ � (13)
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Here, ·6 @ and mod denote the floor and modulation functions, 
respectively.

The vector y  that concatenates the Nyquist samples of a 
single pulse ( )x tp  can then be expressed as

	 ,y sU= 	 (15)

where s  is the L -sparse vector of size N 2  whose nonzero 
entries are the targets’ RCS la  with locations determined by 
the corresponding time–frequency shift. The ith column, i.e., 
atom of the N N 2#  matrix ,U  is given by

	 ,H fi iU = � (16)

where the vector f  contains the Nyquist rate samples [ ]h n  
of the transmitted signal ( ) .h t  The latter is chosen so that 
the samples correspond to the Alltop sequence [ ]h n =

N e1 /jn N2 3r` j  [56], for some prime .N 5$  This yields a 
low-coherence matrix ,U  i.e., a matrix whose columns have 
small correlation.

The vector s  is reconstructed from y  using CS techni
ques, as described in “Compressed Sensing Recovery.” The 
time–frequency shifts, determined by the targets’ delays and 
Doppler frequencies, are thus recovered with a resolution 
of / .N1

The CS recovery in [15] is performed without an MF, which 
reduces performance in low-SNR regimes. Additionally, [15] 
considers only delay recovery. Alternatively, CS techniques 
can be performed after applying an analog MF [16] on the 
pulse-Doppler-received signal (2). The MF output of the pth 
pulse, sampled at the Nyquist rate / ,B1 h  is given by

	 [ ] [ / ],w k e e C kp l
j j p

h l
l

L

0

1
l l la x x= -o x o x

=

-

/ 	 (17)

where [ ]C kh  is the discrete autocorrelation function of the 
transmitted waveform. For each sampling time ,k  the Nyquist 
samples have a sparse representation in the frequency 
(Doppler) domain using a Fourier matrix as a dictionary. A 

Compressed sensing (CS) [10], [12] is a framework for 
simultaneous sensing and compression of finite-dimen-
sional vectors, which relies on linear dimensionality 
reduction. In particular, the field of CS focuses on the 
recovery problem

	 ,z Ax= � (S6) 

where x  is an N 1#  sparse vector, i.e., with few nonzero 
entries, and z  is a vector of measurements of size 

.M N1  CS provides recovery conditions and algorithms 
to reconstruct x  from the low-dimensional vector .z

Two popular CS greedy recovery algorithms, orthogonal 
matching pursuit (OMP) and iterative hard thresholding 
(IHT), attempt to solve the optimization problem

	 argmin s.t. ,x x z Ax0x
= =t � (S7) 

where · 0  denotes the -0, norm. OMP [51], [52] iterative-
ly proceeds by finding the column of A most correlated to 
the signal residual ,r

	 argmax | |,A ri H= � (S8)

where the absolute value is computed element-wise and 
(·)H  is the Hermitian operator. The residual is obtained by 

subtracting the contribution of a partial estimate x,t  of the 
signal at the ,th iteration, from ,z  as follows:

	 .r z Ax= - ,t � (S9)

It is initialized by .r z=  Once the support set is updated 
by adding the index ,i  the coefficients of x,t  over the sup-
port set are updated, so as to minimize the residual error.

Other greedy techniques include thresholding algo-
rithms. We focus here on the IHT method proposed in 
[53]. Starting from an initial estimate ,0x0 =t  the algo-
rithm iterates a gradient-descent step with step size n fol-
lowed by hard thresholding, i.e.,

	 ,( ( ), )x x A z Ax kT 1 1
Hn= + -, , ,- -t t t � (S10)

until a convergence criterion is met. Here, ( , )kxT  denotes 
a thresholding operator on x  that sets all but the k  entries 
of x  with the largest magnitudes to zero, and k  is the 
sparsity level of x  (assumed to be known).

Alternative approaches to greedy recovery are convex-
relaxation-based methods using 1,  regularization such as 
basis pursuit and least absolute shrinkage and selection 
operator, better known as LASSO. Further details on CS 
recovery conditions and techniques can be found in [10] 
and [12].

Compressed Sensing Recovery
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two-step approach is therefore proposed to apply CS recovery 
for each .k  However, the sidelobes of [ ]C kh  lead to ambigui-
ty. To avoid this, pairs of Golay complementary sequences x1  
and x2  of length ,N  whose correlation functions satisfy 

	 [ ] [ ] [ ],C k C k N k2x x1 2 d+ = 	 (18)

are transmitted alternatively by phased coding of the baseband 
waveform. This allows for unambiguous delay-Doppler recov-
ery, provided that all of the Doppler coordinates are within the 
interval / , / .2 2r r-6 @

CS has also been applied to SFR to increase the range reso-
lution [17]. As in pulse-Doppler radar, the target scene is dis-
cretized over an N N#  delay-Doppler map [17]. The outputs 
of the phase detector (7) are then expressed, as in (15), where 
y  is the vector of size P  with the pth entry given by ,yp  and U  
is a DFT-based dictionary such that

	 .e e( ,( ) )p i N k
j f j p

1
2 p i kU = r x o x

- + 	 (19)

The vector s  is then recovered from y  using CS techniques.
The approaches mentioned in this section may increase reso-

lution by taking a large grid size .N  However, bounds on N  are 
not discussed, and it is not clear how large it can be. Denser grids 
reduce the sensitivity of the reconstruction to off-grid targets but 
increase the computational complexity by a square factor since 
the dictionaries contain N 2  atoms. More importantly, higher 
grid dimensions cause a significant increase to the coherence of 
the CS dictionary, which may degrade recovery performance.

The parameter space discretization, typically used in CS 
recovery techniques, assumes the targets’ delays and Dop-
plers lie on the predefined grid. Several approaches have been 
proposed to solve off-grid issues, including grid refinement, 
which adjusts the detected delay-Doppler peak [32], parameter, 
perturbation-based, adaptive-sparse reconstruction techniques 
[21], and sensing matrix perturbation [57]. More references 
may be found in [58].

Fast time compression
In the works reviewed thus far, sampling and digital process-
ing are still performed at the Nyquist rate. We next consider 
compressed radar that reduces sampling and processing rates.

Random sampling
Random sampling has been considered in SFR systems by 
selecting random measurements out of the Nyquist samples 
[21], [22]. The SFR approach of (1) is adopted in [22], with a 
random selection of M  out of P  pulses with different carriers. 
The sparse representation of the received signal used is a 
delay-Doppler shifted dictionary [21] similar to [15]. Consider 
the matrix U  whose ith column is given by

	 ( ) ,h eti i
j2 ti%xU = - ro � (20)

where t  is the N 1#  vector containing the sampling instants 
at the Nyquist rate, i.e., / ,t i Bi h=  and c is the Hadamard 

product operator. As in [15], the dictionary U  contains N 2  
atoms. The Nyquist samples can then be expressed in the 
form (15), and the compressed samples z  are given by

	 ,z Ay= 	 (21)

where A  is an M N#  matrix, with M N1  constructed by 
randomly selecting M  rows of the NN #  identity matrix, 
which corresponds to the M-selected pulses.

In these approaches, processing is performed at a low rate; 
however, the random discarding of samples is difficult to imple-
ment in a sampling system for the purpose of effectively reduc-
ing the sampling rate. Furthermore, the large dictionary size 
discussed in the previous section remains an issue. Alternative 
practical radar systems using CS to reduce the sampling rate have 
been proposed and rely on two main techniques: uniform low-rate 
sampling using appropriate waveforms and analog preprocessing.

Uniform low-rate sampling
In [26], the authors consider SFR using multifrequency chirps, as 
described in (8). Low-rate samples are uniformly taken from the 
received signal (11) at rate ,2 rcx  with rx = ( ) / ,r r c2 max min-  
with c being the common chirp rate. This results in the aliasing 
of the multiple sinusoids to baseband with random complex coef-
ficients. Upon discretization of the target range, as denoted by ,s  
the low-rate samples may be modeled as

	 .y As= � (22)

Here, the kth column of the sensing matrix A  is the FFT of the 
samples of (11) for a singular target at range bin k  correspond-
ing to a delay of ( ) / ,cr k2 minlx D= -  where D is the range-
discretization step. The targets’ delays are therefore recovered 
from the low-rate uniform sampling of the chirp waveforms.

Random demodulation
Many analog-to-information-conversion systems have been 
proposed to sample wideband signals at sub-Nyquist rates. 
Among them, the random demodulator (RD) [59], random-
modulation preintegrator (RMPI) [60], and Xampling-based 
[29] systems have been used for radar applications. All three 
approaches consider pulse-Doppler radar.

The RD modulates the input signal using a high-rate sequence 
( )p t  created by a pseudorandom number generator, aliasing its 

frequency content. The random sequence used for demodulation 
is a square wave, which alternates between the levels 1!  with 
equal probability. The mixed output is filtered by a bandpass fil-
ter ( ),thbp  with center frequency fc  and bandwidth ,B BCS h%  
and sampled at a low rate, as shown in Figure 3(a).

The RD is adopted in [27] as the analog-mixing front end 
of a proposed quadrature-compressive-sampling (referred to as 
QuadCS by Liu et al.) system. The mixed and filtered output 

( ),y t  shown in Figure 3, is given by

	 ( ) ( ) ( ) ( ) ,y t h p t x t dbp Rt t t t= - -
3

3

-
# � (23)
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where ( )txR  is defined as the real part of (7). The RD samples  
( )ty  at rate / / ,kf T f1s s c= =  with k  an integer satisfying 

./k f B2c CS# 6 @  The samples are fed to the quadrature-process-
ing system [61], which extracts the baseband in-phase and 
quadrature (I and Q) components, respectively, of the radar 
echoes. As shown in [27], the complex samples of the RD out-
put can be written as

	 .y Ax= 	 (24)

Here, x  is a sparse vector that contains the complex ampli-
tudes la  at the corresponding delays ,lx  and the ( , )m p  ele-
ment of the matrix A is given by

( ) ( ) ( ) .h e p mT h mT p dA ,m p bp
j f

s s
2 ct t x t t= - - -

3

3 r t

-

-#
� (25)

The samples of P  pulses are concatenated in a matrix Y such 
that each column corresponds to a pulse. The subsequent pro
cessing of the quadrature-compressive sampling, referred to as 
compressive-sampling pulse Doppler, is composed of a DFT 
step on the rows of Y that acts as an MF in slow time followed 
by a MF in each column, corresponding to the fast time.

The RMPI is a variant of the RD composed of a parallel 
set of RD channels driven by a common input, in which each 
RD uses a distinct pseudorandom binary sequence. A hard-
ware RMPI-based prototype has been implemented in [43] that 
recovers radar pulses and estimates their amplitude, phase, and 
carrier frequency. In the next section, we discuss an alternative 
prototype with a different analog front end, which also recov-
ers the targets’ parameters from low-rate samples.

Note that the considerations behind waveform design for 
CS recovery in the approaches [15]–[17] presented in the previ-
ous section are similar to traditional radar requirements. The 
well-known ambiguity function (AF) impacts CS radar in a 
way that is similar to traditional radar systems. Indeed, the 
mutual coherence of the dictionary is linearly related to the 
highest sidelobe value of the AF [58], [62]. In contrast, we will 
see in the next section that the CS dictionary of the Xampling 

method is independent of the waveform, and MF is performed 
directly on the low-rate samples before parameter recovery.

Fast time Xampling
An alternative sub-Nyquist radar method is the Xampling-
based system proposed in [30] and [40]. This approach, which 
may be used with any transmitted pulse shape, achieves the 
minimal sampling rate required for target detection, while pro-
viding optimal SNR.

The sub-Nyquist analog front end is composed of an ADC 
that filters the received pulse-Doppler signal (2) to predeter-
mined frequencies before taking pointwise samples. These 
compressed samples, or “Xamples,” contain the information 
needed to recover the desired signal parameters, i.e., the target’ 
delay-Doppler map. To see this, note that the Fourier-series 
coefficients of the aligned frames ( )t pxp x+  are given by

	 [ ] [ ] , ,c k H k e e k N1 0 1/
p l

j k j p

l

L
2

0

1
l l # #

x
a= -r x x o x

=

-
- -/ � (26)

where [ ]H k  are the Fourier coefficients of the known trans-
mitted pulse ( ),h t  and N Bhx=  is the number of Fourier sam-
ples. From (26), we see that the unknown parameters 
{ , , }l l l l

L
0
1a x o =
-  are contained in the Fourier coefficients [ ] .c kp  

We now show how the Fourier coefficients [ ]c kp  may be 
obtained from low-rate samples of ( )x tp  and how the targets’ 
parameters can then be recovered from [ ]c kp  [30].

The received signals ( )x tp  exist in the time domain; thus, 
there is no direct access to [ ] .c kp  To obtain any arbitrary set 
of Fourier-series coefficients, the direct multichannel sam-
pling scheme [63] illustrated in Figure 4 can be used. The ana-
log input ( )x tp  is split into k l=  channels, where, in each 
channel ki  with [ , ],i K0 1! -  it is mixed with the harmonic 
signal ,e /j k t2 ir x-  integrated over the PRI duration, and then sam-
pled.   Xampling thus allows one to obtain an arbitrary set l out of 
N Bhx=  frequency components from K  pointwise samples of the 
received signal after appropriate analog preprocessing. An alter-
native Xampling method uses the sum-of-sincs filter described in 
[64]. This class of filters, which consists of a sum-of-sinc function 
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FIGURE 3. A quadrature-compressive-sampling implementation with (a) RD sampling followed by (b) quadrature demodulation [27].
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in the frequency domain, is a general sampling scheme for arbi-
trary pulse shapes.

A less expensive and more practical approach for the Fou-
rier-series coefficients acquisition proposed in [40] is based 
on multiple bandpass filters and is adopted in the Xampling 
hardware radar prototype described in the next section. This 
system is composed of a few channels, with each sampling 
the content of a narrow frequency band of the received sig-
nal. Each channel thus yields a group of several consecutive 
Fourier coefficients. The multiple bandpass constellation has 
the advantage of acquiring the measurements over a wider fre-
quency aperture. At the same time, it still allows for practical 
hardware implementation, as detailed in the next section. By 
widening the frequency aperture, a finer resolution grid may 
be employed during the recovery process. Moreover, empiri-
cal results show that highly distributed frequency samples 
provide better noise robustness [40]. However, widening the 
frequency aperture eventually requires increasing the number 
of samples ;K  otherwise, recovery performance may degrade. 
This tradeoff is observed in the experiments presented in [40].

Once a set of Fourier coefficients [ ]c kp  has been acquired, 
the delays and Doppler frequencies can be recovered using dif-
ferent techniques. Doppler focusing [30], summarized in “Dop-
pler Focusing,” is one approach that has several advantages, as 
detailed next. This method uses target echoes from all of the pulses 
to generate a focused pulse at a specific Doppler frequency. It then 
jointly recovers the delay-Doppler map by reducing the detection 
problem to a one-dimensional, delay-only estimation. Performing 
the Doppler focusing operation in frequency results in computing 
the DFT of the coefficients [ ]c kp  in the slow time domain: 
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Note that [ ]kWo  is the Fourier series of ( , ),t oU  defined in 
(S11), with respect to .t  Following the same argument as in 
(S12), we have
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The resulting equation (27) is a standard delay-estimation 
problem for each o  and may be solved using multiple tech-
niques [10]. However, improved performance can be obtained 
by jointly processing the sequences { [ ]}kUo  for different val-
ues of .o  Thus, instead of searching separately for each of the 
delays , ( ),ll !x oK  the L  delays are estimated by jointly pro-
cessing overall Doppler frequencies.

A particularly convenient method in this case is to employ a 
matching pursuit-type approach in which the strongest overall 
peak ,o  assuming a single delay, is first found:
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Once the optimal values lxt  and lot  are determined, their influ-
ence is subtracted from the focused sub-Nyquist samples as
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The same operations are performed iteratively to find all of the 
desired L  peaks. This approach does not require discretization 
of the targets’ parameters, and these are recovered over the 
continuous domain from a minimal number of samples.

In practice, the search for peaks can be limited to a grid, 
which enables all of the computations to be carried out using 
simple FFT operations. Suppose we limit ourselves to the 
Nyquist grid, i.e., the grid defined by the Nyquist resolu-
tion so that / / ,s Nl lx x =  where sl  is an integer satisfying 

.s N0 1l# # -  Then, (26) is approximately written in vector 
form as

	 ,PHF aN
KW =o o 	 (32)

where [ ] [ ] ,k k kK i0 1f ! lW WW =o o o -6 @  for ,i K0 1# # -  
H  is a diagonal matrix that contains the Fourier coefficients 

[ ]kH  of the transmitted waveforms, and FN
K  is the partial-

Fourier matrix that contains the K  rows of the N N#  Fourier 
matrix indexed by .k  The entries of the L -sparse vector ao  
are the values la  at the indices sl  for the Doppler frequ
encies lo  in the “focus zone,” i.e., | | / .Pl 1o o r x-  The P  
equations (32) are simultaneously solved using CS-based algo-
rithms, which, during each iteration, the maximal projection 
of the observation vectors onto the measurement matrix is 
retained [30].

Some results comparing different configurations of low-rate 
sampling and processing are shown in Figure 5 [30]. The recov-
ery performance of the classic processing applied to Nyquist 
samples is presented as a baseline. Sub-Nyquist approaches, 
performed at 1/10 of the Nyquist rate, include the same classic 
processing applied to sub-Nyquist samples, a two-stage CS 
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FIGURE 4. A multichannel direct sampling of the Fourier coefficients [63].
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recovery method that performs delay and 
Doppler estimation in parallel, separate
ly [30], and Doppler focusing. It is clearly 
seen that Doppler focusing applied to ran-
dom Fourier coefficients, which are wide-
ly distributed with high probability leading 
to a wide aperture, outperforms other sub-
Nyquist approaches. The use of consec-
utive coefficients yields small aperture and 
poor resolution.

The Xampling approach has several ad
vantages. First, it recovers the targets’ parameters directly 
from the low-rate samples without requiring sampling at the 
Nyquist rate. Second, previous CS-based methods typically 
impose constraints on the radar transmitter, which are not 
needed here. Indeed, as may be seen in (20) and (25), the CS 

dictionary depends on samples of the wave-
form ( ),h t  such that the mutual coherence 
of the dictionary is linearly related to the 
highest sidelobe value of the AF [58]. In 
contrast, the CS dictionary of the Xampling 
method is independent of the waveform, 
as shown in (32). Third, in the presence 
of additive white noise, Doppler focusing 
achieves an increase in SNR by a factor 
of P  (a detailed analysis may be found in 
[30]). In addition, this approach can oper-

ate at the smallest possible sampling rate for recovering the 
targets’ parameters, as derived in [30]. The minimal number 
of samples required for the perfect recovery of { , , }l l la x o  
with L  targets in a noiseless environment is ,L4 2  with at least 
K L2$  samples per pulse and at least P L2$  pulses. The 

Doppler focusing is a processing technique, suggested in 
[30], which uses target echoes from different pulses to cre-
ate a superimposed pulse focused at a particular Doppler 
frequency. This method allows for joint delay-Doppler 
recovery of all targets present in the illuminated scene. It 
results in an optimal signal-to-noise ratio (SNR) boost and 
may be carried out in the frequency domain, thus enabl
ing sub-Nyquist sampling and processing with the same 
SNR increase as a matched filter.

The output of Doppler processing can be viewed as a 
discrete equivalent of the following time shift and modula-
tion operation on the received signal:
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,o  targets with Doppler frequencies lo  in a bandwidth of 
P2r x  around o will achieve a coherent integration and 

an SNR increase of approximatively .P  On the other hand, 
since the sum of P  equally spaced points covering the unit 
circle is generally close to zero, targets with lo  not “in 
focus” will roughly cancel out. In summary, we have that
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as shown in Figure S1. 
We may therefore estimate the sum of exponents in 

(S11) as
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where ( ) : | | ./l Pl 1o o o r xK = -" ,  In other words, the 
sum is only over the targets whose Doppler shifts are in 
the interval | | / .Pl 1o o r x-

For each Doppler frequency ,o  ( , )t oU  represents a stan-
dard pulse-stream model in which the problem is to esti-
mate the unknown delays. Thus, using Doppler focusing, 
the two-dimensional delay-Doppler recovery problem is 
reduced to delay-only estimation for a small range of 
Doppler frequencies, with increased SNR by a factor of P  
[10]. The Xampling radar of [30] performs Doppler focus-
ing directly on the low-rate samples in the frequency 
domain, allowing for joint Doppler-delay recovery from 
the “Xamples.”

Doppler Focusing

FIGURE S1. The sum of exponents | ( | ) |g lo o  for ,P 200=  ,1sx =  
and .0lo =

200

150

100

50

0
–4 –2 0 2

Normalized v
4

U
ni

fo
rm

 g
(v

| v
1)

The minimal number of 
samples required for the 
perfect recovery of {al, 
xl, ol }  with L targets in 
a noiseless environment 
is 4L2, with at least K ≥ 2L 
samples per pulse and at 
least P ≥ 2L pulses.
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Doppler focusing approach achieves this minimal number of 
samples. Finally, Doppler focusing is able to deal with certain 
models of clutter and target dynamic range by adding a simple 
windowing operation in the sum (27) and by prewhitening in 
frequency [54].

The Xampling radar was implemented in hardware, as 
described in the next section, demonstrating real compressed 
radar capabilities. The hardware prototype is built from off-
the-shelf components, which are bandpass filters and low-rate 
samplers, leading to low hardware complexity.

Hardware prototype
Xampling is used in combination with Doppler focusing in 
the sub-Nyquist prototype of [30], [40], which demonstrates 
radar reception at sub-Nyquist rates. The input signal simu-
lates reflections from arbitrary targets and is corrupted by 
additive noise and clutter. The radar receiver implements 
the multichannel topology described in the previous section 
and samples a signal with Nyquist rate of 30 MHz with a com-
pression factor of 30. Hardware experiments demonstrate 
the feasibility of detecting targets from the low-rate sam-
ples of an analog radar signal using standard radio-frequen-
cy (RF) hardware [30], [40]. Typical experiment results 
are shown in Figure 6, which depicts the input signal, the 
low-rate samples, and the original and recovered delay-
Doppler maps, including close targets, both in terms of range 
and velocity.

At the heart of the receiver lies the Xampling-based ADC, 
which performs analog prefiltering of the signal before tak-
ing pointwise samples. A multiple bandpass-sampling approach 

FIGURE 6. The Xampling radar LabView experimental interface. From left to right: at top is the received signal from targets only, then, the received signal 
from clutter, noise, and overall received signal ( ).x tp  At the bottom are the sub-Nyquist samples of the four channels at 1/30 of the Nyquist rate, then, the 
true and recovered delay-Doppler maps. All of the targets (including close targets both in range and in velocity) are correctly detected.

FIGURE 5. The hit rate of classic processing, two-stage CS recovery, 
and Doppler focusing for a fixed false alarm rate. A hit is defined as 
a delay-Doppler estimate circumscribed by an ellipse around the true 
target position in the time–frequency plane, with the axes equivalent 
to 3!  times the time and frequency Nyquist bins. The two-stage CS 
recovery separates the delay and Doppler estimation, performing 
them in parallel [30]. The sub-Nyquist sampling rate was 1/10 of the 
Nyquist rate [30]. 
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with four channels is adopted. Each channel is composed of 
a crystal filter with a bandwidth of 80 KHz and extremely 
narrow transition bands and then sampled at a rate of 250 kHz. 
The front-end samples four distinct bands 
of radar–signal spectral content, yield-
ing 320 Fourier coefficients after digital 
processing with a total sampling rate of  
1 MHz. The samples are fed into the chas-
sis controller, and a MATLAB function is 
launched that computes the 320 Fourier 
coefficients via FFT, composed of four 
groups of 80 consecutive Fourier coef-
ficients. These are then used for digital recovery of the 
delay-Doppler map using the Doppler focusing recon-
struction algorithm.

The experimental setup is based on National Instrument 
(NI) PXI-series equipment that is used to synthesize a radar 
environment and ensure system synchronization. The entire 
component ensemble wrapped in the NI chassis as well as 
the analog receiver board are depicted in Figure 7. Additional 
information regarding the system’s configuration and synchro-
nization can be found in [40].

To demonstrate target detection from low-rate samples, the 
Applied Wave Research (AWR) software is used to simulate 
the radar scenario, including pulse transmission and accurate 
power loss due to wave propagation in a realistic medium. 
AWR software provides a computer-based environment for 
designing hardware for use with wireless and high-speed digi-
tal products. It is used for RF, microwave, and high-frequency 
analog circuits and system design. A large variety of scenarios, 
consisting of different targets’ parameters, i.e., delays, Doppler 
frequencies, and amplitudes, are examined in [30] and [40]. 
An arbitrary waveform generator module produces an analog 
signal that is amplified and routed to the radar receiver board. 
The received radar waveform is contaminated with noise and 
clutter, showing the capabilities of the Xampling receiver to 
deal with these [30], [40], [54]. The Nyquist rate of the signal is 
30 MHz, so that sampling at 1 MHz corresponds to a fast time 
compression factor of 30.

Slow time compression
Most works on CS radar focus on compression in the fast 
time domain, reducing the number of samples per pulse 

below the Nyquist rate. As we have seen, 
using appropriate CS techniques allows 
for preserving the range resolution while 
operating in low-rate regimes by break-
ing the link between bandwidth and sam-
pling rate. This is illustrated in Figure 5, 
in which Doppler focusing is shown to 
achieve the same hit rate as classic pro-
cessing above a certain SNR, and in Fig

ure 6, where close targets are seen to be correctly recovered 
despite sampling at 3.3% of the Nyquist rate. We will now 
see that compression may be similarly performed in the 
slow time domain, as demonstrated in [65], where the num-
ber of transmitted pulses is reduced without decreasing 
Doppler resolution.

Nonuniform pulse Doppler
The resolution in Doppler frequency in standard processing 
is governed by the number of transmitted pulses .P  More 
precisely, it is equal to / .P2r x  However, a large P  leads to 
large CPI and long time on target. Slow time compression 
breaks the relation between CPI and time on target. To that 
end, M P<  pulses are sent nonuniformly over the entire 
CPI ,Px  implementing nonuniform time steps between the 
pulses [65]. This way, the same CPI is kept, but a smaller 
number of pulses is transmitted, thereby reducing power 
consumption. In addition, the periods of time in which no 
pulse is transmitted in a certain direction can be exploited to 
send pulses in other directions. This allows the radar to scan 
several directions at the same time and obtain the corre-
sponding delay-Doppler maps in a single CPI. However, at 
the same time, this reduces SNR because fewer pulses are 
transmitted in every direction.

Consider a nonuniform pulse-Doppler radar such that the 
pth pulse is sent at time ,mpx  where { }mp p

M
0
1

=
-  is an ordered set 

of integers satisfying .m pp $  In this case, (1) becomes

User-Control Interface

Radar Display

Analog Preprocessor

Auditory Waveform Generator Digital Receiver

FIGURE 7. The Xampling radar prototype including an arbitrary waveform generator, receiver board, NI chassis, and display [40]. 

At the heart of the receiver 
lies the Xampling-based 
ADC, which performs 
analog prefiltering of 
the signal before taking 
pointwise samples.
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and the received frames (4) are written as
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The same Xampling-based method in [30] is used to obtain 
the Fourier coefficients c kp 6 @ of the received pulses. Suppose 
we limit ourselves to the Nyquist grid, as previously men-
tioned, so that ,/ /s Nl lx x =  where sl  is an integer satisfying 

,s N0 1l# # -  and ,/r M2l lo x r=  where rl  is an integer in 
the range .r M0 1l# # -  Similar to the derivations in the pre-
vious section, we can write the Fourier coefficients c kp 6 @in 
matrix form [65] as

	 ,X HF A FN
K

P
M T

= ^ h � (35)

where H  is a diagonal matrix that contains the Fourier coef-
ficients .kH6 @  The partial-Fourier matrix FM

P  contains M  
rows from the P P#  Fourier matrix, indexed by the values 
of the transmitted pulses , ;m p M1p # #  when sampling at 
the Nyquist rate, K N=  and FN

K  become the standard 
N N# Fourier matrix. Similarly, when considering uniform-
ly spaced pulses, M P=  and FP

M  are the standard P P#  
matrix. The goal is to recover the sparse matrix A that con-
tains the values la  at the L  indices { , }s rl l  from the Fourier 
coefficients matrix .X

CS matrix-recovery algorithms are directly applicable to 
(35) by extending CS techniques presented in vector form, such 
as orthogonal matching pursuit or the fast iterative-shrinkage-
thresholding algorithm [10], [12] to matrix settings [66]. Alter-

natively, instead of solving the matrix problem of (35), we can 
apply the Doppler focusing operation [30] described in “Dop-
pler Focusing.” As illustrated in Figure 8, the approximation 
from (S12) may still be applied in the nonuniform case, where 

.m pp $  Therefore, we can rewrite the Fourier coefficients 
from (27) by replacing p  with mp  for the nonuniform case. 
These may then be approximately expressed in vector form as 
in (32) and recovered as previously described. It is shown in 
[65] that the minimal number of nonuniform pulses required 
to recover the Doppler frequencies of L  targets is identical to 
the uniform case, that is, two L  pulses.

Hardware simulation
The transmission of nonuniform pulses has been implemented in 
the Xampling prototype [40]. Recall that the received signal has a 
bandwidth of 30 MHz and is sampled at the rate of 1 MHz. To 
this fast time compression, we now add compression in the slow 
time domain. In the hardware simulation, P 50=  pulses over a 
CPI of .MP 2 5 sx =  are considered. Half of the pulses, i.e., 

,M 25=  chosen at random, are sent in one direction, while the 
other half are sent in a second direction. Two delay-Doppler maps 
are then simultaneously recovered during a single CPI, as shown 
in Figure 9. Both of the maps are fully recovered, as previously 
mentioned, from compressed samples in both the fast and slow 
time domains.

Range-velocity ambiguity resolution
As presented thus far, targets are traditionally assumed to lie 
in the radar-unambiguous range-velocity region. For a given 
PRI ,x  the maximum unambiguous range is / ,r c 2max x=  and 
the maximum unambiguous velocity is / ( ),r 4max m x=o  where 
m  is the radar wavelength. When the target range and velocity 
intervals of interest are large, traditional pulse-Doppler radar 
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systems suffer from the so-called Doppler dilemma [67], a 
tradeoff between range and velocity ambiguity, whose product 
is limited to / .r r c 8max max m=o

Several techniques have been proposed over the years to 
mitigate the range-velocity ambiguity by increasing either of 
these parameters. Two main PRF variation-based methods 
are staggered PRFs and multiple PRFs (MPRFs). Staggered 
PRFs are used to raise the first blind speed rmaxo  significantly 
without degrading the unambiguous range [7]. Pulse-to-pulse 
stagger varies the PRF from one pulse to the next, achieving 
increased Doppler coverage [68]. The main 
disadvantage of this approach is that the 
data correspond to a nonuniformly sampled 
sequence, making it more difficult to apply 
coherent Doppler filtering [7]. In addition, 
clutter cancellation becomes more challeng-
ing, and the sensitivity to noise increases 
[69]; therefore, MPRF techniques are typi-
cally preferred. We now review some of the 
MPRF-based methods and then present a 
Xampling approach that solves the delay-Doppler ambiguity 
using phased-coded-transmit pulses.

MPRF
The MPRF approach transmits several pulse trains, each with 
a different PRF. Ambiguity resolution is typically achieved by 
searching for coincidence between either unfolded Doppler or 
delay estimates for each PRF. A popular approach, adopted in 

[70], relies on the Chinese remainder theorem [5] and uses two 
PRFs, such that the numerator and denominator of the ratio 
between them are prime numbers. The ambiguous velocities 
are computed for each train i  as

	 , ,r r k k
2

Z, ,i k i 0 !
x
m= +ot ot 	 (36)

where r ,i 0ot  is the velocity estimate within the unambiguous 
velocity interval ( , ] .r rmax max- o o  Congruence between these 

are found by an exhaustive search, so that 
all r ,i kot  fall within a small, interval, or 
correlation bin. The resulting velocity esti-
mate is computed by averaging overall r ,i kot . 
Assuming T 2= pulse trains with PRFs and 
ratio / / ,m n1 2x x =  where m  and n  are 
relative prime numbers, the expanded 
velocity interval is of size .//m n2 21 2m x m x=  
However, in this approach, a small range 
error on a single PRF can cause a large 

error in the resolved range with no indication that this has 
happened [71].

A clustering algorithm proposed in [71] implements the 
search for a matching interval by computing average distances 
to cluster centers. The average squared error is defined as

	 ( ) | | , , , / ,C k r r k r r0, max
i

T

i k k
1

2
ambf= - =

=

t r/ 	 (37)

(a) (b)

FIGURE 9. The experimental interface of the Xampling radar, with both fast and slow time compression. (a) The true targets’ ranges in two directions (top) 
and superposed low-rate samples from both directions (bottom). (b) The range-velocity map of true and recovered targets in both directions [65]. 

Ambiguity resolution is 
typically achieved by 
searching for coincidence 
between either unfolded 
Doppler or delay estimates 
for each PRF.
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where rkr  is the median value of the T  ranges with index k  
and ramb  is the maximal ambiguous range. The best cluster 
occurs at the value of ,k  where ( )C k  is minimized. This 
happens when all of the ambiguous rang-
es are unfolded correctly, and, hence, all 
of the range estimates have nearly the same 
range. This technique still requires an 
exhaustive search over clusters and does 
not process the samples jointly, thereby 
decreasing the SNR.

Phased-coded pulses
A random-pulse, phase-coding (PC) ap
proach is adopted in [72] to increase the 
range-unambiguous region, while preserving that of the 
Doppler frequency and using a single PRF. A similar tech-
nique may be used to increase the Doppler-frequency-
unambiguous region. Random PC has been adopted in 
polarimetric weather radars, which exploit the inherent 
random phase between pulses of the popular magnetron 
transmitters. In this context, PC mitigates out-of-trip echoes 
[73]. The approach of [72] introduces a random phase, which 
differs from pulse to pulse. The joint processing of recei
ved signals from all of the trains is the key to range ambigui-
ty resolution.

The pulse-Doppler radar transceiver sequentially transmits 
one modulated pulse train, consisting of P  equally spaced 
pulses. For ,t P0 # # x  the transmitted signal is given by

	 ( ) ( ) ,x t h t p e [ ]
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P
jc p
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1

x= -
=
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/ 	 (38)

where c p6 @ is uniformly distributed in the interval [ , )0 2r  and 
represents the phase shift of the pth pulse.

As opposed to the common assumption in traditional radar, 
the targets’ time delays lxu  are not assumed to lie in the unam-
biguous time region, i.e., less than the PRI ,x  but rather in the 
ambiguous range [ , ),Q0l !x xu  where Q P<  is the ambiguous 
factor defined by the targets’ maximal range. For convenience, 
the delay lxu  is decomposed into its integer part (the ambiguity 
order) qlx  and fractional part (the folded or reduced delay) 

lx  such that

	 ,ql l lx x x= +u � (39)

where Qq0 1l# # -  is an integer and .0 <l# xx

The received signal is then
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for ( ) .t P Q0 <# x+  The main difference with traditional 
pulse-Doppler radar, aside from the coded phase, is that the 
PRI index in the Doppler shift term is ,p ql+  rather than the 
pulse index .p

The Fourier series of the received signal (40) can be writ-
ten in matrix form, similarly to (35), and recovered using 
matrix CS recovery techniques [72]. The minimal number of 

samples per pulse allowing recovery of X  
with high probability is found to be ,K L2>  
and the minimal number of pulses P  is 

.L Q2 2+ +  This method resolves a maxi-
mum unambiguous range / ,r cQ 2max x=  
while preserving the maximum unambigu-
ous velocity / ( ),r 4max m x=o  thereby increas-
ing their product r rmax maxo  by a factor of ,Q  
under the prior mentioned conditions on the 
number of samples and pulses. 

This approach has three main advantag-
es. First, it improves the delay estimation with respect to the 
MPRF methods since it preserves the resolution of traditional 
pulse-Doppler radar, i.e., / ,1 Bh  while increasing the unambigu-
ous delay region to .Qx  Second, it increases the SNR by jointly 
processing the samples from all of the pulse trains, rather than 
matching the estimated parameters from each pulse processed 
separately. Finally, it provides a systematic delay-Doppler-
recovery method that does not involve an exhaustive search. 
From a practical point of view, this approach does not require 
the use of several pulse trains with different PRFs, thus sim-
plifying hardware implementation.

Cognitive radar and spectrum sharing
Recently, the concept of cognitive radar (CR) [74], inspired by 
the echo-location system of a bat, has been presented as a nat-
ural next step for traditional radar. The cognition property 
requires adaptive transmission and reception capabilities, i.e., 
both the transmitter and receiver are able to dynamically 
adjust to the environment conditions. Many interpretations of 
this idea have been proposed. We focus on one aspect of cog-
nition, the dynamic and flexible adaptation to the spectral 
environment, which allows for spectrum sharing between 
communication and radar systems [36]–[38]. The interest in 
these spectrum sharing radars is largely due to electromagnet-
ic spectrums being a scarce resource, with most services hav-
ing a need for a greater access to it.

The spectrum sharing solution proposed in [39] capitalizes 
on the cognitive abilities of the radar system. It is shown how 
compressed radars may be adapted to allow for spectral coex-
istence between communication and radar signals and flexibil-
ity of the radar transmission. This demonstrates that, beyond 
increasing resolution and realizing compression in the time, 
frequency, and spatial domains, compressed radars have the 
potential to enable otherwise challenging technologies.

Spectral adaptive transmission
In previous works that implement fast time compression, e.g., 
Xampling radar [30], [40], the transmitter broadcasts a wide-
band signal, which reflects off the targets and propagates back 
to the receiver. The received signal is then filtered before sam-
pling so that only the content of a few narrow bands is sam-
pled and processed. These works only deal with the reception 

Random PC has been 
adopted in polarimetric 
weather radars, which 
exploit the inherent 
random phase between 
pulses of the popular 
magnetron transmitters.
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side of the radar, providing sampling and processing tech-
niques that can be used with any traditional radar transmitter. 
However, for broadband frequency occupation and power sav-
ings, only the narrow frequency bands 
that are to be sampled may be transmit-
ted [31], [39]. This will not affect any 
aspect of the processing since the re
ceived signal is preserved in the bands of 
interest. In fact, since all the signal 
power is concentrated in the processed 
bands, the SNR increases, and the detec-
tion performance improves [75].

Let ( )H fu  be the CTFT of the new 
transmitted radar pulse,

,  
,
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where Nb  is the number of filtered bands and Br
i  and fr

i  are 
the bandwidth and center frequency of the ith band, respec-
tively. Obviously, the computation of the relevant Fourier 
coefficients c kp 6 @ from (25) will not change. Therefore, the 
recovery methods presented in the “Fast Time Xampling” sec-
tion are applicable here as well.

The concept of transmitting only a few subbands that the 
receiver processes is one way to formulate a frequency-agile 
CR in terms of its ability to adapt to spectral demands. Com-
plying with CR requirements, the support of the subbands 
varies with time to allow for dynamic and flexible adaptation. 
Such a system also enables the radar to disguise the transmit-
ted signal as an electronic countermeasure or to cope with 
crowded spectrums by using a smaller, interference-free por-
tion, as further discussed in the following section.

Application to spectrum sharing
The unhindered operation of a radar that shares its spectrum with 
communication systems has captured a great deal of attention 
within the operational radar community in recent years [36]–
[39]. Recent research programs in spectrum sharing radars 
include the Enhancing Access to the Radio Spectrum project 
by the National Science Foundation [38] and the Shared 
Spectrum Access for Radar and Communication (SSPARC) pro-
gram [37], [76], initiated by the Defense Advanced Research 
Projects Agency.

A variety of system architectures have been proposed for 
spectrum sharing radars, and most place an emphasis on opti-
mizing the performance of either radar [77] or communication 
[78] while ignoring the performance of the other. In nearly all 
cases, the real-time exchange of information between radar 
and communication hardware has not yet been integrated into 
the system architectures. Exceptions to this are automotive 
solutions in which the same waveform is used for both target 
detection and communication [79].

In a similar vein, the sub-Nyquist, CR-based approach 
from [39] incorporates the handshaking of spectral informa-

tion between the two systems. The CR configuration is key 
to spectrum sharing since the radar transceiver can adapt its 
transmission to available bands, thus achieving coexistence 

with communication signals. Suppose the set 
of all frequencies of the available common 
system spectrum is given by .F The commu-
nication and radar systems occupy the subsets 
FC  and FR  of ,F  respectively. The goal is 
to design the radar waveform and its support 

,FR  conditional on the fact that the commu-
nication occupies frequencies ,Fc  which are 
unknown to the radar transceiver [39]. To 
detect the bands left vacant by the commu-
nication signals, spectrum sensing needs to 
be performed over a large bandwidth. Such 

a task has recently received tremendous interest in the com-
munication community, which faces a bottleneck in terms of 
spectrum availability. To increase the efficiency of spectrum 
managment, a dynamic opportunistic exploitation of tempo-
rarily vacant spectral bands by secondary users has been con-
sidered, called cognitive radio (CRo) [80], [81].

A spectrum sharing paradigm using Xampling techni
ques, the spectral coexistence via Xampling (SpeCX) sys-
tem [39] is composed of a sub-Nyquist CRo receiver [81] to 
detect the occupied communication bands so that the radar 
transmitter may subsequently exploit the spectral holes. In 
this setting, the received signal at the communication receiv-
er is given by

	 ( ) ( ) ( ),x t x t x tC R= + 	 (42)

where ( ) ( ) ( )x t r t r tR T RX X= +  is the radar signal sensed by the 
communication receiver, composed of the transmitted and 
received radar signals. The goal is therefore to recover the 
support of ( ),x tC  given the known support of ( ),x tR  which is 
shared by the radar transmitter with the communication 
receiver. This can be formulated as a sparse recovery with par-
tial-support knowledge, studied under the framework of a 
modified CS [82].

Once FC  is identified, the communication receiver provides 
a spectral map of occupied bands to the radar. Equipped with 
the detected spectral map and known radio environmental map, 
the objective of the radar is to identify an appropriate transmit-
frequency set FF FR C=1  such that the radar’s probability 
of detection Pd  is maximized. For a fixed probability of false 
alarm ,Pfa  the Pd  increases with a higher signal-to-interference 
plus-noise ratio (SINR) [83]. Hence, the frequency selection pro-
cess can, alternatively, choose to maximize the SINR or mini-
mize the spectral power in the undesired parts of the spectrum. 
To find available bands with the least amount of interference, a 
structured sparsity framework [84] is adopted in [39]. Additional 
requirements of transmit-power constraints, range-sidelobe lev-
els, and minimum separation between the bands can also be 
imposed. At the receiver of this spectrum-sharing radar, the sub-
Nyquist processing method of [30] recovers the delay-Doppler 
map from the subset of Fourier coefficients defined by .FR

To increase the efficiency 
of spectrum management, 
a dynamic opportunistic 
exploitation of temporarily 
vacant spectral bands 
by secondary users has 
been considered, called 
cognitive radio.
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This CR system leads to three main advantages. First, the CS 
reconstruction, as presented in [30] on the transmitted fragment-
ed bands, achieves the same resolution as traditional Nyquist 
processing over a significantly smaller bandwidth. Second, by 
concentrating all of the available power in the transmitted nar-
row bands rather than over a wide bandwidth, the CR increases 
the SNR. Finally, this technique allows for a dynamic form of 
the transmitted signal spectrum, in which only a small portion 
of the whole bandwidth is used at each transmission, thereby 
enabling spectrum sharing with communication signals, as 
illustrated in Figure 10(d). There, the coexistence between radar-
transmitted bands in red and existing communication bands in 
white is shown.

SpeCX prototype
The SpeCX prototype, presented in Figure 10, demonstrates 
radar and communication spectrum sharing. It is composed of 
a CRo receiver and a CR transceiver. At the heart of the CRo 
system lies the proprietary modulated wideband converter 
board [29] that implements a sub-Nyquist analog front-end 
receiver, which processes signals with Nyquist rates up to 
6 GHz. The card first splits the wideband signal into M 4=  
hardware channels with an expansion factor of ,q 5=  yield-
ing M 20q =  virtual channels after digital expansion (see 
[85]). In each channel, the signal is mixed with a periodic 
sequence ( ),p ti  which are truncated versions of Gold codes 
[86], generated on a dedicated field-programmable gate array, 
with a periodic frequency .f 20 MHzp =

Next, the modulated signal passes through an analog anti-
aliasing LPF. Finally, the low-rate analog signal is sampled by 
an NI ADC operating at ( )f q f1 120 MHzs p= + =  (with in
tended oversampling), leading to a total sampling rate of 480 MHz. 
The digital receiver is implemented on an NI PXIe-1065 com-
puter with a dc-coupled ADC. Since the digital processing is 

performed at the low rate of 120 MHz, very low computational 
load is required to achieve real-time recovery. The prototype 
is fed with RF signals composed of up to N 5sig =  real com-
munication transmissions, i.e., ten spectral bands with a total 
bandwidth occupancy of up to 200 MHz and varying support, 
with a Nyquist rate of 6 GHz.

The input transmissions then go through an RF combiner, 
resulting in a dynamic multiband input signal that enables fast 
carrier switching for each of the bands. This input is specially 
designed to allow the testing of the system’s ability to rapidly 
sense the input spectrum and adapt to changes, as required 
by modern CRo and shared spectrum standards, e.g., in the 
SSPARC program. The system’s effective sampling rate, equal 
to 480 MHz, is only 8% of the Nyquist rate. Support recovery 
is digitally performed on the low-rate samples. The prototype 
successfully recovers the support of the communication trans-
mitted bands, as demonstrated in Figure 10(b) and (c). Once 
the support is recovered, the signal itself can be reconstructed 
from the sub-Nyquist samples. This step is performed in real 
time, reconstructing the signal bands one sample at a time.

The CR receiver system is identical to the sub-Nyquist sam-
pling prototype of [30], [31] and [40]. In the cognitive case, the 
transmitter only transmits over N 4b =  bands, which constitute 
3.2% of the original wideband signal bandwidth after the spec-
trum-sensing process has been completed by the communica-
tion receiver. Figure 10(d) illustrates the coexistence between 
the radar-transmitted bands in red and the existing communi-
cation bands in white. The gain in power is demonstrated in 
Figure 10(e); the wideband radar spectrum is shown in blue, 
the CR in red, and the noise in yellow on a logarithmic scale. 
The true and recovered range-velocity maps are presented in 
Figure 10(f). All of the L 10=  targets are perfectly recovered, 
and the clutter, depicted in blue, is discarded. Below the map, 
the range-recovery accuracy is shown for three scenarios: from 

(a) (c)

(d)

(e)

(b)

Communication
Analog Rx

Signal Generator Radar Analog Rx Radar Digital Rx Radar Display

Communication
Digital Rx

Communication
Display

FIGURE 10. The SpeCX prototype. The system consists of a signal generator, a CRo communication analog receiver, including the modulated wideband 
converter (MWC) analog front-end board, a communication digital receiver, a CR analog, and a receiver. The SpeCX communication system display 
shows (a) low-rate samples acquired from one MWC channel at a rate of 120 MHz and (b) a digital reconstruction of the entire spectrum from sub-
Nyquist samples. The SpeCX radar display shows (c) the coexisting communication and CR, (d) the CR spectrum compared with the full-band radar, and 
(e) the range-velocity display of both the detected and true locations of the targets [39].
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left to right, the CR in blue (2.5 m), the four adjacent bands with 
the same bandwidth (12.5 m), and the wideband (4 m). The sec-
ond configuration selects four adjacent frequency bands with 
the same bandwidth as the CR (with nonadjacent bands) for 
transmission. Its poor resolution stems from its small aperture. 
The CR system with nonadjacent bands yields better resolution 
than traditional wideband transmission, sampling, and pro-
cessing at the Nyquist rate, due to the increased SNR.

Compressed MIMO radar
Compressed radar methods have recently been extended to 
MIMO settings, in which their impact may be even greater 
than for single-antenna configurations. MIMO radar systems 
belong to the family of array radars, which allow for the si
multaneous recovery of the targets’ ranges, Dopplers, and 
azimuths. This 3-D recovery results in high digital processing 
complexity. One of the main challenges of MIMO radar is 
therefore coping with complicated systems in terms of cost, 
high computational load, and hardware implementation. CS 
has been naturally applied to MIMO to reduce the processing 
complexity on the digital side as well as allow for spatial com-
pression, in addition to the time compression achieved in sin-
gle-antenna systems. In MIMO radars, the array aperture, 
which depends on the number of antennas, dictates the azimuth 
resolution. Since the aperture is determined by the number of 
antennas in traditional virtual ULAs, high-azimuth resolution 
requires a large number of antennas.

Increased resolution
As in single-antenna radar systems, CS has first been exploit-
ed to increase the parameter resolution. Here, the MIMO array 
is composed of T  transmitters and R  receivers so as to 
achieve the desired aperture ,/TRZ 2=  as shown in Figure 2. 
The transmitted signal at the mth transmit antenna is given by 
(12), and each receiver samples the received signal at the 
Nyquist rate, as in a traditional MIMO. Assuming a sparse tar-
get scene, in which the ranges, Dopplers, and azimuths lie on 
a predefined grid, the work of [15] is extended to MIMO 
architectures in [18] and [19]. The transmit and receive array 
manifolds respectively, are given by

	 ( ) , , , ,e e eaT
j j j T2 2 2 T1 2 fi = rp i rp i rp i6 @ 	 (43)

and

	 ( ) [ , , , ] ,e e eaR
j j j T2 2 2 R1 2 fi = rg i rg i rg i 	 (44)

where mp  and qg  are the relative mth transmit and qth receive 
antenna spacings. The R N#  received signal matrix from a 
unit strength target at direction ,i  with delay x  and Doppler o  
is defined as

	 ( ) ( ) ( , ) .Z a a SR T
T Ti i x o= 	 (45)

Here, ( , ) ( ) ,s t eS ,
T

i m m i
j t2 ix o x= - ro  where ti  are the sampling 

times and m  indexes the transmitted waveforms. In this case, 

the columns of the dictionary A are given by ( )vec Z  for all 
possible combinations of ,i  ,o  and x  on a predefined grid.

The targets’ parameters are recovered by matching the 
received signal with dictionary atoms. To achieve measure-
ment diversity, random waveforms may be used, while the 
antenna locations are deterministic. ULAs are considered in 
[18] for both the transmit and receive arrays that do not benefit 
from the virtual array configuration. Alternatively, determinis-
tic waveforms can be used, e.g., Kerdock codes [19], while the 
antenna locations are selected uniformly at random over the 
aperture / .TRZ 2=  Bounds on ,N  with respect to the number 
of antennas T  and R  and the number of samples that ensure 
targets’ parameters recovery, are provided in [18] and [19].

A similar approach extends the framework of [15] to the 
MIMO setting by adding an azimuth matrix to the time-shift 
and frequency-modulation matrices T  and ,M  respectively, as 
defined in (14). In this case, each target lying on the grid is rep-
resented by a time shift, a frequency modulation, and an angle 

eA ,
( )

q m
j m q= i p g+  [87].

In both works, assuming N  grid points in each dimension, 
the number of columns of A is .N3  The processing efficiency 
is thus penalized by a very large dictionary that contains every 
parameter combination. Note that the previously mentioned 
works focus on increased parameter resolution and do not deal 
with reduced time/spatial sampling and processing rates.

Reduced processing
Fast time compression is performed in [23]–[25], in which the 
Nyquist rate samples are compressed in each antenna before 
being forwarded to the central unit. A circular array is adopted in 
[23], with transmit and receive nodes uniformly distributed on a 
disk with a small radius. At each receive antenna, linear projec-
tions of the measurement vector are retained so that the resulting 
samples are compressed in both the slow and fast time domains. 
Both individual reconstruction at each receiver and joint process-
ing at a fusion center are proposed, using CS recovery methods. 
The actual sampling is still performed at the Nyquist rate.

The MIMO matrix completion (MIMO-MC) radar [24], 
[25] employs MC techniques to avoid parameter discretization, 
which is typically used in CS methods. Two configurations are 
proposed for azimuth-Doppler recovery in a range bin of inter-
est. In the first scenario, each receiver performs an MF and 
forwards the maximum of each MF output to the fusion center. 
The samples from the pth pulse transmitted to the fusion center 
can then be written in matrix form as

	 ,X A D Ap R p T
TR= 	 (46)

where X p  is the R T#  matrix that contains the maximum of 
the MF output for each transmitter and each receiver. For 
ULA configurations, the lth column of the T L#  transmitter-
steering matrix AT  is given by ( ) , , ,e1A ( )sin

T l
j dT l

2

f= i
m
r6

,e ( ) ( )sinj T d T1 T l
2 i-
m
r @  where dT  is the interelement spacing. The 

steering matrix AR  at the receiver is similarly defined. The 
diagonal matrix R contains the targets’ RCS ,la  and the diag-
onal matrix D  contains the targets’ Dopplers such that 
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 In this scheme, each receiver transmits 
the output of a few randomly chosen MFs to the fusion center 
so that X p  is only partially known.

In the second scenario, the receivers for-
ward Nyquist samples to the fusion center 
without performing the MF. In this case, the 
samples are written as

	 ,X A D A Sp R p R
TR= � (47)

where S is the T N#  matrix that contains 
the Nyquist rate samples of each transmit-
ted waveform ( ) .s tm  In this scheme, each 
receive antenna randomly acquires a subset 
of the Nyquist samples and transmits these 
to the fusion center. In both cases, the 
fusion center performs MC before para-
metric estimation methods are applied to 
extract li  and ,lo  such as multiple signal 
classification, also known as MUSIC [88]. In these works, sam-
pling and processing rate reduction are not addressed 
since compression is performed in the digital domain after 
sampling, and the missing samples are reconstructed before 
recovering the targets’ parameters. Instead, these approaches 
are aimed at reducing the communication overhead between 
the receivers and the fusion center.

Spatial compression
Several recent works have considered applying CS to MIMO 
radar to reduce the number of antennas or the number of sam-
ples per receiver without degrading resolution. The problem 
of azimuth recovery of targets all in the same range-Doppler 

bin is investigated in [28]. Spatial compressive sampling is 
performed, in which the number of antennas is reduced while 
preserving the azimuth resolution. The classic MIMO virtual 
array configuration requires receivers with maximum spacing 

/2m  and transmitters with spacing /R 2m  (or vice versa). The 
product RT  thus scales linearly with aperture, which sets 
the azimuth resolution. Spatial compression is achieved by 
using a sparse random-array architecture [28], in which a low 
number of transmit and receive elements are placed at ran-
dom over the same aperture ,Z  achieving similar resolu-
tion as a filled array, but with significantly fewer elements. 
The random-array configuration is illustrated in Figure 11. 
Beamforming is applied on the time-domain samples ob
tained from the thinned array at the Nyquist rate, and the 
azimuths are recovered using CS techniques. Recovery guar-
antees and guidelines concerning the choice of the product 

RT  and the antenna locations are provid-
ed. The methods for choosing the antenna 
locations using deep networks are investi-
gated in [89].

Time and spatial compression
In all of the previously discussed works, 
recovery is performed in the time domain on 
acquired or reconstructed Nyquist rate sam-
ples for each antenna. The sub-Nyquist 
MIMO radar (SUMMeR) system, presented 
in [32], extends the Xampling concept to 
MIMO configurations and breaks the link 
between the aperture and the number of 
antennas, similar to [28]. The concept of 
Xampling is applied both in space (antenna 
deployment) and in time (sampling scheme) 

to simultaneously reduce the required number of antennas 
and samples per receiver, while preserving time and spatial res-
olution. In particular, targets’ azimuths, ranges, and Dopplers 
are recovered from compressed samples in both space and time, 
while keeping the same resolution induced by Nyquist rate sam-
ples obtained from a full virtual array with low computation-
al cost.

The SUMMeR system implements a collocated MIMO 
radar system with M T<  transmit and Q R<  receive anten-
nas, whose locations are chosen uniformly at random within 
the aperture of the virtual array described previously in this 
section, i.e., { } ~ ,Z0Um m

M
0
1p =
- 6 @ and { } ~ , ,Z0Uq q

Q
0
1

g =
- 6 @  

respectively, as shown in Figure 11. Note that, in principle, the 
antenna locations may be chosen on the ULAs’ grid; however, 
this configuration is less robust than range-azimuth ambiguity 
and leads to coupling between these parameters in the pres-
ence of noise [32]. An FDMA framework is adopted so that 
spatial compression, which, in particular reduces the number 
of transmit antennas, removes the corresponding transmitting 
frequency bands as well. The transmitted signals are illus-
trated in Figure 12 in the frequency domain. Figure 12(a) and 
(b) shows a standard FDMA transmission for T 5=  and the 
resulting signal after spatial compression for .M 3=

TBh TBh

Bh Bhf f

(a) (b)

FIGURE 12. The frequency division multiple access transmissions: (a) 
standard and (b) spatial compression [32].

Spatial compression 
is achieved by using a 
sparse random-array 
architecture, in which a 
low number of transmit 
and receive elements are 
placed at random over the 
same aperture Z, achieving 
similar resolution as 
a filled array, but with 
significantly fewer 
elements.
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FIGURE 11. An illustration of MIMO arrays: (a) the standard array and (b) 
the random thinned array [32].
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The transmitted pulses, defined in (12), are reflected by the 
targets and collected at the receive antennas. Under the assump-
tions described in “Targets’ Assumptions,” the received signal 

( )x tqu  at the qth antenna is the sum of time-delayed, scaled rep-
licas of the transmitted signals:

	 ,( )x s
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where R ,l mq  is the sum of the distances from the mth transmit-
ter and qth receiver to the lth target, which account for the 
array geometry. After demodulation to the baseband, the 
received signal can be further simplified to
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where ,f 1cmq q m mb g p= + +m^ ^h h  with fm  the mth-transmis-
sion-carrier frequency and m  the signal wavelength. The goal 
is to estimate the targets’ ranges, azimuths, and velocities, i.e., 
to estimate , ,l lx j  and f l

D  from low-rate samples of ( ),x tq  and 
small numbers m  and Q  of the antennas.

Similar to the Xampling processing in [30], SUMMeR con-
siders the Fourier coefficients of the received signal ( )x tq

p  
at the qth antenna. To jointly recover the targets’ ranges, azimuths, 
and Doppler frequencies, the concept of Doppler focusing from 
[30] (see “Doppler Focusing”) is applied to the MIMO setting, 
and the CS algorithms are extended to simultaneous matrix 
recovery [32]. The minimal number of channels required for 
the recovery of L  targets’ parameters in noiseless settings is 

,MQ L2$  with a minimal number of MK 2L$  samples per 
receiver and P L2$  pulses per transmitter [32]. The SUM-
MeR system has been implemented in hardware, as described 
in the following section.

Hardware prototype
The cognitive SUMMeR prototype [41], [42] extends the 
Doppler focusing, Xampling-based prototype [40] to the 
MIMO configuration. It simultaneously recovers the targets’ 
delays, Dopplers, and azimuths from sub-Nyquist samples. 
More specifically, it implements a receiver with a maximum 
of eight transmit and ten receive antenna elements. The same 
hardware is used for each receive element and serially feeds 
the signals of all R 10=  receivers to the same prototype.

To avoid the use of an overwhelmingly large number of 
ADCs and bandpass filters for an 8 10#  array, a cognitive 
transmission is adopted wherein each transmit signal lies in 
N 8b =  disjoint, narrow slices over a 15-MHz band. Each sub-
band is the width of 375 kHz, leading to a total signal band-
width of 3 MHz. The transmit subbands, locations were chosen 
so that all can be subsampled using a single low-rate ADC 
without aliasing between them [41]. This allows the reduction 
of the number of samplers. The signal is subsampled at 7.5 MHz, 
whereas a noncognitive signal would have occupied the entire 
15-MHz spectrum requiring a Nyquist sampling rate of 30 MHz. 
Therefore, the use of cognitive transmission enables spec-
tral sampling reduction by a factor of four for each channel. 
The effective signal bandwidth is reduced by a factor of five 
( 15/3 MHz),=  respectively, for each channel. 

The system may be configured to operate in various array 
configurations simulating different numbers and locations of 
the antennas. The hardware switches off the inactive channels 
and does not sample any data over the corresponding ADCs. 
This governs the spatial compression by reducing the number  
of receivers and transmitters. In its baseline configuration, the sys-
tem uses only half of the antennas with respect to the full vir-
tual array, i.e., M 4=  transmitters and Q 5=  receivers. Figure 13 
shows the sub-Nyquist MIMO prototype, user interface, and 

FIGURE 13. The sub-Nyquist MIMO prototype and user interface. The analog preprocessor module consists of two cards mounted on opposite sides of a common 
chassis. The inset shows the simplified block diagram of the system. The subscript r  represents the received signal samples for the r th receiver. Wherever ap-
plicable, the second subscript corresponds to a particular transmitter. The square brackets (parentheses) are used for digital (analog) signals [41], [42].
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radar display. The inset graph depicts the signal flow through a 
simplified block diagram. 

The experimental process consists of the following steps. 
The simulated radar scenario is stored in a custom-designed 
waveform generator. The scenario includes pulse-transmis-
sion modeling, accurate power loss due to wave propagation 
in a realistic medium, and interaction of a transmit signal 
with the target. A large variety of scenarios, consisting of 
different targets’ parameters, i.e., delays, Doppler frequen-
cies, and amplitudes, and array configu-
rations, i.e., the number of transmitters and 
receivers and antenna locations, may be 
examined using the prototype. The waveform 
generator board then produces an analog 
signal corresponding to the synthesized 
radar environment, which is amplified and 
routed to the MIMO radar-receiver board. 
The prototype samples and processes the 
signal in real time. The physical array aper-
ture and simulated target response correspond to an X-band 

f 10 GHzc =^ h radar.
Figure 14 presents some recovery results from the proto-

type. In the experiment, P 10=  pulses were transmitted at a 
uniform PRF of 100 Hz.n  The received signal corresponding 
to the echoes from L 10=  targets, placed at arbitrary ranges 
with azimuths and with arbitrary velocities, was injected into 
the transmit waveform generator. In the experiment, when the 
angular spacing (in terms of the sine of azimuth) between any 
two targets was greater than 0.025 and the signal SNR 8 dB,=-  
the recovery performance of the compressed configuration in 
time and in space was equivalent to that of a full array, i.e., 
with eight transmitters and ten receivers. The figure shows the 
obtained plan position indicator plot and range-azimuth-Dop-
pler maps for both true and recovered targets. Here, a success-

ful detection (green circle) occurs when the estimated target is 
within one range cell, one azimuth bin, and one Doppler bin 
of the ground truth (blue circle). More experiments in [41] and 
[42] demonstrate that the prototype performance is robust, with 
SNRs dropping to as low as –10 dB, and the time and spatial 
resolution are preserved by simulating couples of close targets 
in range, Doppler, and azimuth.

Conclusions and future challenges
In this article, we reviewed several compressed radar systems 
that aim to reduce complexity while preserving parameter 
resolution. Throughout this article, we considered different 
popular radar systems, including pulse-Doppler and step-fre-
quency radars as well as MIMO configurations. In particular, 
we showed that temporal, spectral, and spatial compression 
can be implemented without decreasing Doppler, range, and 
azimuth resolution. To recover these parameters for L  targets, 
the minimum number of required samples per pulse, the mini-
mum number of pulses, and the minimum number of channels 
are each equal to .L2  These are determined by the actual num-
ber of DoF of the parameter estimation problem, governed by 

,L  rather than a function of design parameters, such as signal 
bandwidth, CPI, or aperture. This is essential since the latter 
determine range, Doppler, and azimuth resolution and are 
increased for higher performance. By breaking the traditional 
links between the sampling rate, number of pulses, and anten-
nas on the one hand and parameter estimation on the other 
hand, increased performance may be achieved without increasing 
sampling and processing rates.

An advantage of the Xampling system is that traditional 
radar-processing algorithms can be easily adapted and applied 

directly to the sub-Nyquist samples. For exam-
ple, clutter-cancellation techniques have 
been implemented on the Xampling radar 
prototypes. These significantly enhance 
the performance of compressed radars with-
out requiring the reconstruction of Nyquist 
rate samples. In addition, while CS-based 
methods traditionally do not perform well 
in the presence of large noise, since they 
inherently reduce SNR, Doppler focusing, 

applied to samples obtained using Xampling, enjoys an SNR 
improvement that scales linearly with the number of pulses, 
obtaining good detection at low SNRs. 

An essential part of the approach adopted in this survey is 
the relation between the theoretical algorithms and practical 
hardware implementation, demonstrating real-time target 
detection from compressed samples in the fast and slow time 
domains, as well as in space. The prototypes presented here 
were built from off-the-shelf components, paving the way to 
enable commercial, compressed radar systems. To this end, 
such hardware prototypes should be further extended to imple-
ment radar transmit and receive systems and deploy them to 
be tested on real data. This would permit assessing their per-
formance in real-world conditions, including different types of 
noise, clutter, and interference.
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FIGURE 14. The SUMMeR prototype recovery performance: (a) the plan 
position indicator (PPI) display. The origin is the location of the radar. The 
red dot indicates the north direction relative to the radar. The positive/
negative distances along the horizontal axis correspond to the east/west 
direction of the radar. Similarly, the positive/negative distances along the 
vertical axis correspond to the north/south direction of the radar. The es-
timated targets are plotted over the ground truth. (b) The range-azimuth-
Doppler map for the same targets. The lower axes represent the Cartesian 
coordinates of the polar representation of the PPI plots from (a). The 
vertical axis represents the Doppler spectrum [32].

The transmit subbands, 
locations were chosen so 
that all can be subsampled 
using a single low-rate 
ADC without aliasing 
between them.
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T
he next-generation energy network, the so-called smart 
grid (SG), promises tremendous increases in efficiency, 
safety, and flexibility in managing the electricity grid as 
compared to the legacy energy network. This is needed 

today more than ever, as global energy consumption is growing 
at an unprecedented rate and renewable energy sources (RESs) 

must be seamlessly integrated into the grid to assure a sustain-
able human development. 

Smart meters (SMs) are among the crucial enablers of the 
SG concept. They supply accurate, high-frequency informa-
tion about users’ household energy consumption to a utility 
provider (UP), which is essential for time-of-use (ToU) pricing, 
rapid fault detection, and energy theft prevention, while also 
providing consumers with more flexibility and control over 
their consumption. However, highly accurate and granular SM 
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data also pose a threat to consumer privacy, as nonintrusive 
load monitoring (NILM) techniques enable a malicious attack-
er to infer many details of a user’s private life. 

This article focuses on privacy-enhancing energy manage-
ment techniques that provide accurate energy consumption 
information to the grid operator without sacrificing consumer 
privacy. In particular, we focus on techniques that shape and 
modify actual user energy consumption by means of physical 
resources, such as rechargeable batteries (RBs), RESs, and 
demand shaping. A rigorous mathematical analysis of privacy 
is presented under various physical constraints on the available 
physical resources. Finally, open questions and challenges that 
need to be addressed to pave the way to the effective protection 
of users’ privacy in future SGs are presented.

SMs for an SG
The current energy grid is one of the engineering marvels of the 
20th century. However, it has become inadequate for satisfying 
the steadily growing global electricity demand of the 21st cen-
tury. In fact, world energy consumption is predicted to increase 
48% from 2012 to 2040 [1], driven by factors such as the growth 
of the global economy, the rise of the gross domestic product 
per person, the expansion of the planet’s population, an in
creased penetration of electric vehicles, and a broader mobility 
revolution [2]. Other issues that need to be addressed are the 
effective integration of RESs and storage capabilities into the 
grid, the improvement of the grid’s environmental sustainability, 
and the promotion of plug-in hybrid electric vehicles. 

To address these challenges, SGs are being engineered. 
They are intended to substantially improve energy generation, 
transmission, distribution, consumption, and security, provid-
ing enhanced reliability and quality of the electricity supply, 
quicker detection of energy outages and theft, better matching 
of the energy supply with demand, and greater environmental 
sustainability by enabling an easier integration of distributed 
generation and storage capabilities. The smartness of an SG 
resides in its advanced metering infrastructure, which enables 
two-way communication between the utility and its customers 
and whose pivotal element in the distribution network is the 
SM, the device that monitors a user’s electricity consumption 
in almost real time.

In contrast to legacy grids, in which billing data are gath-
ered at the end of a use period, SMs send electricity con-
sumption measurements automatically and at a much higher 
resolution. They enable two-way communication with the UP, 
the entity that sells energy to the customers, transmitting a 
great amount of detailed information. SMs collect and send 
bidirectional readings of active, reactive, and apparent power 

and energy—i.e., so-called four-quadrant metering—that is 
purchased from the grid (or sold to it, if the user produces ener-
gy, e.g., by means of a photovoltaic panel). In the latter case, 
the user is referred to as a prosumer, i.e., at once a producer 
and consumer of electricity who can be financially rewarded 
for the energy sold to the grid. 

SMs also keep track of historical consumption data over the 
previous days, weeks, and months and provide high-resolution 
consumption data analytics to the customers to enable them to 
monitor their energy consumption via an in-home display, web 
portal, or smartphone application in near real time. SMs also 
send alerts about voltage quality measurements, helping UPs 
fulfill their obligations toward customers concerning energy, 
power, and voltage quality, e.g., in accordance with the EN 
50160 European standard. Examples of these measurements 
include the root mean square voltage variations, e.g., voltage 
dropout, sags and swells, and total harmonic distortion. 

Data used for billing, such as the current ToU tariff, bal-
ance and debts, credit and prepayment modes, credit alerts, 
and topping up, are also sent to the UP. SMs can detect if tam-
pering takes place and send relevant data about it, along with 
the security credentials for enabling the correct functioning of 
cryptographic protocols, e.g., hashing, digital signatures, and 
cyclic redundancy checks. Finally, SM firmware information 
and updates are also communicated.

The increased data resolution is crucial for enabling SG func-
tionalities. Table 1 shows the smallest time resolution of some 
SMs currently in use, which is on the order of a few minutes. 
The European Union recommends a time resolution of at least 
15 min to allow the new SG functionalities [3]. For example, 
the current SM specifications in the United Kingdom mandate 
that an SM send integrated energy readings every 30 min to 
the UP, while the data sent to a user’s in-home display can have 
a resolution of up to 10 s [4]. It should be noted that, with the 
increased adoption of renewable energy generation by prosum-
ers, the increased penetration of electric vehicles and energy 
storage technologies, and the diversification of the energy mar-
ket, it is expected that SGs will become more volatile, requiring 
meter readings at a much higher rate in the near future.

SMs provide a wide range of benefits to all of the parties in 
an SG. Thanks to SMs, UPs can gain better knowledge of their 
customers’ needs while reducing the cost of meter readings. SMs 
allow UPs to dynamically determine the electricity cost and pro-
duce more accurate bills, thus reducing customers’ complaints 
and back-office rebilling. The implementation of ToU pricing 
can incentivize demand response and control customer behavior, 
while improved demand forecasts and load-shaping techniques 
can reduce peak electricity demands. Finally, energy theft can 
be detected more easily and quickly.

Distribution system operators (DSOs), i.e., the entities that 
operate the grid, benefit from SMs as well, by being able to bet-
ter monitor and manage the grid. SMs allow DSOs to reduce 
operational costs and energy losses and improve grid efficien-
cy and system design, distributed system state estimation, and 
volt/VAR control. Moreover, DSOs are able to better match 
distributed resources with the ongoing electricity demand and 

Table 1. The time resolution of SMs currently in use.

SM Model Time Resolution
Itron Centron [72] 1 min 
REX2 [73] 5 min 
Kamstrup Omnipower [74] 5 min 
Enel Open Meter [75] 15 min 
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the grid’s power delivery capability, thus reducing the need to 
build new power plants.

Consumers themselves take advantage of SMs to monitor 
their consumption in near real time, leading to better consump-
tion awareness and energy usage management. Moreover, con-
sumers receive accurate and timely billing services, with no 
more estimated bills, and benefit from ToU pricing by shift-
ing nonurgent loads to off-peak price periods. Microgeneration 
and energy storage devices can be integrated more easily, and 
profits from selling the generated excess energy can be collect-
ed automatically. Failing or inefficient home appliances, unex-
pected activity or inactivity, and wasted energy are detected 
faster and more accurately; in addition, switching between UPs 
is made easier by requesting on-demand readings, which, in 
turn, increases the competition among UPs and reduces costs 
for consumers.

For the aforementioned reasons, the installation of SMs is 
proceeding rapidly and attracting massive investment glob-
ally. The SM market is expected to grow from an estimated 
US$12.79 billion in 2017 to US$19.98 billion by 2022, register-
ing a compound annual growth rate of 9.34% [5]. Moreover, 
the global SM data analytics market, which includes demand 
response analytics and grid optimization tools, is expected to 
reach US$4.6 billion by 2022 [6], while the global penetration 
of SMs is expected to climb from approximately 30% at the 
end of 2016 to 53% by the end of 2025 [7]. These figures show 
how timely and crucial the research in this field is, and they  
highlight the need to quickly resolve potential obstructions that 
can threaten the future benefits from this critical technology.

SM privacy risks
An SM’s ability to monitor a user’s electricity consumption in 
almost real time presents serious implications for consumer 
privacy. In fact, by employing NILM techniques, it is possible 
to identify the power signatures of specific appliances from 
aggregated household SM measurements. NILM approaches 
date back to the 1980s work of George Hart, who first pro-
posed a prototype of an NILM device [9]. Since then, NILM 
methods have improved in different directions, e.g., by assum-
ing either high- or low-frequency measurements, by considering 
known or learned signatures [10], and even by using off-the-shelf 
statistical methods without any a priori knowledge of house-
hold activities [11]. 

An example of a typical power consumption profile, along 
with some detected appliances, is illustrated in Figure 1. As 
shown in Figure 2, the UP, a third party that has access to 
SM data (by, for example, buying it from the UP), or a mali-
cious eavesdropper may gain insights into users’ activities and 
behaviors, and determine such information as a person’s pres-
ence at home, religious beliefs, disabilities, illnesses, and even 
the TV channel being watched [12]–[14]. 

Apart from residential users, SM privacy is particularly 
critical for businesses, e.g., factories and data centers, as their 
power consumption profile may reveal sensitive information 
about the state of their businesses to their competitors. SM pri-
vacy has attracted significant public attention and continues 

to be a topic of heated public and political debate. The issue 
even stopped the mandatory SM rollout plan in The Nether-
lands in 2009 after a court decided that the forced installa-
tion of SMs would violate consumers’ right to privacy and be 
in breach of the European Convention of Human Rights [15]. 
Indeed, concerns about consumer privacy threaten the wide-
spread adoption of SMs and can be a major roadblock for this 
multibillion-dollar industry.

It is worth pointing out that the privacy problem involving 
SMs is different from the SM data security problem [16]. In 
the latter, there is a sharp distinction between legitimate users 
and malicious attackers, whereas in the privacy problem in the 
SM context, any legitimate receiver of data can also be consid-
ered malicious. To benefit from the advantages provided by the 
SG, users need to share some information about their electric-
ity consumption with the UP and DSO. However, by sharing 
accurate and high-frequency information about their energy 
consumption, consumers also expose their private lives and 
behavior to the UP, which is a fully legitimate user and, at the 
same time, a potential malevolent party. This renders traditional 
encryption techniques for data privacy ineffective in achieving 
privacy against the UP and calls for novel privacy measures and 
privacy-protection techniques.

Privacy-enabling techniques for SMs
There is a growing literature on SM privacy-preserving meth-
ods, which can be classified into two main families. The first, 
which we call the SM data manipulation (SMDM) approach, 
consists of techniques that process the SM data before report-
ing them to the UP; the practices in the second family, called 
user demand shaping (UDS), aim at modifying the user’s actu-
al energy consumption. Considered within the first class are 
methods such as data obfuscation, data aggregation, data anon-
ymization, and downsampling. 

Data obfuscation, i.e., the perturbation of metering data 
by adding noise, is a classical privacy-protection method and 
has been adapted to SGs in [17] and [18]. In [19], differential 

FIGURE 1. An example of a household electricity consumption profile with 
some appliances highlighted. (Figure courtesy of the Dataport database [8].)
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privacy, a well-established concept in the data-mining literature, 
is applied to SMs, where noise is added not only to the user’s 
energy consumption, via the RB, but also to the energy used for 
charging the RB itself to provide differential privacy guarantees. 
Along these lines, the authors in [20] introduce an information-
theoretic framework to study the tradeoff between the privacy 
obtained by altering the SM data and the utility of data for vari-
ous SG functionalities. Note that the more noise added to the 
data, the higher the privacy but the less relevant and useful the 
data are for monitoring and controlling the grid. In [20], an addi-
tive distortion measure is considered to model the utility, which 
allows the characterization of the optimal privacy-versus-utility 
tradeoff in an information-theoretic single-letter form. 

The data aggregation approach, proposed in [18], [21], and 
[22], considers sending the aggregate power measurements for 
a group of households so that the UP is prevented from dis-
tinguishing individual consumption patterns. The aggregation 
can be performed with or without the help of a trusted third 
party (TTP). 

The data anonymization approach, on the other hand, 
mainly considers utilizing pseudonyms rather than the real 
identities of consumers [23], [24]. Another method, proposed 
in [25], reduces the SM sampling rate to a level that does not 
pose any privacy threat. However, the SMDM family suffers 
from the following shortcomings.

■■ Adding noise to the SM readings causes a mismatch 
between the reported values and the real energy con-

sumption, which prevents DSOs and UPs from accurately 
monitoring the grid state; rapidly reacting to outages, 
energy theft, or other problems; and producing accurate 
and timely billing services. These would significantly 
limit the SM benefits.

■■ DSOs, UPs, or, more generally, any eavesdropper can 
embed additional sensors right outside a household or a 
business (street-level measurements are already available 
to DSOs and UPs) to monitor the energy consumption with-
out fully relying on SM readings.

■■ The anonymization and aggregation techniques that 
include the presence of a TTP only shift the problem of 
trust from one entity (the UP) to another (the TTP).
These issues are avoided by the UDS approaches, which 

directly modify the actual energy consumption profile of the 
user, called the user load, rather than modifying the data sent 
to the UP. In this family, the SM accurately reports the energy 
taken from the grid without any modification; however, this is 
not the energy that is actually consumed by the appliances. This 
is achieved by filtering the user’s actual electricity consump-
tion via a rechargeable energy storage device, i.e., an RB, or by 
exploiting an RES, which can be used to partially hide the con-
sumer’s energy consumption. Examples of RESs include solar 
panels and micro wind farms. 

Another technique is to partially shift a consumer’s demand. 
If we denote the energy received from the grid as the grid load, 
the idea is to physically differentiate the grid load from the user 

FIGURE 2. Some questions an attacker may be able to answer by having access to SM data.

When are you usually away from home?

Do you have an electronic alarm system? How often do you arm it?

How many people are at home? Are they on holiday?

Do you have disabilities/illnesses?

How often do you eat in? Do you eat hot/cold breakfasts?

Do you eat microwaved food?

Do you wake up at night? What are your sleep cycles?

Do you drive when sleep deprived?

How many hours do you spend in front of the TV?

Is any appliance inefficient?

How often do you entertain? 

Do you need to break the speed limit to get to work on time?

What is your age, gender/sex, race, ethnicity?

Do you come from a nontraditional family?
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Targeted Marketing
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load. Note that the effect of using an RB or an RES can also 
be considered as adding noise to the household consumption, 
but the noise in this case corresponds to a physical variation 
in the energy received from the grid. Moreover, different from 
the approaches in the SMDM family, the SM measurements 
provided by the UDS methods are exact, and there is no issue 
of any data mismatch between the SM data and the effective 
user demand from the grid. Thus, when UDS methods are 
deployed, the utility of SMs for the SG is not diminished since 
the users’ energy consumption is neither misreported nor dis-
torted. As a result, while the privacy-versus-utility tradeoff 
is of particular concern for the SMDM techniques, with the 
UDS methods, SG utility is never diminished. Instead, other 
tradeoffs are considered, such as privacy versus cost or pri-
vacy versus wasted energy. Figure 3 shows an overview of the 
privacy-enabling approaches.

The focus of this article is on UDS techniques, which have 
been receiving growing attention from the research communi-
ty in recent years. The physical resources these techniques rely 
on, such as RBs or RESs at consumer premises, are already 
becoming increasingly available, thanks to government incen-
tives and the decreasing cost of solar panels and household and 
electric vehicle RBs. Moreover, shaping and filtering users’ 
actual energy consumption by means of physical resources 
render any data misreporting or distortion unnecessary and 
thus, do not undermine the utility of the SG concept itself. 

We present a signal processing perspective on SM priva-
cy by treating the user load as a stochastic time series, which 
can be filtered and distorted by using an RB, an RES, and/or 
demand shaping/scheduling. The available energy generated 
by the RES can also be modeled as a random sequence, whose 
statistics depend on the energy source (e.g., solar or wind) and 
the specifications of the renewable energy generator. Addition-
ally, the finite-capacity battery imposes instantaneous limita-
tions on the available energy. We also note that such physical 
resources can be used as well for cost minimization purposes 
by the users, e.g., by acquiring and storing energy over low-cost 
periods and utilizing the stored energy in the RB and the ener-
gy generated by an RES over peak-cost periods. Accordingly, 
we also study the tradeoff between privacy and cost, as well 
as the minimization of the wasted renewable energy. Next, we 
describe and summarize the progress made in recent years 
toward quantifying SM privacy leakage in a rigorous manner, 
report the most significant results, and highlight a number of 
future research directions.

Current household batteries, typical energy  
demands, and renewable energy generation
Table 2 lists the storage capacity and peak power of some of 
the currently available RBs for residential use. As can be seen, 
the capacities are in the range of a few kilowatthours. For 
example, the peak power that batteries with a 4-kWh capacity 

FIGURE 3. An overview of the privacy-enabling approaches for SMs.
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Table 2. The specifications of some currently available residential batteries.

Household RB Capacity (kWh) RB Charging Peak Power (kW) RB Discharging Peak Power (kW) 
Sunverge SIS-6848 [76] 7.7, 11.6, 15.5, 19.4 6.4 6 
SonnenBatterie eco [77] 4 16- 3 8- 3 8-
Tesla Powerwall 2 [78] 13.5 5 5 
LG RESU 48V [79] 2.9, 5.9, 8.8 3, 4.2, 5 3, 4.2, 5 
Panasonic battery system LJ-SK56A [80] 5.3 2 2 
Powervault G200-LI-2/4/6KWH [81] 2, 4, 6 0.8, 1.2 0.7, 1.4 
Orison Panel [82] 2.2 1.8 1.8 
SimpliPhi PHI 3.4–48V [83] 3.4 1.5 1.5 
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can output sustainably is on the order of 1–2 kW. However, as 
the typical electricity consumption is very spiky (e.g., see 
Figure 1), current batteries cannot fully hide the consumption 
spikes, because of the charging/discharging peak power con-
straints. For example, while a 4-kWh battery can hide a con-
stant consumption of 2 kW over 2 h, it cannot fully conceal 
spikes in the user load of more than 2 kW. An example of this 
effect can be noticed in the simulation of Figure 4.

The typical household average power consumption also lies 
within the range of a few kilowatts, as shown in Table 3, where 
the distribution of the average user power consumption values 
over different years obtained from various databases is report-
ed, with various time resolutions. Analyzing the Dataport data-
base [8], we observe that, independent of the period considered, 
the average user energy demand is fewer than 2 kWh 80–90% 

of the time. Current batteries charged at full capacity would 
then be able to satisfy the demand continuously for only a few 
hours. However, completely covering the consumption over a 
few hours may come at the expense of revealing the energy 
consumption fully at future time periods. In fact, once the RB 
is discharged, it needs to be charged again before being able to 
hide the user consumption; hence, the use of the RB introduces 
memory into the system, as decisions taken at a certain time 
have an impact on the privacy performance at later times. 

We should also remark that residential electricity consump-
tion is forecast to increase significantly in the coming years 
[71], emphasizing the need to intelligently exploit limited-
capacity storage devices to hide energy consumption behav-
ior. We also would like to emphasize that the privacy leakage 
is caused mostly by these spikes, which are typically more 
informative (e.g., the oven, microwave, and heater) compared 
to more regular consumption (e.g., the refrigerator). Moreover, 
because of electricity price variations, users may prefer charg-
ing/discharging the battery during certain time periods, which 
limits the available energy that can be used for privacy. Finally, 
it is expected that the increasingly wider adoption of electric 
vehicles and the mass production and adoption of energy-hun-
gry smart devices will inevitably increase the typical house-
hold electricity consumption, further limiting RBs’ capability 
to fully hide the user load.

Table 4 shows the average power generated by typical resi-
dential solar panels, which are the most common residential 
RESs. The location, technology, inclination, and size of the 
solar panel affect the generated power, as shown in Table 5 for 
one of the databases considered, where kWp denotes the kilo-
watt peak, i.e., the output power achieved by a panel under full 
solar radiation. As expected, around 50% of the time, i.e., at 
night, no energy is generated at all, while there are differences 
in the distribution of the average values for the two databases 
considered, due to the different locations. Comparing these 

FIGURE 4. Examples of the user load, grid load, and target load over the 
course of a day when a piecewise target profile is considered [33]. The 
price periods are highlighted by arrows of different colors. Note that the 
target load assumes a different constant value for each price period.
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Table 3. The distribution of the average household power consumption (resolution refers to the measurement frequency). 

Source Location Resolution Time Frame 
Number 
of Houses 0,0.5 kW6 @ (0.5,1 kW@  (1,2 kW@  (2,3 kW@  (3,4 kW@  (4, ) kW+3  

Dataport 
[8]

Texas,  
United 
States 

60 min 1 January– 
31 May 2016

512 38 30 20 7 3 2 

1 January– 
31 December 2015

703 36 26 20 9 5 4 

1 January– 
31 December 2014

720 39 25 20 8 4 4 

1 January– 
31 December 2013

419 35 25 21 9 5 5 

1 January– 
31 December 2012

182 31 26 24 10 5 5 

Intertek 
[26]

United  
Kingdom

2 min 1 May 2010– 
31 July 2011

251 18 24 47 11 0 0 

Dred 
[27] 

The  
Netherlands

1 s 5 July 2015– 
5 December 2015

1 98 1.8 0.4 0 0 0 

Uci [28] France 1 min 16 December 2006– 
26 November 2010

1 47 9 28 8 4 2 

The values in each column indicate the percentage of time the average consumption falls into the corresponding interval.
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values with those in Table 2, we note that the battery capacities 
are large enough to store many hours of average solar energy 
generated by the solar panels most of the time.

A signal processing perspective on SM privacy
A generic discrete-time SM system model is depicted in Fig
ure 5. In this model, each time slot is normalized to unit time; 
therefore, the power and energy values within a time slot are 
used interchangeably. X Xt !  denotes the total power de
manded by the appliances in the household in time slot ,t
i.e., the user load, where X  is the user 
load alphabet, i.e., the set of values that 
Xt  can assume. The sequence { }Xt  re
presents the user’s private information 
that needs to be protected. Y Yt !  is 
the power received from the grid in 
time slot ,t  i.e., the grid load, which is 
measured and reported to the UP by the 
SM, while Y  denotes the grid load 
alphabet. We assume that the user load 
and grid load power values remain con-
stant within a time slot. In practice, this 
can be considered as a discrete-time lin-
ear approximation of a continuous-load 
profile. This approximation can be made 
as accurate as desired by reducing the 
time slot duration.

In current systems, where no energy 
manipulation is employed, , ;Y X tt t 6=  
that is, the actual energy consumption of 
the appliances is reported to the UP by 
the SM. Instead, we will assume that an 
RB and an RES are available to the user 
to physically distort the energy consump-
tion, so that what the user receives from 
the grid, ,Yt  does not reveal too much 

information about the energy used by the appliances, .Xt  We 
remark here that the time slots in our model correspond to time 
instants when the electricity is actually requested by the user and 
drawn from the grid, rather than the typically longer sampling 
interval used for sending SM measurements to the UP. In fact, we 
assume that the SM measures and records the output power val-
ues at each time slot. This is because our aim is to protect consum-
ers’ privacy not only from the UP but also from the DSO or any 
other attacker that may deploy a sensor on the consumer’s power 
line, recording the electricity consumption in almost real time. 

SG

SM

UP

RES

Yt

Yt

Bt

Et

Xt

Xt – Yt

Grid Load User Load

RB

EMU

FIGURE 5. The system model. , , ,X Y Et t t  and Bt  denote the consumer’s power demand, i.e., the user 
load; the SM readings, i.e., the grid load; the power produced by the RES; and the battery state of 
charge at time ,t  respectively. The dashed line represents the meter readings being reported to the UP. 
EMU: energy management unit.

Table 4. The distribution of the average power generated by residential photovoltaic systems. 

Source Location Resolution Time Frame 
Number 
of Houses 0 kW  (0,0.5 kW@  (0.5,1 kW@  (1,2 kW@  (2,3 kW@  (3,4 kW@  (4, ) kW+3  

Dataport 
[8] 

Texas, 
United 
States 

60 min 1 January 
2012–31 
May 2016

351 49 17 7 9 7 6 5 

Microgen 
[29]

United 
Kingdom 

30 min 1 January–31 
December 
2015

100 51.7 36.4 9.8 2 0.1 0 0 

The values in each column indicate the percentage of time the average generation falls into the corresponding interval.

Table 5. The specifications of the solar panels studied in the Microgen [29] database. 

Solar Panel Area (m2) Solar Panel Cell Type Nominal Installed Capacity (kWp)
( , ]0 15 ( , ]15 20 ( , ]220 5 ( , ]025 3 ( , )30 3+ Monocrystalline Polycrystalline ( , ]20 ( , ]2 3 ( , ]3 4 ( , )4 3+

5 35 44 15 1 93 7 4 36 59 1 
The values in each column indicate the percentage of solar panels that satisfy the corresponding property.
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The amount of energy stored in the RB at time t  is 
[ , ],B B0 maxt !  where Bmax  denotes the maximum battery 

capacity. X Yt t-  is the power taken from the RB, and the bat-
tery charging and discharging processes are often constrained 
by the so-called charging and discharging power constraints 
Pct  and ,Pdt  respectively, i.e., , .P X Y P tc t t d 6# #- -t t  There 
is also typically a constraint on the average energy that can 
be retrieved from an RB, imposed by an average power con-
straint ,Pr  i.e., ( ) .X Y PE t

n
n t t1
1 #R -= r6 @  Losses in the battery 

charging and discharging processes may also be taken into 
account to model a more realistic energy management sys-
tem. The renewable energy generated at time t  by the RES is 
represented by ,E Et !  where [ , ] .E0E max=  RBs and RESs 
are expensive facilities, and installation and operation costs 
can be reduced if they are shared by multiple users, e.g., 
users within the same neighborhood or block of apartments. 
Moreover, sharing these resources allows the centralized 
management of the energy system, which also leads to a 
more efficient use of the available resources. The renewable 
energy can be stored in the RB or used immediately so that 
a user can

■■ increase privacy by not reporting the actual power con-
sumption to the UP

■■ decrease electricity costs by purchasing and storing elec-
tricity from the grid when it is cheaper and using it to satis-
fy future demand—or even selling it back to the UP when 
the price increases

■■ increase energy efficiency by reducing the waste of gener-
ated renewable energy when it is not needed and, when it is 
not profitable, to sell it to the UP.
The random processes X  and E  are often modeled as 

Markov processes or as sequences of independent and iden-
tically distributed (i.i.d.) random variables. Although the 
UP typically does not know the instantaneous outcomes of 
these processes, it may well know their statistics. In some 
cases, the UP may know the realizations of the renewable 
energy process ,E  for example, if it has access to additional 
information from sensors deployed near the household that 
measure different parameters, e.g., the solar or the wind 
power intensity, and if it knows the specifications of the 
user’s renewable energy generator, e.g., the model and size 
of the solar panel.

Given these definitions, the equation expressing the evolu-
tion of the energy level in the battery is

	 { ( ), }.minB B E X Y Bmaxt t t t t1 = + - -+ � (1)

Sometimes, the user load does not need to be satisfied imme-
diately in its entirety. In fact, it can be further classified into 
demand that must be met immediately (e.g., lighting or cook-
ing) and demand that can be satisfied at a later time, the so-
called elastic demand (e.g., charging an electric vehicle or 
running a dishwasher or washing machine). For the latter 
demand, the user’s only concern is that a certain task needs to 
be finished by a certain deadline (e.g., the electric car must be 
fully charged by 8 a.m.), and it does not matter exactly when 

the consumption takes place. This flexibility allows the con-
sumer to employ demand response to increase privacy and lower 
the energy cost.

The electricity unit cost at time ,t  denoted by ,Ct  can be 
modeled as a random variable or in accordance with a specific 
ToU tariff. The cost incurred by a user to purchase Yt  units 
of power over a time interval tx  at price Ct  is thus given by 

.Y Ct t tx  When the presence of an RES is considered, the pro-
sumer may be able to sell part of the energy generated to the 
grid to further improve privacy and minimize the energy cost. 
If this occurs, the net metering approach is typically consid-
ered, i.e., the utilities purchase consumer-generated electricity 
at the current retail electricity rate. The battery wear and tear 
due to charging and discharging the RB can also be taken into 
account and modeled as an additional cost [30].

The energy management policy 
The energy management unit (EMU) is the intelligence of the 
system, located at the user’s premises, where the SM privacy-
preservation and cost-optimization algorithms are physically 
implemented. The energy management policy (EMP), imple-
mented by the EMU, determines at any time t  the amount of 
energy that should be drawn from the grid and the RB, given 
the previous values of the user load ,Xt  renewable energy ,Et  
level of energy in the battery ,Bt  and grid load ,Yt 1-  i.e.,

	 : , ,f tX E B Y Yt
t t t t 1 "# # # 6- � (2)

where ,f F!  and F  denotes the set of feasible policies, i.e., 
policies that produce grid load values that satisfy the RB and 
RES constraints at any time as well as the battery update 
equation in (1). The optimal policy is chosen to minimize the 
long-term information leakage about a consumer’s electricity 
consumption, possibly along with other criteria, such as the 
minimization of electricity cost or wasted energy. The EMP 
prevents outages, and typically it is not allowed to draw more 
energy from the grid to be wasted simply for the sake of 
increased privacy.

The policy ft  in (2) corresponds to an online EMP, i.e., 
one in which the action taken by the EMU at any time slot 
depends only on the information available causally right up to 
that time. Alternatively, in an offline optimization framework, 
the policy takes actions based also on future information 
about the system state, i.e., the user load and RES energy gen-
eration, in a noncausal fashion. In the SM privacy literature, 
both offline and online SM privacy-preserving algorithms 
have been considered. Online algorithms are more realis-
tic and relevant for real-world applications; however, offline 
algorithms may lead to interesting intuition or bounds on the 
performance. Moreover, noncausal knowledge of the electric-
ity price process is a realistic assumption in today’s energy 
networks; and even the noncausal knowledge of power con-
sumption may be valid for certain appliances, such as refrig-
erators, boilers, heaters, and electric vehicles, whose energy 
consumption can be accurately predicted over certain finite 
time frames.



67IEEE SIGNAL PROCESSING MAGAZINE   |   November 2018   |

A heuristic privacy measure:  
Variations in the grid load profile
As in many other problems involving privacy, a wide consen-
sus over the best privacy measures for SMs has not yet been 
reached. A number of privacy measures have been proposed in 
the literature, each with its own benefits and limitations. 
Although it is clear that privacy is achieved when the UP can-
not infer a user’s behavior on the basis of SM measurements, 
it is challenging to define a corresponding mathematical mea-
sure that is independent of the particular detection technique 
employed by the attacker.

Grid load variance as a privacy measure
One can argue that privacy in SMs can be ensured by oppor-
tunely charging and discharging the RB so that the grid load is 
always constant. In fact, the differences in consecutive load 
measurements Y Yt t 1- -  are indicative of the appliances’ 
switch-on/off events, the so-called features, and are typically 
exploited by the existing NILM algorithms. Ideally, a complete-
ly flat grid load profile would not reveal any feature and would 
only leak a user’s long-term average power consumption. 
However, this would require a very large battery capacity and/or 
a powerful RES. Alternatively, the level of privacy can be mea-
sured by what we might call the distance of the grid load from a 
completely flat target load profile, based on the intuition that the 
smaller the distance, the higher the level of privacy achieved 
[31]. Accordingly, privacy can be defined as the grid load vari-
ance around a prefixed target load profile ,W i.e.,

	 ,
n

Y W1 EVn
t

n
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=
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where the expectation is over Xt  and ,Yt  and typically 
[ ] .W XE=

Another important concern for consumers is their energy 
cost. With the integration of unreliable RESs into the grid, it 
is expected that the unit cost of energy from different UPs will 
fluctuate over time. RBs for residential use provide flexibility 
to consumers, as they can buy and store energy during low-
cost periods to be used during peak-price periods. The impact 
of RBs in reducing the cost of energy to consumers has been 
extensively studied in the literature [32]. Note, however, that 
the operation of the EMU to minimize the energy cost does not 
necessarily align with the goal of minimizing privacy leakage. 
Therefore, it is essential to jointly optimize the electricity cost 
and user privacy. If the cost of energy and battery wear and 
tear are considered, the overall optimization problem becomes

	 1 ( ) ,min
n

C Y t C Y W1 E
t

n

t t B B t
1

2a+ + -
=

^ h6 @/ � (4)

where 1 ( )t 1B =  if the battery is charging/discharging at time 
t  and equals 0; otherwise, CB  is the battery operating cost 
due to the battery deterioration caused by charging and dis-
charging the RB, and a  strikes the tradeoff between privacy 
and cost. The expectation in (4) is over the probability distri-
butions of all of the involved random variables, i.e., , ,X Yt t  
and .Ct

If [ ], ,W X tEt 6=  the EMU tries to achieve a flat grid load 
profile around the average user energy consumption with as 
few deviations as possible. This scenario is illustrated in Fig-
ure 6, where the straight blue line is the fixed target consump-
tion profile Wt  and the red line indicates the achieved grid 
load profile .Yt  For i.i.d. X  and C  processes, an online EMP 
can be obtained using Lyapunov optimization [30]. The online 
control algorithm can be formulated as a Lyapunov function 
with a perturbed weight, and the drift-plus-penalty framework 
is adopted, which is typically used for stabilizing a queuing 
network, by minimizing the so-called drift while at the same 
time minimizing a penalty function. Here, the penalty is rep-
resented by the optimization target, while the Lyapunov drift 
is defined as the difference of the level of energy in the RB 
at successive time instants. The authors in [30] show that this 
approach leads to a mixed-integer nonlinear program, which 
they solve by decomposing it into multiple cases and finding a 
closed-form solution to each of them.

This problem can also be studied in an offline framework 
by assuming that the future user demand profile can be accu-
rately estimated for a certain time horizon and that the energy 
cost is known in advance. When privacy and cost of energy are 
jointly optimized over a certain time horizon, one can charac-
terize the points on the Pareto boundary of the convex region 
formed by all of the cost and privacy leakage pairs by solving 
the following convex optimization problem [31]:

	 ( ) ( ) .min Y C Y W1 t t t
t
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It is shown in [31] that the optimal offline solution has a water-
filling interpretation. However, unlike the classical water-filling 
algorithm, which appears as the solution of the power allocation 
problem across parallel Gaussian channels under a total power 
constraint, here the water level is not constant but changes across 
time because of the instantaneous power constraints.
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FIGURE 6. An example of the user load, grid load, and constant target 
load profiles, where the distance Y Wt t-  is highlighted. The aim of the 
algorithms presented in the “Grid Load Variance as a Privacy Measure” 
section is to minimize the average squared distance.
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A completely flat consumption profile may not be feasible 
or even desirable—e.g., if the cost varies greatly during the 
system operation because of ToU tariffs. Thus, it is reasonable 
to assume that a user requests more energy during off-peak 
price periods as compared to peak price periods and hence 
allows a piecewise constant target load [33]. An example of 
this strategy is shown in Figure 4, where it is applied to real 
power consumption data from the UK-DALE data set [34]. The 
optimization problem (5) becomes

	 ( ) ,min
N
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where C( )i  and W( )i  are the cost of the energy purchased from 
the UP and the target profile during the ith price period, 

respectively, where ;i M M1 # #  is the total number of price 
periods during time ;T  and the ith price period spans from 
time slot tc( )i 1-  to .tc( )i  Figure 7 depicts the timing convention 
considered in this scenario. Energy can be sold to the UP to 
further improve the privacy-versus-cost tradeoff, as assumed 
in [33]. Considering a piecewise target profile improves the 
overall privacy-versus-cost tradeoff compared to a constant 
target profile, as shown in Figure 8 for a Powervault G200-LI-
4KWH RB when using power consumption data from [34].

A possible extension of the latter work is to consider the 
multiuser scenario, where, in principle, each user can fix 
its own target profile. As long as the target profile does not 
depend on the user’s energy consumption profile, the UP does 
not receive much information about the consumer’s activities. 
On the other hand, the UP can implicitly incentivize users to 
choose different target profiles by setting different ToU prices 
for different consumers. Since consumers will tend to buy 
more energy when it is cheaper, each of the users in the neigh-
borhood will shift the load to a different time slot, also balanc-
ing the total load on the grid.

Markov decision process formulation
In the online optimization framework, where the user load and 
the energy generated by the RES can be modeled as Markov 
processes (or as i.i.d. sequences as a special case), the SM pri-
vacy problem can be cast as a Markov decision process (MDP). 
An MDP is a discrete-time state-transition system that is for-
mally characterized by the following:

■■ a state space
■■ an action space, which includes the possible actions that 

can be taken by the decision maker at each state
■■ the transition probabilities from the current state to the next 

state, which describe the dynamics of the system
■■ the reward (or inversely the cost) process, which indicates 

the reward received (or cost incurred) by the decision 
maker by taking a particular action in a particular state. 
The goal of an MDP is to find the optimal policy that min-

imizes the average (or discounted) cost either by a specified 
time in the future, i.e., by considering the so-called finite-hori-
zon setting, or over an indefinite time period, by considering 
the infinite-horizon setting. To solve the corresponding MDP, 
the Bellman optimality equations should be formulated [35], 
which can be solved to obtain the optimal policy at each state 
and time instant. The problem can be solved numerically for 
the finite-horizon setting, while the value iteration algorithm 
can be employed to obtain the optimal stationary policy in the 
infinite-horizon scenario.

In the SM problem, the state at any time t  is typically rep-
resented by a combination of the current level of energy in the 
battery ,Bt  user demand ,Xt  and renewable energy .Et  The 
action, performed by the EMU, is represented by the current 
grid load and the energy used from the RB and RES. State tran-
sitions are modeled by the battery update equation, which is 
typically assumed to be deterministic, and by transitions in the 
user demand and renewable generation states, which typically 
do not depend on users’ actions. The cost function is the privacy 
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loss that is experienced when moving from one level of energy 
in the battery to another by following a certain action. 

However, to consider privacy as the cost function in an MDP, 
it is necessary to formulate the privacy leakage in an additive 
form across time, so that the total loss of privacy over multiple 
time slots is given by the summation of the privacy leakage at 
different time slots. This may be challenging, depending on the 
privacy measure employed. For example, measuring privacy 
via the squared distance of the grid load from a constant target 
profile has a straightforward additive formulation, while the 
same does not hold when privacy is measured by the mutual 
information (MI) between the user and grid load sequences. 
This is because the MI takes into account the dependence 
between the realization of the user load at time ,t Xt  and the 
current, past, and future realizations of , , , , .Y Y Yt1 f f

When the state and action spaces are continuous, it is neces-
sary to discretize them to solve the problem numerically. The 
accuracy of the numerical solution can be improved by decreas-
ing the discretization step size, though at the expense of signifi-
cantly higher computational complexity. When the dimensions 
of the state and action spaces render numerical evaluation of the 
optimal policy unfeasible, one can resort to suboptimal solu-
tions that are easier to optimize and compute numerically yet 
may provide near-optimal performance or interesting intuition. 
Also, when the information-theoretic privacy measures are 
used, it may be possible to simplify the infinite-horizon opti-
mization problem and write it in a single-letter form. We will 
provide further insight into this next.

The SM problem is cast as an MDP in [36], where the loss 
of privacy is measured by the fluctuations of the grid load 
around a constant target load, and the joint optimization of 
privacy and cost is studied. The optimal privacy-preserving 
policies are characterized by minimizing the expected total 
cost. Denote by ut  the action at time .t  To solve the MDP, the 
transition probabilities ( | )p X Xt t 1-  and ( | , )p B B ut t t1-  need 
to be known; however, this is normally not the case, as the user 
load and the energy storage usage are typically nonstation-
ary. The authors in [36] overcome this issue by adopting the 
Q-learning algorithm [37], which is an iterative algorithm used 
for characterizing the expected cost for each state–action pair 
by alternating the exploitation and exploration phases. The cor-
responding offline optimization policy is also characterized in 
[36] to be considered as a benchmark for the online algorithm. 
The paper characterizes the privacy–cost tradeoff curves and 
also evaluates the performance of the proposed algorithm by 
means of the empirical mutual information.

Temporal and spatial similarities  
in the grid load as a privacy measure
Variations in the grid load profile can be captured by consider-
ing the power traces of single appliances and computing dif-
ferences in power consumption both in the time domain, i.e., 
the consumption deviation over time of a specific appliance, 
and in the space domain, i.e., the consumption profiles of dif-
ferent appliances. As these variations are computed over a cer-
tain time horizon, when an online algorithm is considered, 

future user electricity consumption is estimated by forecasting 
the future electricity prices and running Monte Carlo simula-
tions. The optimal decision at any time is characterized by 
considering both the current inputs and the forecasts through a 
rolling online stochastic optimization process. 

Load shifting, i.e., the scheduling of the user’s flexible elec-
tricity demand in accordance with privacy as well as cost con-
cerns, can also be considered. Load shifting is analyzed in [38] 
and [39], where privacy, cost of energy, and battery wear and tear 
are jointly optimized and an online algorithm is formulated. The 
objective is to minimize the sum of the current and expected elec-
tricity and charging/discharging costs together with the weighted 
power profile differences measured through the similarity param-
eters for an entire day. In [39], the effectiveness of three similarity 
measures are examined separately and jointly, considering only 
four typical appliances—an oven, a clothes dryer, a dishwasher, 
and an electric vehicle—for the sake of simplicity.

Heuristic algorithms
While the grid load can be flattened by minimizing its variation 
around a constant consumption target, several works in the litera-
ture propose heuristic battery charging and discharging algo-
rithms that keep the grid load variations limited. An intuitive 
approach is to try to keep the grid load equal to its most recent 
value by discharging (or charging) the RB when the current user 
load is larger (or smaller) than the previous one. This approach, 
called the best-effort (BE) algorithm in [40], tends to eliminate 
the higher-frequency components of the user load while still 
revealing the lower-frequency components. 

In [40], the similarity between the two probability distribu-
tions of the user and grid loads is quantified via the empiri-
cal relative entropy, i.e., the Kullback–Leibler (KL) divergence 
[41]. In the same work, the authors also consider cluster classi-
fication, whereby data are clustered according to power levels 
and cross-correlation and regression procedures, according to 
which the grid load is shifted in time at the point of maximum 
cross-correlation with the user load, and regression methods 
are then used to compare the two aligned signals.

The study in [42] considers a slightly more sophisticated 
approach, called the nonintrusive load-leveling (NILL) algo-
rithm, in which more than one grid load target value, namely, a 
steady-state target and low and high recovery state targets, are 
allowed, and where the EMU tries to maintain the grid load at 
one of these values across time. If the steady-state load cannot 
be maintained, the EMU switches to a high (or low) recovery 
state in case of persistent light (or heavy) user demand. When 
one of the recovery states is reached, the target load is adapted 
accordingly to permit the battery to charge or discharge, simi-
lar to the empirical strategies outlined in [43]. The value of the 
steady-state target load can be updated whenever a recovery 
state is reached, to reduce the occurrences of recovery states, 
which is achieved by using an exponential weighted moving 
average of the demand. To assess their proposed approach, the 
authors in [42] count the number of features, i.e., the number 
of times a device is recognized as being on or off based on the 
grid load as compared to the user load.
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As also pointed out in [44], these heuristic algorithms suf-
fer from precise load change recovery attacks that can iden-
tify peaks of user demand. We note that the NILL algorithm 
essentially quantizes the input load to three values with the help 
of the RB. This idea is generalized in [44] by considering an 
arbitrary number of quantization levels. Since quantization is a 
many-to-few mapping, converting the grid load to a step func-
tion is inherently a nonlinear and irreversible process, which 
can be used to provide privacy by maximizing the quantization 
error under battery limitations. More specifically, the grid load 
is forced to be a multiple of a quantity ,b  i.e., ,hYt tb=  where 
ht  is an integer value and b  is the largest value that satisfies the 
battery’s maximum capacity and power constraints. At any time 
slot, given the user load, the grid load is chosen between the two 
levels adjacent to the user load, namely, Xt

b` j and ,Xt
b8 B  where 

·^ h and ·6 @ denote the ceiling and floor functions, respectively. 
The study in [44] proposed three stepping algorithms that 

have different quantization levels: 1) the lazy stepping algorithm, 
which tries to maintain the external load constant for as long as 
possible; 2) the lazy charging algorithm, which keeps charging 
(or discharging) the battery until it is full (or empty); and 3) the 
random charging algorithm, which chooses its actions at ran-
dom. While the simulation results show that these algorithms 
outperform the BE and NILL algorithms, with the lazy stepping 
algorithm typically performing the best, it is hard to make gen-
eral claims because of the heuristic nature of these algorithms. 
In fact, these approaches do not provide theoretical guarantees 
on the level of privacy achieved. Thus, they are not able to make 
any general claim about the strength of the proposed privacy-
preserving approaches and their absolute performance. This is 
an important limitation, as consumers would like to know the 
level of privacy they can achieve, even if it is in statistical terms. 
Also, because such heuristics are often based on deterministic 
schemes, they are prone to be easily reverse-engineered.

Theoretical guarantees on SM privacy
One of the challenges in SM privacy is to provide theoretical 
assurances and fundamental limits on the information leaked 
by an SM system, independently of any assumption on the 
capability of an attacker or of the particular NILM algorithm 
employed. This is essential in privacy research, as privacy-pre-
serving techniques may perform extremely well against some 
NILM algorithms and very poorly against others. Moreover, 
the privacy assurances should not be based on the complexity 
limitations of a potential attacker, as techniques that are cur-
rently thought to be not feasible may become available to 
attackers in the future if computational capabilities improve or 
if new methods are developed. 

Last but not least, establishing a coherent mathematical 
framework would allow us to rigorously compare various SM 
scenarios and the use of different physical resources, e.g., RBs 
of various capacities, RESs of various kinds, and so forth. 
Accordingly, signal processing and information-theoretic tools 
have been employed in the literature to provide theoretical pri-
vacy assurances. We will overview various statistical measures 
for privacy, particularly conditional entropy [43], Fisher infor-

mation (FI) [45], and type II error probability for detecting 
user activity [46].

In this statistical framework, it is commonly assumed that 
the statistics of the user load and the RES are stationary over 
the period of interest and known to the EMU. This assump-
tion is reasonable, especially if the period of stationarity is 
sufficiently long for the EMU to observe and learn these statis-
tics [47]–[49]. On the other hand, an online learning theoretic 
framework can also be considered to account for the conver-
gence time of the learning algorithm. Alternatively, most of the 
works in the literature that carry out a theoretical analysis also 
propose suboptimal policies that can be applied on real power 
traces, thus allowing the reader to gain an idea of the practical 
application and performance of these theoretically motivated 
techniques. We take a worst-case approach and assume that the 
statistics governing the involved random processes are known 
by the attacker. Note that this can only empower the attacker 
and strengthen the stated privacy guarantees.

The significance of single-letter expressions
It is expected that a meaningful privacy measure should con-
sider the leakage of a user’s information over a certain time 
period of reasonable length, because of the memory effects 
introduced by the RB and the RES. The energy consumption 
over a short period of time can be easily covered by satisfying 
all of the demand from the RB or the RES over this period, 
but this may come at the expense of fully revealing the energy 
consumption at future time periods. Therefore, the informa-
tion-theoretic analysis typically considers an average informa-
tion rate measured over a given finite time period and often 
studies its infinite-horizon asymptotics as well. 

However, increasing the time horizon also increases the 
problem complexity, and one of the challenges of the infor-
mation-theoretic analysis is to obtain a so-called single-letter 
expression for the optimal solution, which would significantly 
reduce the problem complexity, particularly when the involved 
random variables are defined over finite alphabets. Unfortu-
nately, to date, closed-form or single-letter expressions for the 
information leaked in an SM system have been characterized 
only for specific settings under various simplifications, e.g., 
considering an i.i.d. or Markov user load or RES generation.

MI as a privacy measure
The entropy of a random variable , ( )XX H  is a measure of the 
uncertainty of its realization. The MI between random va
riables X  and ,Y  ( ; ),I X Y  measures the amount of infor-
mation shared between the two random variables [41]. The MI 
can also be considered as a measure of dependence be
tween the random variables X  and ,Y  and it is equal to 
zero if and only if they are independent. Rewriting the 
MI as ( ; ) ( ) ( | ),I X Y H X H X Y= -  where ( | )H X Y  is the con-
ditional entropy, we can also interpret MI as the average re
duction in the uncertainty of X  from the knowledge of .Y  
Therefore, we can measure the privacy leakage about the input 
load sequence Xn  through the SM readings Yn  by the MI 
between the two sequences ( ; ) .I X Yn n  This will measure the 
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reduction in the uncertainty of the UP about the real energy con-
sumption of the appliances Xn  after receiving the SM measure-
ments .Yn  For an SM system with only an RB (but no RES) and a 
given EMP f  in (2) running over n time slots, the average infor-
mation leakage rate ( , )B PI maxf

n
dt  is defined as

	 ( , ) ( ; ) [ ( ) ( | )],B P
n

I X Y
n

H X H X Y1 1
I maxf

n
d

n n n n n_ = -t � (7)

where .X Y P0 t t d# #- t  The parameters Bmax  and Pdt  
emphasize the dependence of the EMP and, therefore, of the 
achievable information leakage rate on the battery capacity 
and the discharging peak power constraint. The optimal EMP 
and the corresponding minimum information leakage rate are 
obtained by minimizing (7) over all of the feasible policies 
f F!  to obtain ( , ) .B PI max

n
dt

Privacy with an RES
Alternatively, one can also consider the SM system of Figure 5 
with an RES but no RB. Assume that the renewable energy that 
can be used over the operation period is constrained by an 
average and a peak power constraint. We do not allow selling 
the generated renewable energy to the UP, as our goal is to 
understand the impact of the RES on providing privacy to the 
user. The minimum information leakage rate achieved under 
these assumptions and for an i.i.d. user load can be character-
ized by the so-called privacy-power function ( , )P PI dr t  and for-
mulated in the following single-letter form:

	 , ; ,infP P I X YI
p P|Y X

=
!

r t^ ^h h � (8)

where { : , [( )] , }.p y X Y P X Y P0EP Y|Y X_ ! # # #- -r t  
This formulation is presented in [50] for a discrete user load al
phabet (i.e., X  can assume only values that are multiples of a fixed 
quantum) and in [51] for a continuous user load alphabet (i.e., X  
can assume any real value within the limits specified by the peak 
power constraints of the appliances). The optimal EMP that mini-
mizes (8) is stochastic and memoryless; that is, the optimal grid 
load at each time slot is generated randomly via the optimal condi-
tional probability that minimizes (8) by only considering the cur-
rent user load. Another interesting observation is that (8) is in a 
form similar to the well-known rate-distortion function in informa-
tion theory, which characterizes the minimum compression rate R  
of data, in bits per sample, that is required for the receiver to 
reconstruct the source sequence within a specified average distor-
tion level D [41]. Formally, the rate-distortion function ( )R D  for 
an i.i.d. source X X!  with distribution ,pX  reconstruction al
phabet ,Xt  and distortion function ( , ),d x xt  where the distortion 
between sequences Xn  and Xnt  is given by ( , ),d x xn

n
i i i

1
1R = t  

characterizes the minimum rate with which an average distor-
tion of D is achievable. The compression rate specifies the size 
of the codebook 2nR  required to compress the source sequence 
of length , .n Xn  Shannon showed that the rate-distortion func-
tion can be obtained in the following single-letter form:

	 ( ) ( ; ) .minR D I X X
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The analogy between (8) and (9) becomes clear considering 
the following distortion measure:
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and such an analogy enables the use of tools from rate-distor-
tion theory to evaluate the privacy-power function for an SM 
system. However, it is important to highlight that, despite the 
functional similarity, there are major conceptual differences 
between the two problems: 1) in the SM privacy problem, Yn  is 
the direct output of the encoder rather than the reconstruction 
at the decoder side, and 2) unlike the lossy source encoder, the 
EMU does not operate over blocks of user load realizations; 
instead, it operates symbol by symbol, acting instantaneously 
after receiving the appliance load at each time slot. 

For discrete user load alphabets, the grid load alphabet 
can be constrained to the user load alphabet without loss of 
optimality [52], and, since MI is a convex function of the con-
ditional probability ,p P|Y X !  the privacy-power function 
can be written as a convex optimization problem with linear 
constraints. Algorithms such as the Blahut–Arimoto (BA) 
algorithm can be used to numerically compute the optimal 
conditional distribution [41]. For continuous user load distribu-
tions, the Shannon lower bound is derived in [52], which is a 
computable lower bound on the rate-distortion function widely 
used in the literature and is shown to be tight for exponential 
user load distributions.

These results can be generalized to a multiuser scenario 
in which N  users, each equipped with a single SM, share the 
same RES [52]. This scenario is represented in Figure 9, where 
the objective is to minimize the total privacy loss of N  con-
sumers (or devices) considered jointly, rather than minimiz-
ing the privacy loss for each of them separately. This requires 
the EMU to allocate the shared RES among all of the users in 
the most effective manner. The average information leakage 
rate can still be written as in (7), by replacing Xt  and Yt  with 

[ , , ]X X X, ,t t N t1 f=  and [ , , ],Y Y Y, ,t t N t1 f=  where the bold-
face characters denote the vectors representing the N  power 
measurements. The privacy-power function has the same 
expression as in (8), and, for the case of independent but not 
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FIGURE 9. A single EMU and RES are shared among N  users, each 
equipped with an SM. The EMU decides how much energy each user can 
retrieve from the RES and from the grid.
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necessarily identically distributed user loads, the optimization 
problem (ignoring the peak power constraint) can be cast as

	 ( ) ( ),infP PI I
P P

X
i

N

i
1i

i

N
i

1

=
# =

=

r
r

/
/

� (11)

where ( )IXi $  denotes the privacy-power function for the ith user 
having user load distribution ( ) .p xX ii  For continuous and expo-
nential user loads, the optimal allocation of the energy generated 
by an RES can be obtained by the reverse water-filling algo-
rithm, according to which energy from the RES is used only to 
satisfy the users with a low average load, while users with higher 
average load need to request energy from the grid as well.

Privacy with an RB
We can also consider the presence of just an RB in the system, 
which is thus charged only via the grid (no RES is available to 
the EMU). Including an RB complicates the problem signifi-
cantly, and the level of energy in the battery Bt  plays an 
important role when designing a feasible EMP.

This problem can be solved by putting it in the form of an 
MDP and finding a suitable additive formulation for the pri-
vacy cost function [53]. The optimization problem is formu-
lated as

	 ( , ; ),minL
n
I B X Y1* n n

1
f

_ � (12)

where f  can be any feasible policy, as specified in (2) (without 
including the renewable energy process). The approach in [53] 
casts (12) in an additive formulation by noting that there is no 
loss of optimality in restricting the focus to charging strategies 
f l that decide on the grid load, based only on the current val-

ues of the user load Xt  and level of energy in the battery Bt  
and on the past values of the grid load Yt 1- . That is, the general 
strategy f  in (2) is specified as : , ,f tX B Y Yt

t 1 "# # 6-l  
because of the following inequality: 

	 ( , ; ) ( , ; | ).
n
I X B Y

n
I X B Y Y1 1n n

t

n

t t t
t

1
1

1$
=

-/ � (13)

The conditional distributions in (13) grow exponentially 
with time because of the term ,Yt 1-  and the problem becomes 
computationally infeasible very quickly. To overcome this 
issue, the knowledge of Yt 1-  is summarized into a belief state, 
defined as , | ,p X B Yt t

t 1-^ h  which can be computed recursively 
and interpreted as the belief that the UP has about ,X Bt t^ h at 
time ,t  given its past observations .Yt 1-  This way, the Bellman 
equations can be formulated, and the optimal policy can be 
identified numerically (with a discretization of the belief state).

For an i.i.d. user load, the single-letter characterization of 
the minimum information leakage rate is given by [53] as

	 ( ; ),minJ I B X X*
PB

_ -
!i

� (14)

where i  is the probability distribution over ,B  given the past 
output and actions, i.e., , ,p b y at t

t t1 1_i - -` j  and the action 
at  is defined as the transition probability from the current 

belief, user load, and level of energy in the battery to the cur-
rent grid load. This result is obtained by considering a belief 
on ,W B Xt t t_ -  rather than , ,B Xt t^ h  and by further restrict-
ing to policies of the type : , .f tW Y Yt

t 1 "# 6-m  Since (14) 
is convex in ,i  the optimal *i  may be obtained by using the 
BA algorithm. The optimal grid load turns out to be i.i.d. and 
indistinguishable from the demand, while the optimal policy is 
memoryless, and the distribution of Yt  depends only on .Wt  
Such a characterization is provided in [54] for a binary i.i.d. 
user load, while the authors extend it to an i.i.d. user load of 
generic alphabet size in [53], [55], and [56]. 

Another approach is to model the level of energy in the RB 
as a trapdoor channel [57]. In a trapdoor channel, a certain num-
ber of red or blue balls are within the channel, and a new ball of 
either color is inserted into it as the channel input at each time 
step. After the new ball is inserted, one of the balls present in the 
channel is randomly selected and removed from the channel. In 
an SM setting, the finite-capacity RB can be viewed as a trap-
door channel, whereby inserting or extracting a ball from the 
channel represents charging or discharging the RB, respectively. 
An upper bound on the information leakage rate is characterized 
in [58] through this model by minimizing the information leak-
age rate over the set of stable output balls, i.e., the set of feasible 
output sequences Yn  that can be extracted from the channel, 
given a certain initial state and an input sequence Xn  and by 
taking inspiration from codebook construction strategies in [59]. 
Such an upper bound is characterized in [58] as

	 7( ; )
( ) /

,An
I X Y

B X
1

1
1

max max

n n #
+

� (15)

where Xmax  is the largest value X  can assume. It is also 
shown in [58] that the average user energy consumption deter-
mines the level of achievable privacy.

Apart from only maximizing privacy, it is of interest to 
also minimize the cost. Different from privacy, the cost of 
energy has an immediate additive formulation and can be eas-
ily incorporated into the MDP construction. Considering the 
random price vector ( , , ),C C Ct

t1 f=  where Ct  denotes the 
unit cost of energy at time slot ,t  privacy can be defined in the 
long time horizon as

	
( | , )

.lim
t

H X Y C
P

t

t t t

_
"3

� (16)

This formulation is presented in [43], where the correspond-
ing MDP is constructed and two suboptimal algorithms are 
proposed. The first is a greedy algorithm, which maximizes at 
any time the current instantaneous reward, while the second is a 
battery-centering approach that is aimed at keeping the battery 
at a medium level of charge so that the EMU is less constrained 
by the battery or the demand in determining the grid load. In the 
latter approach, if the grid load depends not on the current user 
load or the battery level but only on the current electricity price, 
the system is said to be in a hidden state, while it is said to be in 
a revealing state otherwise. The latter strategy is analyzed for an 
i.i.d. user load by considering the system as a recurrent Markov 
chain and adopting random walk theory.
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Privacy with both an RES and an RB
When both an RES and an RB are present, the information-the-
oretic privacy analysis becomes more challenging. As an initial 
step, we can consider infinite and zero battery capacities, 
which represent, respectively, lower and upper bounds on the 
privacy leakage achievable for a practical SM system with a 
finite-capacity battery [60], [61]. When ,Bmax 3=  the problem 
can be shown to be equivalent to the average and peak power-
constrained scenario, and, interestingly, the privacy perfor-
mance does not deteriorate, even if the UP knows the exact 
amount of renewable energy generated. This shows that keep-
ing the renewable energy generation process private is more 
critical when the RB has a limited capacity. 

Two different EMPs are shown to achieve the lower bound in 
[61]. In the BE policy, at any time slot, the optimal EMP derived 
from (11) is employed independently of the level of energy in 
the RB if there is sufficient energy in the RB, while otherwise 
all of the energy request is satisfied from the grid. The latter 
approach leads to full leakage of user consumption, but it can 
be shown that these events are rare enough that the information 
leakage rate does not increase. In the alternative store-and-hide 
policy, an initial storage phase is employed, during which all of 
the user’s energy requests are satisfied from the grid while all of 
the generated renewable energy is stored in the battery. In the 
following hiding phase, the EMU deploys the optimal policy 
designed under average and peak power constraints.

On the other extreme, when ,B 0max =  the renewable ener-
gy that can be used at any time slot is limited by the amount 
of energy generated within that period. As expected, assuming 
that the UP has knowledge of the renewable energy process 
significantly degrades the privacy performance for this sce-
nario. Figure 10 compares the minimum information leakage 
rate with respect to the renewable energy generation rate pe  
for 5X E Y= = =  when { , , , }.B 0 1 2max 3=  In this 
figure, the curves for a finite battery capacity of B 1max =  and 
B 2max =  are obtained numerically by considering a subopti-
mal EMP [61].

The presence of a finite-capacity battery increases the prob-
lem complexity dramatically because of the memory effects 
induced by the finite battery, and single-letter expressions are 
still lacking for this scenario. A possible approach to find a 
theoretical solution to this problem is by extending the MDP 
formulation, as investigated in [62].

Detection error probability as a privacy measure
So far, we have considered approaches that try to hide the 
complete user energy demand from the UP. However, rather 
than hiding the entire energy consumption profile, in some 
cases it may be more meaningful to keep specific user activi-
ties private, such as whether there is anyone at home, whether 
the alarm has been activated, or whether someone is eating 
microwaved food. To keep the answer to such details private, 
the goal of the EMU is to maximize the attacker’s probability 
of making errors when attempting to discern them.

Let the consumer’s behavior that needs to be kept private 
belong to a set of M  possible activities. Thus, we can treat the 

attacker’s decision and the user’s action as an M-ary hypoth-
esis test, i.e., { , , }.H h h hH M0 1 1f! = -  When ,M 2=  
the hypothesis test is said to be binary, and, by convention, 
the hypothesis ,h0  called the null hypothesis, represents the 
absence of some factor or condition, while the hypothesis ,h1  
called the alternative hypothesis, is the complementary con-
dition. For example, answering the question, “Is somebody at 
home?” corresponds to a binary hypothesis test, where h0  is the 
hypothesis “somebody is not at home” and h1  is the hypoth-
esis “somebody is at home.” It is reasonable to assume that the 
input load will have different statistics under these two hypoth-
eses; accordingly, we assume that under hypothesis h0  ,h1^ h  
the energy demand at time slot t  is i.i.d. with p |X h0  .p |X h1^ h  
Based on the SM readings, the attacker aims at determining 
the best decision rule  ( ),H $t  i.e., the optimal map between the 
SM readings and the underlying hypothesis. In other words, 
the space of all possible SM readings Yn  is partitioned into 
two disjoint decision regions A0  and ,A1  defined as follows:

	 ( ) ,y H y hA n n
0 0_ =t$ . � (17)

	 ( ) ,y H y hA n n
1 1_ =t$ . � (18)

which correspond to the subsets of the SM readings for which 
the UP decides for one of the two hypotheses. The attacker’s 
binary hypothesis test can incur two types of errors:

■■ type 1 error, in which a decision h1  is made when h0  is the 
true hypothesis (a false positive or false alarm); the type 1 
error probability is ( )p p A|I Y h 0n

1=

■■ type 2 error, in which a decision h0  is made when h1  is the 
true hypothesis (a false negative or miss); the type 2 error 
probability is ( ) .p p A|II Y h 1n

0=

The Neyman–Pearson test minimizes the type 2 error 
probability for a fixed maximum type 1 error probabil-
ity and makes decisions by thresholding the likelihood ratio 
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The leakage for Bmax 3=  has been found by setting P 4=t  [61].
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.p y h p y h| |Y h
n

Y h
n

0 1n n
0 1^ ^ ^ ^hh hh  Consider the worst case 

of an all-powerful attacker that has perfect knowledge of the 
EMP employed in the asymptotic regime n " 3 and denote 
by pII

min  the minimal type 2 probability of error subject to a 
constraint on the type 1 error probability. Assuming that a 
memoryless EMP is employed by the EMU—i.e., the grid 
load at any time slot t  depends only on the input load at the 
same time slot—then the attacker runs a Neyman–Pearson 
detection test on the grid load. We note that the memoryless 
EMP assumption is not without loss of optimality. However, 
it is justified on the grounds that characterizing the more gen-
eral optimal policy with memory seems to be significantly 
more challenging and is unlikely to lend itself to a single-letter 
expression. The Chernoff–Stein lemma [41] links the minimal 
type 2 error probability pII

min  to the KL divergence (· | | ·)D  
between the grid load distributions conditioned on the two 
hypotheses in the limit of the number of observations going 
to infinity:

	 ,lim
log

n
p

D p p| |
II
min

n
Y h Y h0 1- =

"3
^ h � (19)

where the KL divergence between two probability distribution 
functions on , pX X  and ,qX  is defined as [41]
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Not surprisingly, to maximize privacy, the goal of the 
EMU is to find the optimal grid load distribution, which, 
given the user load X  and the true hypothesis ,H  minimizes 
the KL divergence in (19) or, equivalently, minimizes the 
asymptotic exponential decay rate of .pII

min  However, the 
EMU is constrained by the available resources in making the 
two input load distributions produce similar grid load distri-
butions. In particular, we impose a constraint on the average 
RES it can use. Thus, the objective is to solve the following 
minimization problem:

	 ,min D p p| |Y h Y h
p

0 1
P| |Y H Y H!
^ h � (21)

where P |Y H  is the set of feasible EMPs, i.e., those that 
sat isfy the average RES generation rate ,Pr  so that 

,n X Y h P1 E i
n

i i j1 #R -= r^ h 6 @  with  ,  .j 0 1=  This setting 
is studied in [63], where the asymptotic single-letter expres-
sions of two privacy-preserving EMPs in the worst-case sce-
nario are considered, i.e., when the probability of a type 1 
error is close to 1. The first policy is a memoryless hypothesis-
aware policy that decides on Yt  based only on the current Xt  
and ,H  while the second policy is unaware of the correct 
hypothesis H  but takes into account all of the previous real-
izations of X  and .Y

It is noteworthy that, even if the hypothesis-unaware 
policy with memory does not have access to the current 
hypothesis, it performs at least as well as the memoryless 
hypothesis-aware policy. This is because the hypothesis-
unaware policy is able to learn the hypothesis with negligible 
error probability after observing the energy demand process 

for a sufficiently long period. Additionally, the energy sup-
ply alphabet can be constrained to the energy demand alpha-
bet without loss of optimality, which greatly simplifies the 
numerical solution to the problem.

FI as a privacy measure
FI is another statistical measure that can be employed as a 
measure of SM privacy [45]. Let some sample data x  be 
drawn according to a distribution depending on an underlying 
parameter. Then, FI is a measure of the amount of infor
mation that x  contains about the parameter. In the SM set-
ting, Yn  is the sample data available to the attacker, while Xn  
is the parameter underlying the sample data that is to be esti-
mated by the UP. Let Xnt  denote the estimate of the UP. The 
FI can be generalized to the multivariate case by the FI 
matrix, defined as
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Assuming an unbiased estimator at the attacker, i.e., the dif-
ference between the estimator’s expected value and the true 
average value of the parameter being estimated is zero, the 
variance of the estimation error can be bounded via the Cra-
mér–Rao bound as follows:

	 ( ( ) ),Trx x y xE FIn n n n
2

2 1$- -t ^ h8 B � (23)

where ( )x x yn n n
2

2
- t  denotes the squared Euclidean norm 

and ( )Tr A  represents the trace of the matrix .A  To maximize 
the privacy, it is then necessary to maximize the trace of the 
inverse of the FI matrix. In [45], two SM settings with RBs are 
studied, specifically when the battery charging policy is inde-
pendent of the user load and when it is dependent noncausally 
on the entire user load sequence. For both cases, single-letter 
expressions are obtained for the maximum privacy. Moreover, 
the case of biased estimators, wear and tear on the batteries, 
and peak power charging and discharging constraints are also 
briefly analyzed in [45].

Empirical MI as a privacy measure
Approaches aimed at determining theoretical privacy limits 
provide important insights and intuition for the optimal EMP 
to limit privacy leakage. However, they are often difficult to 
optimize or even evaluate numerically, and the relatively sim-
plified formulations obtained in various special cases rely on 
restrictive assumptions, e.g., i.i.d. user load and infinite RB 
capacity. An alternative is to follow a suboptimal or heuristic 
EMP. Although such a policy does not provide theoretical pri-
vacy guarantees, one can evaluate the corresponding privacy 
leakage numerically using empirical MI.

One way to compute the empirical MI is by simulating a dis-
crete time system for a large enough time interval and sampling 
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the resulting Xn  and Yn  sequences [64]. The MI between two 
observed sequences xn  and yn  can be approximated as

( ; ) , ,log log logI X Y
n

p y
n

p x
n

p x y1 1 1n n n n.- - +^ ^ ^h h h � (24)

where ( ), ( )p y p xn n  and ( , )p x yn n  are calculated recursively 
through a sum–product computation. When using this method, 
the RB is modeled as a finite state machine (FSM), and the 
level of energy in the RB evolves in time through a Markov 
chain with transition probabilities depending on the specific 
policy implemented. An example of an FSM is illustrated 
in Figure 11, where all the processes are considered to be 
binary and Bernoulli distributed, and the parameters are 

{ }, { }Pr Prq X p E1 1x e= = = =  and ,pv  the latter being the 
probability of using energy from the battery, provided there is 
available energy. The support space for the parameters is dis-
cretized, and the optimal combination of parameters is found, 
which minimizes the empirical MI. 

This approach is followed in [65], where only a binary RB 
is present and for an i.i.d. Bernoulli-distributed user demand, 
and in [66] where an RES is also considered. The latter work 
also analyzes the wasted energy and characterizes the privacy-
versus-energy efficiency tradeoff for the binary scenario and 
the equiprobable user load and renewable energy generation 
processes. For larger battery capacities and for an equiprob-
able user load, the authors note that there is a symmetry and 
complementarity in the optimal transition probabilities in the 
FSM model, which simplifies the numerical analysis. This 
model is also employed in [60] and [61] by considering an RES 
and designing a suboptimal policy, which, at each time instant, 
decides among using all of the available energy, half of it, or 
no energy at all, according to a probability chosen to minimize 
the overall information leakage.

Another technique for approximating MI is to assume X
and Y  to be i.i.d. over a time interval and approximate the MI 
via the relative frequency of events ,X Yt t^ h during the same 
time window. In [67], this approach is enriched by additive 
smoothing, i.e., avoiding zero probability estimates by adding 
a positive scalar, and it is employed together with a model-dis-

tribution predictive controller, such that, at each time slot ,t  the 
EMU chooses its actions for a prediction horizon of length ,T  
i.e., up to time .t T+  Privacy and cost are jointly optimized by 
considering noncausal knowledge of the renewable energy gen-
eration process, user load, and energy prices, while the EMU’s 
actions, i.e., the energy that is requested from the grid and 
the battery, are forecast over the prediction horizon. The user 
and grid load processes are assumed to be i.i.d. within a time 
window ,N T&  which also includes the prediction horizon ,T
and the finite alphabets X  and Y  are considered. As ,N T&  
first-order Taylor approximation of the logarithm function is 
used, and the corresponding mixed-integer quadratic program 
is formulated, which is of manageable size and can be solved 
recursively whenever new SM readings are available. 

Results show that considering a relatively small predic-
tion horizon T  prevents the EMU from fully utilizing the RB 
capacity, as the user load that is considered by the algorithm 
is generally smaller than the RB capacity. Allowing a longer 
prediction interval dramatically improves the performance 
in terms of both privacy and cost, at the expense of a much 
higher computational complexity. The work also shows that by 
increasing the alphabet sizes of X  and ,Y  better privacy per-
formance can be achieved.

Empirical MI normalized by the empirical entropy of the 
user load is considered in [68], where an RB is used to mini-
mize the energy cost subject to privacy constraints. Here, two 
cost tariffs are considered, a low price and a high price, and 
a dynamic programming approach is developed to maximize 
the energy stored in the battery at the end of the low-price 
period and minimize it at the end of the high-price period. At 
every time slot, the optimal probability distribution of the grid 
load is computed, which is forced to be independent of the 
user load distribution.

Concluding remarks and future challenges
Privacy and the so-called right to be let alone are considered to 
be an individual’s inalienable, fundamental rights, which are 
safeguarded in many national constitutions worldwide. In 
Europe, the General Data Protection Regulation (GDPR) [69], 
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FIGURE 11. An example of RB evolution modeled as a finite state machine, with { , , }B0 1B maxf=  and { , } .0 1X E Y= = =  The ( , , , )x e v y  represent, for 
every time ,t  the values of the user load, the renewable energy produced, the energy taken out of the battery by the EMU, and the grid load, respectively [61].
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which went into effect on 25 May 2018, sets even more strin-
gent requirements for every technology or device that collects 
and processes customer data, including SMs. For these reasons, 
addressing the SM privacy problem is crucial for the adoption 
of the SG concept. In fact, considering consumers’ growing 
privacy concerns over SMs and many other emerging technolo-
gies [70], a critical growth in the adoption of SMs and other SG 
technologies will take place only when consumers are given 
full control of their privacy and feel they have clear and honest 
information on how their data are being used. Only then can 
consumer resistance be overcome and users’ trust be assured, 
thus paving the way to a more fertile and fair ground for new 
products and increased innovation in this domain.

UPs and their partners, including governments, may be 
too keen on collecting users’ data indiscriminately and not 
well incentivized to develop privacy-enhancing technologies. 
Therefore, legislators, public commissions, consumer advo-
cacy groups, and researchers have important roles to play in 
tackling the SM privacy problem and preventing SM data from 
being gathered haphazardly and sold to third parties without 
explicit user consent or even passed to government intelligence 
agencies for mass surveillance. The GDPR is a good example 
of the initiatives that are needed. 

However, given that such a legal framework is still lack-
ing and not yet fully developed globally, it becomes imperative 
to push forward the concept of privacy by design, according 
to which privacy should be designed in to new products and 
services rather than considered only after user complaints and 
regulatory impositions. This is because more options are avail-
able during the design stage as compared to the completion 
stage, when the product has to be modified following a privacy 
incident or a user complaint. Achieving privacy by design is 
the ultimate goal of the techniques analyzed in this article.

In this article, we have focused exclusively on techniques 
that adopt physical resources, such as RESs and RBs, to provide 
privacy to users. The main motivation and benefits of these 
techniques is that they do not undermine the value of the SG 
concept. Each of the outlined techniques has its unique advan-
tages and disadvantages and focuses on a particular aspect 
of privacy. However, despite the considerable efforts put into 
developing SM privacy-preserving techniques, the full extent of 
the SM privacy problem is far from completely understood, and 
a unified and coherent vision for SM privacy (just as in many 
other domains) is still elusive.

In the context of SM privacy, UDS-based methods manipu-
late a physical quantity, energy, to ensure privacy for users. This 
entails that physical constraints, such as those related to an RB 
or an RES, play a crucial role in finding the optimal privacy-
preserving strategy. We expect that the techniques developed 
for enhancing SM privacy can prove useful in other privacy-
sensitive settings in which physical quantities are involved, such 
as gas and water meters and location privacy.

Research challenges
Various challenges must be addressed before privacy by design 
can become a reality in SM systems. First, a generic privacy 

measure or a combination of different measures must be deter-
mined and adopted to formally quantify loss of privacy, in the 
same way a user’s electricity bill is computed. Such a measure 
should be device independent and should enable the comparison 
of various privacy-preserving strategies. It is also necessary to 
understand the implications of the various privacy measures on 
the grid load. From this point of view, theoretical measures may 
be preferable because of their abstract and fundamental nature, 
i.e., they are independent of any assumptions about the attacker’s 
algorithms. However, their relevance in real-world scenarios 
must be assessed further, and, if necessary, valid suboptimal pri-
vacy measures or algorithms should be put forward and stan-
dardized as a proxy for more rigorous privacy assurances.

Another important goal is to give consumers as much flex-
ibility as possible in setting their desired level of privacy, trad-
ing off privacy with the cost of electricity or other services. It is 
also essential to allow consumers the possibility of setting dif-
ferent privacy requirements for different devices, as users may 
consider the information about the usage of a certain device as 
more sensitive compared to others. This may happen because 
certain devices are naturally more correlated to the user’s 
activities or presence at home, such as the use of a teakettle, a 
microwave, or an oven, or because a user may decide to hide 
the usage of a certain appliance for personal reasons.

In the near future, a wider use of electric vehicles will also 
bring additional complications to the SM privacy problem, as 
mobility patterns may be inferred by analyzing the charging 
and discharging events. This problem can be tackled by load 
shifting, which is expected to play an important role in jointly 
optimizing electricity cost and privacy. Load shifting, as well 
as other privacy-preserving techniques introduced here, will 
be more accurate and relevant thanks to the development of 
reliable prediction techniques for future electricity consump-
tion, e.g., by using machine-learning techniques. The prolifera-
tion of various energy-hungry smart devices will complicate 
the problem further and overburden RBs even more. 

Finally, the use of shared physical resources should also be 
investigated in more depth, as cities are becoming more and 
more densely populated and consumers may want to team up 
to install storage devices or energy generators that are still rath-
er costly. In cities, solar panels or mini wind turbines may be 
installed on the roofs of blocks of apartments, and RBs may be 
put in communal areas; these resources can be used jointly by all 
of the users in a building. Such resource-sharing models make 
the privacy problem even more complicated and challenging and 
might call for a game-theoretic formulation of the problem.

Overall, we hope that presenting this overview of the SM 
privacy problem and current solutions will further encourage 
research and development in this area, so that remaining open 
issues will be solved and SMs’ full potential will be realized.
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Deep Convolutional Neural Networks

Neural networks are a subset of the 
field of artificial intelligence (AI). 
The predominant types of neural 

networks used for multidimensional sig­
nal processing are deep convolutional 
neural networks (CNNs). The term deep 
refers generically to networks having from 
a “few” to several dozen or more convo­
lution layers, and deep learning refers to 
methodologies for training these systems  
to automatically learn their functional pa­
rameters using data representative of 
a specific problem domain of interest. 
CNNs are currently being used in a broad 
spectrum of application areas, all of which 
share the common objective of being able 
to automatically learn features from (typi­
cally massive) data bases and to general­
ize their responses to circumstances not 
encountered during the learning phase. 
Ultimately, the learned features can be 
used for tasks such as classifying the types 
of signals the CNN is expected to pro­
cess. The purpose of this “Lecture Notes” 
article is twofold: 1) to introduce the fun­
damental architecture of CNNs and 2) to 
illustrate, via a computational example, 
how CNNs are trained and used in prac­
tice to solve a specific class of problems.

Relevance
After decades of languishing in research 
laboratories, AI has recently experienced 
an explosion in worldwide interest as a 
strategic tool in industry, government, 

and research institutions. This interest is 
based on the fact that AI makes it possible 
for computers to learn from experience, 
generalize their behavior, and perform 
tasks that one normally associates with 
human intelligence. Some applications of 
AI are well known to the general public, 
such as computers that beat grand mas­
ters at chess, recognize fingerprints, and 
interpret verbal com­
mands. Other appli­
cations are less well 
known, such as fraud 
detection, searching 
for patterns in large 
amounts of data, and 
controlling complex 
industrial processes. 
As varied as they are, 
however, all of these 
applications are based 
on the same concepts 
from deep learning. 
Of particular interest in two-dimensional 
(2-D) signal processing is automatic 
recognition of the contents of digital 
images using deep learning, which is 
currently being applied with unprec­
edented success in fields ranging from 
biometrics, such as face and retinal iden­
tification, to visual quality inspection, 
medical diagnoses, and autonomous 
vehicle navigation.

Prerequisites
The only prerequisites for understand­
ing this article are calculus (in particu­
lar, differentiation and the chain rule) 

and linear algebra, both at the under­
graduate level.

Background and problem 
statement
Interest in using computers to perform 
automated image recognition tasks dates 
back more than half a century. During 
the mid 1950s and early 1960s, a class 

of so-called learning 
machines [1] caused a  
great deal of excite­
ment in the field of ma­
chine learning. The  
reason was the deve­
lopment of mathema­
tical proofs showing 
that basic computing  
units, called percept­
rons, when trained with 
linearly separable data 
sets, would converge 
to a solution in a finite 

number of iterative steps. The solution  
took the form of coefficients of hyper­
planes that were capable of correctly se­
parating these data classes in feature 
hyperspace. Unfortunately, the basic per­
ceptron was inadequate for tasks of prac­
tical significance. Subsequent attempts 
to extend the power of perceptrons by 
assembling multiple layers of these de­
vices lacked effective training algorithms, 
such as those that had created interest in 
the perceptron itself [2]. This discour­
aging state of the art changed with the de­
velopment in 1986 of backpropagation, 
a method for training neural networks 
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composed of layers of perceptron-like 
units [3]. Backpropagation was first ap­
plied to 2-D signals in 1989 in the context 
of what we now refer to as deep CNNs 
[4]. Similar efforts followed at a rela­
tively low level for the next two decades, 
but it was not until 2012, when publica­
tion of the results of the 2012 ImageNet 
Challenge demonstrated the power of 
deep CNNs, that these neural nets began 
to be used widely in image pattern rec­
ognition and other imaging applications 
[5], [6]. Today, CNNs are the approach 
of choice for addressing complex image 
recognition tasks and other important 
fields, which will be mentioned shortly.

Pattern recognition by machine involves 
the following four basic stages: 
1)	 acquisition
2)	 preprocessing
3)	 feature extraction
4)	 classification. 
Acquisition generates the raw input pat­
terns (e.g., digital images); preprocessing 
deals with tasks such as noise reduction 
and geometric corrections; feature extrac­
tion deals with computing attributes that 
are fundamental in differentiating one 
class of patterns from another; and clas­
sification is the process that assigns a 
given input pattern to one of several pre­
defined classes. Feature extraction usu­
ally is the most difficult problem to solve, 
with extensive engineering often being 
required to define and test a suitable set 
of features for a given application. CNNs 
offer an alternative approach that auto­
mates the learning of features by utilizing 
large databases of samples, called training 
sets, that are representative of an applica­
tion domain of interest.

The problem addressed in this tuto­
rial is to define a CNN-based strategy for 
extracting features automatically from 
a large training database and to use 
those features for accurately recognizing 
images from both the training database 
and also from an independent set of test 
images. This type of problem is by far the 
predominant application of CNNs, but it 
is not their only use. CNNs are currently 
being applied successfully in a number of 
other areas that include speech recogni­
tion, semantic image segmentation, and 
natural language processing [8]. In each 
case, the specifics of how CNNs are struc­

tured may vary, but their principles of 
operation are the same as those discussed 
in this article.

Solution
We approach the solution to the problem 
stated in the previous section by using a 
deep modular CNN architecture consist­
ing of layers of convolution, activation, 
and pooling. The output of the CNN 
is then fed into a deep, fully connected 
neural network (FCN), whose purpose 
is to map a set of 2-D features into a class 
label for each input image. Central to 
this approach is the ability to use sam­
ple training data to 
learn the operational 
parameters of each 
network layer. For this, 
we use backpropaga­
tion as a tool for ite­
ratively adjusting the 
network weights (also 
referred to as coefficients, parameters, 
and hyperparameteres) based on cycling 
through the training data. Finally, we dem­
onstrate the effectiveness of the solution 
by training the CNN/FCN system using 
a large database of handwritten numeric 
characters and then testing it with a set 
of images not used in the training phase. 
As we show in the “A Computational Ex­
ample” section, the recognition accuracy 
achieved by the system on the images of 
both data sets exceeded 99%.

Deep CNNs
Figure 1 shows the basic components of 
one stage of a CNN. In practice, a CNN 
can have tens of such stages, intercon­
nected in series. In addition to the num­
ber of stages, CNN architectures differ 
in how the elements of each stage are 
defined and used, but the basic structure 
in Figure 1 is fundamental to all of them.

As the figure shows, one stage of a 
CNN is composed in general of three 
volumes, consisting, respectively, of input 
maps, feature maps, and pooled feature 
maps (or pooled maps, for short). Pooled 
maps are not always used in every stage 
and, in some applications, not at all. All 
maps are 2-D arrays whose size gener­
ally varies from volume to volume, but 
all maps within a volume are of the same 
size. If the input to the CNN is an RGB 

color image, the input volume will consist 
of three maps—the red, green, and blue 
component images, or channels, of the 
RGB image. The term input maps volume 
comes from the fact that the inputs have 
height and width (the spatial dimensions 
of each map) as well as depth, equal to 
the number of maps in a volume. In the 
context of our discussion, the input vol­
ume to the first stage consists in general 
of the channels of multispectral images; 
the input volumes to all other stages are 
the pooled maps (or feature maps for 
stages with no pooling) from the previ­
ous stage. When present, the number of 

pooled maps in a stage 
is equal to the num­
ber of feature maps.

The fundamental 
operation performed 
in each stage of a 
CNN is convolution, 
from which these ne­

ural nets derive their name. Although 
convolution is a ubiquitous operation 
in signal processing, it is not always ex­
plicitly stated that the type of convolu­
tion performed in CNNs is, in general, 
volume convolution, with the restriction 
that there is no displacement of the con­
volution kernel volume (also referred to 
as a filter) in the depth dimension. Fig­
ure 1 illustrates this concept, in which 
a kernel volume, shown in yellow, con­
sists of three individual 2-D kernels. It 
is evident from this figure that the depth 
of each kernel volume in any stage is 
always equal to the depth of the input 
volume to that stage. Convolution is per­
formed between a different 2-D kernel 
and its corresponding 2-D input map. 
Because there is no displacement in the 
depth dimension, a volume convolution 
in this case is simply the sum of the in­
dividual 2-D convolutions. To under­
stand how a CNN works, it helps to 
focus attention on the result of volume 
convolution at one pair of spatial coor­
dinates, ( , ).x y

Let w , ,m n k  denote the weights of 
a 2-D kernel associated with the kth  
map in the input volume, where m  and 
n  are variables that index over the ker­
nel height and width. The convolution 
between this kernel and the kth map, at 
any specific spatial location, ( , ),x y  of 

The fundamental operation 
performed in each stage of 
a CNN is convolution, from 
which these neural nets 
derive their name. 
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FIGURE 1. The components of one stage of a CNN, consisting of an input maps volume, a feature maps volume, and an optional pooled maps volume. The 
maps in the input volume correspond to the three channels of the RGB image shown. The stage has 96 feature maps and 96 pooled maps. The highlighted 
feature maps, displayed as images and identified numerically, illustrate the types of features that a CNN is capable of extracting from an input image.
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the map, is the sum of products of the 
weights of the kernel and the elements 
of the map that are spatially coincident 
with the kernel. To obtain a volume con­
volution, the sum of products operation 
is performed between each correspond­
ing 2-D kernel and its map at that same 
spatial location. Each sum of products is 
a scalar, and the volume convolution at 
that point is the sum of the K  resulting 
scalars, where K  is the depth of the input 
volume. To write this in equation form 
would require K  2-D summations. How­
ever, for reasons that will be explained in 
the next section, we can redefine the indi­
ces and write the K  summations as one:

	 w v ,conv ,x y i i
i

=/ � (1)

where the ws are kernel weights, the vs 
are values of the spatially corresponding 
elements in the input maps, and conv ,x y  
is the result of volume convolution at the 
same spatial coordinates, ( , ),x y  for all 
maps of the input volume. Equation (1) 
gives the result at point A in Figure 1. 
The result at point B  is obtained by add­
ing a scalar bias, ,b  to (1)

	 w v .z b,x y i i
i

= +/ � (2)

We discuss the nature of this bias in the 
next section.

The result at point C is obtained by 
passing scalar z ,x y  through a nonlinear­
ity called an activation function, h

	 ( ) .a h z, ,x y x y= � (3)

Activation functions used in practice in­
clude sigmoids ( ) / ( ) ,exph z z1 1= + -^ h  
hyperbolic tangents ( ) ( ),tanhh z z=  and 
so-called rectified linear units (ReLUs)

( ) ( , ) .maxh z z0=  The resulting ,a ,x y  
called an activation value, becomes the 
value of the feature map at location 
( , ),x y  as illustrated by the point labeled 
C in Figure 1. A complete feature map, 
also referred to as an activation map, is 
generated by performing the three opera­
tions just explained at all spatial locations 
of the input maps. Each feature map has 
one kernel volume and one bias associ­
ated with it. The objective is to use train­
ing data to learn the weights of the kernel 
volume and bias of each feature map. We 

explain in the following two sections how 
these coefficients are learned, and give 
a detailed computational example of a 
CNN application.

Figure 1 also illustrates the types of 
features that volume convolution is able 
to extract. The input to the CNN stage 
in Figure 1 was an RGB image of size 
277 277#  pixels, which resulted in an 
input volume of depth three, correspond­
ing to the red, green, and blue channels 
of the RGB image. We used the image of 
a human subject as the input so that the 
resulting feature maps would be easier to 
interpret visually. The feature maps vol­
ume in this case was specified to have 96 
feature maps, each obtained by filtering 
the maps of the input volume with a dif­
ferent kernel volume of size .11 11 3# #  
Thus, there are 96 kernel volumes of 
depth three, for a total of 3 96 288# =  
2-D convolution kernels of size 11 11#  
in this CNN stage. The 96 feature maps 
resulting from the input image are shown 
as images in the upper right of Figure 1 
as an 8 12#  montage. The feature maps 
shown in enlarged detail are numbered 
and grouped to illustrate the variety of 
complementary features that can result 
from volume convolution. The first group 
shows three feature maps. Two of them 
(4 and 35) emphasize edge content, and 
the third (23) is a blurred version of the 
input. The second group has two maps 
(10 and 16) that capture complementary 
shades of gray (note the difference in 
the hair intensity, for example). In the 
third group, feature map 39 emphasiz­
es the subject’s eyes and dress, both of 
which are blue in the input RGB image. 
Map 45 also emphasizes blue, but it 
also emphasizes areas that correspond 
to red tones in the RGB image, such as 
the subject’s lips, hair, and skin. These 
two feature maps are more sensitive to 
color content than the maps in the other 
two groups. Subsequent stages would 
operate on these feature maps to extract 
further abstractions from the data, as 
we illustrate later in the “A Computa­
tional Example” section. The weights 
of the convolution kernel volumes used 
to generate the 96 feature maps came 
from AlexNet, a CNN trained using 
more than 1 million images belonging 
to 1,000 object categories [5]. The sys­

tem had never “seen” the image we used 
in Figure 1.

The pooling, or subsampling, shown in 
Figure 1 is motivated by studies that sug­
gest that the brains of mammals perform 
an analogous operation during visual cog­
nition. A pooled map is simply a feature 
map of lower resolution. A typical pooling 
method is to replace the values of every 
neighborhood of size, say, ,2 2#  in the 
feature maps by the average of the values 
in the neighborhood. Using a neighbor­
hood of size 2 2#  results in pooled maps 
of size one-half in each spatial dimension 
of the size of the feature maps. Thus, a 
consequence of pooling is significant data 
reduction, which helps speed up process­
ing. However, a major disadvantage is that 
map size also decreases significantly every 
time pooling is performed. Even with 
neighborhoods of size 2 2#  the reduction 
by half in each spatial dimension quickly 
becomes an issue when the number of lay­
ers is large with respect to the size of the 
input images. This is one of the reasons 
why pooling is used only sporadically in 
large CNN systems. As with activation 
functions, the type of pooling used also 
plays a role in defining the architecture of 
a CNN. In addition to neighborhood aver­
aging, two additional pooling methods 
used in practice are max pooling, which 
replaces the values in a neighborhood by 
the maximum value of its elements, and 
L2 pooling, in which the pooled value in a 
neighborhood is the square root of the sum 
of their values squared. Max pooling has 
been demonstrated to be particularly effec­
tive in classifying large image databases, 
and it has the added advantage of simplic­
ity and speed. As noted previously, when 
pooling is used in a layer, each pooled map 
is generated from only one feature map, so 
the number of feature and pooled maps is 
the same.

The basic architecture of each stage 
of a CNN is defined by specifying the 
number of feature maps and by whether 
or not pooling is used in that stage. Also 
specified are kernel and pooling sizes, 
and the convolution stride, defined as 
the number of increments of displace­
ment of the kernel between convolution 
operations. For example, a stride of two 
means that convolution is performed at 
every other spatial location in the input 
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maps. The number of 2-D convolution 
kernels needed in each stage is equal to 
the depth of the input volume multiplied 
by the number of feature maps. The spa­
tial dimensions of all kernels in a stage 
are the same and are specified as part of 
the definition of a CNN stage. Generally, 
the same type of activation is used in all 
stages of a CNN. This is true also of the 
size and type of pooling method used 
when pooling is defined for one or more 
stages of the network.

There are two major ways in which 
CNNs are structured: A fully convolu­
tional network (not to be confused with 
a fully connected network) consists ex­
clusively of stages of the form describ­
ed in Figure 1, connected in series. The 
major application 
of fully convolutional  
architectures is image 
segmentation in which 
the objective is label­
ing each individual 
pixel in an input image. 
Because map size 
decreases as the num­
ber of stages increases, 
additional processing, 
such as upsampling,  
is used so that the output maps are of 
the same size as the input images. In 
fact, fully convolutional nets can be  
connected “end to end” so that map size 
is first allowed to decrease as a result  
of convolution and then are run in a 
reverse process through an identical 
network whose maps increase from 
stage to stage using “backward” con­
volution. The final output is an image 
of the same size as the input, but in which 
pixels have been labeled and grouped 
into regions [8].

The second major way in which CNNs 
are used is for image classification 
which, as noted previously, is by far the 
widest use of CNNs. In this applica­
tion, the output maps in the last stage 
of a CNN are fed into an FCN whose 
function is to classify its input into one 
of a predetermined number of classes. 
Because the output volume of a CNN 
consists of 2-D maps and, as we will 
show in the next section, the inputs to 
FCNs are vectors, the interface between 
a CNN and an FCN is a simple stage 

that converts 2-D arrays to vectors. A 
discussion of how all of this is accom­
plished and applied to solve a specific 
problem is the subject of the section “A 
Computational Example.”

Deep FCNs
A single perceptron is a computational unit 
that performs a sum-of-products opera­
tion, w w ,z xi

n
i i n1 1R= += +  between a 

set of weights, w w w w, , , , ,n n1 2 1f +  and 
a set of input scalar pattern features, 

., ,x x xn1 2 f  A vector formed from these 
features is referred to as a pattern (or 
feature) vector. Setting z 0=  gives the 
equation of an n-dimensional hyper­
plane, where coefficient wn 1+  is a bias that 
offsets the hyperplane from the origin 

of the corresponding 
n-dimensional Euc­
lidean space. In the 
“classic” perceptron, 
the output of the sum-
of-products compu­
tation is fed into a 
hard threshold, ,h  to 
produce an activa­
tion value, ( ),a h z=  
with a binary output 
denoted typically by 

[ , ] .1 1+ -  Then, if ,a 1=  an input pat­
tern is assigned by the single perceptron 
to one class, and, if ,a 1=-  the pattern 
is assigned to another. Neural networks 
are composed of perceptrons in which 
the activation function is changed from 
a hard threshold to a smoother function, 
such as a sigmoid, hyperbolic tangent, or 
ReLU function, as defined in the previous 
section. The resulting unit is referred to as 
an artificial neuron because of postulated 
similarities between its response and the 
way neurons in the brains of mammals 
are believed to function.

Figure 2 is a schematic of a deep FCN 
consisting of layers of artificial neurons 
in which the output of every neuron in 
a layer is connected to the input of every 
neuron in the next layer, hence the term 
fully connected. The input layer is formed 
from the components of a pattern vector, 

, , , ,x x xn1 2 f  and the number of neurons 
in the output layer is equal to the number of 
pattern classes in a given application. The 
input and output layers are visible because 
we can observe the values of their outputs. 

All other layers in a neural net are hidden 
layers. Note that CNNs are not fully con­
nected, in the sense that each element of a 
map in one layer is not connected to every 
element of maps in the following layer.

The objective of training a CNN/FCN 
network is to determine the weights and 
biases of convolution volumes in the for­
mer, and of the neuron weights and biases 
in the latter, that solve a given problem. 
As noted in the “Background and Prob­
lem Statement” section, these parameters 
are estimated using backpropagation, a 
methodology for iteratively adjusting the 
coefficients based on values of the error 
observed at the output neurons of the FCN.

The computation performed by the 
zoomed neuron in Figure 2 is

	 w( ( ( ) ( ,z a b1i ij
j

n

j i
1

1

, , , ,= - +
=

,-

) ) )/ � (4)

where w (ij ,) is the weight of the ith neu­
ron in layer , that associates that neuron 
with the output of the jth neuron in layer 

; ( )a1 1j, ,- -  is the output of the jth  
neuron in layer ; ( )b1 i, ,-  is the bias of 
the ith neuron in layer ;,  and n 1,-  is the 
number of neurons in layer .1,-  The out­
put of the ith neuron is obtained by pass­
ing ( )zi ,  through a nonlinearity, ,h  of the 
form discussed in the previous section:

	 ( ) ( ) .a h zi i, ,= ^ h � (5)

These two simple expressions complete­
ly characterize the behavior of a neuron 
in any layer of an FCN. Basically, these 
equations indicate that the inputs to a neu­
ron in any layer of an FCN are the out­
puts of all neurons in the previous layer 
and that the output of that neuron is the 
sum of products of the neuron weights 
and its inputs, to which we add a scalar 
value, and then pass the total sum through 
a nonlinearity. The important thing to note 
in (4) and (5) is that they are identical in 
form to (2) and (3), indicating that CNNs 
and FCNs perform the same types of neu­
ral computations. The ultimate result of 
this similarity is that training a CNN and 
an FCN follows the same computation­
al rules, with allowances being made for 
the fact that CNNs operate on volumes, 
while FCNs work with vectors.

Training of an FCN begins by assign­
ing small random values to all weights and 

The objective of training 
a CNN/FCN network is to 
determine the weights 
and biases of convolution 
volumes in the former, and 
of the neuron weights and 
biases in the latter, that 
solve a given problem. 
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biases. Because we know that ( ) ,a x1j j=  
we can use (4) and (5) to compute (z j ,) 
and (a j ,) for all layers in the network, 
past the first. Although it is not shown in 
the diagram, we also compute (h zi ,)l̂ h 
for use later in backpropagation. Propa­
gating a pattern vector through a neural 
net to its output is called feedforward, 
and training consists of feedforward and 
backpropagation passes through the net­

work, periodically adjusting the weights 
and biases between such passes.

Measuring performance during train­
ing requires an error, or cost, function. The 
function used most frequently for this 
purpose is the mean-squared error (MSE) 
between actual and desired outputs:

	 ( ) ,E r a L
2
1

j j
j

n
2

1

L

= -
=

^ h/ � (6)

where ( )a Lj  is the activation value of the 
jth neuron in the output layer of the FCN. 
During training, we let r 1j =  if the pat­
tern being processed belongs to the jth  
class and r 0j =  if it does not. Thus, if a 
pattern belongs to the kth class, we want 
the response of the kth output neuron, 

( ),a Lk  to be 1 and the response of all 
other output neurons to be 0. When this 
occurs, the error is zero and no adjustments 
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FIGURE 2. A schematic of a fully connected neural network. The zoomed section shows the computations performed by each neuron in the network. The 
activation function, ,h  shown is in the shape of a sigmoid.
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are made to the weights because the input 
vector was classified correctly.

The objective of training is to adjust 
all the weights and biases in the network 
when a classification mistake is made, so 
that the error at the output is minimized. 
This is done using gradient descent for 
the weights and biases

	 w w
w

( ) ( )
( )

E
ij ij

ij
, ,

2 ,
2

a= - � (7)

and

	 ,( (
(

b b
b

E
i i

i
, ,

2 ,
2

a= -
)

) ) � (8)

where a  is a scalar correction increment 
called the learning rate constant. Unfor­
tunately, the change in the output error 
with respect to changes in the weights 
and biases in the hidden layers is not 
known. In a nutshell, backpropagation 
is a scheme that 1) propagates the error 
in the output, which is known, backward 
through all the hidden layers of the net­
work and 2) uses the backpropagated 
error to express the two partials in (7) 
and (8) in terms of the activation function, 
the output error, and the current values of 
the weights and biases, all of which are 
known quantities at every layer in the net­
work during training. A derivation of this 
important result is outside the scope of 
our discussion, but a sketch of the funda­
mental equations of backpropagation will 
help demonstrate the surprising simplici­
ty of this method. The original derivation 
is given in [3], and is further illustrated 
and formulated in a more computation­
ally effective matrix form, in [7].

Backpropagation is based on the fol­
lowing four results:

	
w

( ) ( )
( )

E a 1
ij

j i
2
2
,

, ,T= - � (9)

and

	 ( ),
( )b
E
i

i
2
2
,

,T= � (10)

where

i
w( ( ( ) ( )h z 1 1j j ij i, , , ,T T= + +) )l̂ h/

� (11)

and

	 ( ) ( ) ( ) .L h z L a L rj j j jT = -l h^ 6 @ � (12)

Equations (9) and (10) are used to com­
pute the gradients in (7) and (8), based 
on known or computable quantities. 
The fact that the quantities in (9) and 
(10) are known is established by (11) 
and (12). In the latter equation, ( )h z Ljl̂ h 
and ( )a Lj  are computed during feedfor­
ward, and rj  is given during training, 
so ( )LjT  can be computed. But if we 
know this quantity, we can compute 

( )L 1jT -  using (11) because all of its 
terms are known also during any train­
ing iteration. Another application of 
this equation gives ( ),L 2jT -  and so on 
for all values of ,L 1, = -  , , .L 2 2f-  
In other words, at any iterative step in 
training, we are able to compute all the 
quantities necessary to implement the 
gradient descent for­
mulation given in (7) 
and (8), which seeks a 
minimum of the MSE  
in (6). Observe that 
we compute the terms 
necessary for gradient 
descent by proceeding backward from 
the output, hence the use of the term back­
propagation to describe this method.

Using the preceding relatively sim­
ple equations, the procedure for training 
an FCN can be summarized as follows:
1)	 Initialize all weights and biases to 

small random values.
2)	 Using a pattern vector from the train­

ing set, perform a forward pass through 
the network and compute all values 
of (a j ,) and ( .h z j ,)l̂ h

3)	 Compute the MSE using (6).
4)	 Compute ( )LjT  using (12) and propa­

gate it back through the network, using 
(11) to compute (j ,T ) for ,L 1, = -  

, , .L 2 2f-

5)	 Update the weights and biases using 
(7)–(10).

6)	 Repeat steps 2–5 for all patterns of the 
training set. One pass through all train­
ing patterns constitutes one epoch of 
training. This procedure is repeated for 
a specified number of epochs, or until 
the MSE stabilizes to within a pre­
defined range of acceptable variation.
Training a CNN for image classifi­

cation is performed in conjunction with 
training its attached FCN. During feed­
forward, an image propagates through the 
CNN, resulting in a set of output maps in 

the last stage, as explained in Figure 1. 
The elements of these maps are vector­
ized and input into the FCN so that they 
propagate to the output of the fully con­
nected net, at which point the MSE is 
computed, as described previously. The 
error delta, ( ),LjT  is backpropagated all 
the way to the input of the FCN. The vec­
torization applied on feedforward is then 
reversed into the 2-D format of the output 
maps. The reformatted quantities are the 
“deltas” of the CNN, which are then back­
propagated to its input stage. The error 
deltas at each layer are computed during 
backpropagation through both networks, 
and these are then used to update the 
weights and biases of the CNN and FCN, 
using (7) and (8) for the latter, and their 

equivalents for the 
CNN [7]. Given the 
similarities between 
the computations  per­
formed by a CNN [(2) 
and (3)], and those 
performed by an FCN 

[(4) and (5)], the reader should not be sur­
prised that the equations of backpropaga­
tion for the two networks are also similar. 
The fundamental difference between the 
equations for the two neural networks 
is that FCNs, which work with vectors, 
use multiplications, while CNNs, which 
work with 2-D arrays, use convolution.

As noted previously, the feedforward/
backpropagation training procedure just 
explained is repeated for a specified num­
ber of epochs or until changes in the MSE 
stabilize to within a specified range of 
acceptable variation. After training, the 
CNN and FCN are completely specified 
by the learned weights and biases. When 
deployed for autonomous operation, the 
system classifies an unknown image into 
one of the classes on which the system 
was trained, by performing a feedforward 
pass and detecting which neuron at the 
output of the FCN yields the largest value.

A computational example
In this section, we illustrate how to train 
and test a CNN/FCN for image classifi­
cation, using an image database that con­
tains a training set of 60,000 grayscale 
images of handwritten numerals. The 
database also contains a set of 10,000 
test images. Figure 3 shows the CNN and 

Training a CNN for image 
classification is performed 
in conjunction with 
training its attached FCN.
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FCN architectures we used. The layout is 
more detailed than in Figure 1 to sim­
plify explanations. This network, which 
we explain below, was trained for 200 
epochs using all 60,000 training images. 
The performance of the resulting trained 
system on the images of the training set 
was 99.4% correct classification. When 
subjected to the 10,000 test images, which 
the system had never “seen” before, the 
performance was 99.1%. These are im­
pressive results, considering the sim­
plicity of the architecture in Figure 3, 
and the fact that the inputs are hand­
written characters that exhibit signif­
icant variability.

The input grayscale images are of 
size 28 28#  pixels. The first stage of 
the CNN has six feature maps, and the 

second has 12. Both stages use pooling 
with 2 2#  neighborhoods. The convo­
lution kernels are of size 5 5#  in both 
stages. The FCN has no hidden layers, 
consisting instead of only an input and an 
output layer. This means that the FCN is 
a linear classifier that implements hyper­
plane boundaries, as we noted previously 
in the discussion of perceptrons.

Because the inputs are grayscale imag­
es, the depth of the input volume to the first 
stage of the CNN is one, indicating that six 
2-D kernels, one for each of the six feature 
maps, are needed in the first stage. The 
depth of the input volume to the second 
stage is six because there are six pooled 
maps at the output of the first stage. This 
means that 12 kernel volumes, each con­
sisting of six 2-D kernels, are required 

to generate the 12 feature maps in the 
second stage, for a total of ,6 12 72# =  
2-D convolution kernels in that stage. 
There is one bias per feature map, for a 
total of six biases in the first stage and 12 
in the second.

For 2-D convolution without pad­
ding, we require that the 2-D kernels be 
completely contained in their respective 
maps during spatial translation. Because 
the input images are of size 28 28#  
pixels and the kernels are of size ,5 5#  
this means that the feature maps in the 
first stage are of size 24 24#  elements. 
Pooling reduces the size of these maps 
to 12 12#  elements. These are the input 
maps to the second stage which, when 
convolved with kernels of size ,5 5#  
result in feature maps of size .8 8#  The 
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FIGURE 3. A CNN trained to extract features that are then used by an FCN to classify handwritten numerals. The input image shown is from the National 
Institute of Standards and Technology database. (A formatted version of this database is available for experimental work at yann.lecun.com/exdb/mnist.)
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output maps in the second stage are 
obtained by pooling the feature maps 
in that stage, which results in 12 maps 
of size .4 4#  These maps are then con­
verted to vectors by linear indexing, 
which concatenates the elements of all 
the 2-D maps, column by column, into 
a one-dimensional string. When vector­
ized, these maps result in input vectors 
to the FCN that have 4 4 12 192## =  
elements. There are ten numeric classes, 
so the number of neurons in the output 
layer of the FCN is ten.

We illustrate the operations perfor­
med by our CNN/FCN neural net by fol­
lowing the flow of the image in Figure 3 
from the input to the CNN to the output 
of the FCN. The weights and biases 
used in this example were obtained by 
training the CNN/FCN with the 60,000 
images mentioned previously. Each fea­
ture map in the first stage of the CNN 
was generated by convolving a differ­
ent 5 5#  kernel with the input image. 
The resulting feature maps are shown as 
images above the feature maps volume in 
the first CNN stage. The feature maps in 
the first stage are of size 24 24#  pixels, 
which we enlarged using bicubic inter­
polation to a size of 300 300#  pixels, 
to make it easier to interpret them visu­
ally. These maps illustrate that each ker­
nel was capable of detecting different 
features in the input image. For exam­
ple, the first feature map at the top 
of the figure exhibits strong vertical 
components on the left of the character. 
The second feature map shows strong 
components in the northwest area of 
the top of the character and the left ver­
tical lower area. The third feature map 
shows strong horizontal components in 
the top of the character. Similarly, each 
of the other three feature maps exhibits 
features distinct from the others.

As Figure 3 shows, the pooled maps 
are lower-resolution versions of the 
feature maps, but the former retain the 
basic characteristics of the latter. The 
volume containing these six maps is the 
input to the second stage. Each feature 
map in the second stage was generated 
by convolving a different kernel volume 
with the input volume to that stage, as 
explained in Figure 1. The feature maps 
resulting from these operations are of size 

;8 8#  they are shown as enlarged images 
above the second CNN stage in Figure 3. 
These are not as easy to interpret visually 
as the feature maps in the first stage, other 
than to say that each exhibits a different 
response. Based on the accuracy of the 
training and test results, we know that 
these responses do a good job of charac­
terizing all ten numeral classes over the 
entire database.

Each 192-dimensional vector result­
ing from vectorizing the output maps of 
the second stage of the CNN was fed into 
a fully connected net. This vector then 
propagated through the FCN, as explained 
previously. The values of the output neu­
rons corresponding to the input image are 
zero or nearly zero, with the exception of 
the tenth neuron, whose output was 0.98. 
This indicates that the system correctly 
recognized the input image as being from 
the tenth class, which is the class of nines. 
These values of the output neurons result­
ed in a value for the MSE in (6) that is close 
to zero.

As mentioned previously in this 
example, training was carried out for 
200 epochs. We trained the system using 
minibatches of 50 images between weight 
updates. The patterns were ordered ran­
domly after each epoch of training, and 
the learning rate increment we used was 

. .1 0a =  This “standard” approach to 
training yielded excellent results in our 
example, but it can be refined further in 
more complex situations. For instance, 
experimental evidence suggests that 
large databases of RGB images contain­
ing 1,000 or more object classes require 
significantly deeper architectures and 
more complex training methodology. A 
good example is the deep learning neural 
network, AlexNet, that won the 2012 Ima­
geNet Challenge [5].

What we have learned
After giving a brief historical account of 
how adaptive learning systems evolved, 
we introduced the basic concepts under­
lying the architecture and operation of 
deep CNNs and FCNs. The usefulness 
of these networks, working together 
to address complex image processing 
applications, is made possible by train­
ing the complete CNN/FCN system 
using backpropagation. We presented 

the underpinnings of backpropagation 
and discussed the basic equations used 
to implement this deep-learning scheme. 
The effectiveness of combining CNNs 
and FCNs for image pattern recognition 
was illustrated by training and testing a 
system capable of recognizing with high 
accuracy a large database of handwritten 
numeric characters.

Author
Rafael C. Gonzalez (rcg@utk.edu) 
received a B.S.E.E. degree (1965) from 
the University of Miami, FL, and M.S. 
(1967) and Ph.D. (1970) degrees from 
the University of Florida, Gainesville, 
all in electrical engineering. He is a 
distinguished service professor, emeri­
tus in the Electrical Engineering and 
Computer Science Department at the 
University of Tennessee, Knoxville. He 
is a pioneer in the fields of image pro­
cessing and pattern recognition and is 
the author or coauthor of four books, 
several edited books, and more than 
100 publications in these fields. His 
books are used in more than 1,000 uni­
versities and research institutions 
throughout the world, and his work 
spans highly successful academic and 
industrial careers. He is a Life Fellow 
of the IEEE.

References
[1] F. Rosenblatt, “Two theorems of statistical sepa­
rability in the perceptron,” in Proc. Symp. No. 10 
Mechanisation Thought Processes, London, 1959, vol. 
1, pp. 421–456.

[2] F. Rosenblatt, Principles of Neurodynamics: 
Perceptrons and the Theory of Brain Mechanisms. 
Washington, D.C.: Spartan, 1962.

[3] D. E. Rumelhart, G. E. Hinton, R. J. Williams, 
“Learning internal representations by error propaga­
tion,” in Parallel Distributed Processing: Explorations 
in the Microstructures of Cognition, Vol. 1, D. E. 
Rumelhart et al., Eds. Cambridge, MA: MIT Press, 
1986, pp. 318–362. 

[4] Y. LeCun, B. Boser, J. S. Denker D. Henderson, 
R. E. Howard, W. Hubbard, and L. D. Jackel, “Back­
propagation applied to handwritten zip code rec­
ognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 
1989.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 
“ImageNet classification with deep convolutional neural 
networks,” in Proc. Advances Neural Information 
Processing Systems 25, 2012, pp. 1097–1105.

[6] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep 
learning,” Nature, vol. 521, pp. 436–444, May, 2015.

[7] R. C. Gonzalez and R. E. Woods, Digital Image 
Processing, 4th ed. New York: Pearson-Prentice Hall, 
2018.

[8] E. Shelhamer, J. Long, and T. Darrell, “Fully con­
volutional networks for semantic segmentation,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 
640–651, 2017.



88 IEEE SIGNAL PROCESSING MAGAZINE   |   November 2018   |

Sliding Discrete Fourier Transform with Kernel Windowing

The sliding discrete Fourier transform 
(SDFT) is an efficient method for 
computing the N-point DFT of a 

given signal starting at a given sample 
from the N-point DFT of the same sig­
nal starting at the previous sample [1]. 
However, the SDFT does not allow the 
use of a window function, generally incor­
porated in the computation of the DFT to 
reduce spectral leakage, as it would break 
its sliding property. This article will show 
how windowing can be included in the 
SDFT by using a kernel derived from the 
window function, while keeping the pro­
cess computationally efficient. In addi­
tion, this approach allows for turning other 
transforms, such as the modified discrete 
cosine transform (MDCT), into efficient 
sliding versions of themselves.

Relevance
The SDFT can be used to perform spectral 
analysis on successive samples in a signal 
without having to compute a new DFT 
from scratch every time, provided that win­
dowing can be incorporated into the com­
putation of the DFTs without harming the 
efficiency of the method. A notable appli­
cation of the SDFT with windowing can 
then be framing detection in audio signals 
that have undergone lossy compression in 
the context of audio compression identifi­
cation [2]. A lossy compression algorithm 
will typically introduce traces of compres­
sion in the signal being encoded, which can 
become visible in the time-frequency rep­
resentation when using the same param­
eters and framing that were used for the 
encoding. Therefore, the parameters and 
framing can be recovered by computing 
time-frequency representations at succes­
sive samples in the signal and identify­
ing when traces of compression become 

visible. This demanding process can be 
translated into an efficient one by using the 
SDFT with kernel windowing.

Prerequisites
Basic knowledge of digital signal process­
ing is required to understand this arti­
cle, particularly concepts such as the DFT, 
windowing, and general spectral analysis. 
More details about the SDFT and lossy 
audio compression identification can also 
be found in [1] and [2], respectively.

Problem statement and solution

Problem statement 
The SDFT allows for the computation 
of the N-point DFT of a signal from the 
N-point DFT of the same signal starting 
one sample earlier, in a sense by sliding a 
rectangular window of length N one sample 
forward. The SDFT essentially relies on the 
shift theorem, which states that multiplying 
a signal by a linear phase is equivalent to a 
circular shift in the corresponding DFT.

Equation (1), shown at the bottom of 
the page, shows the derivation of ,X( )i  
the N-point DFT of signal x  starting at 
sample ,i  from ,X( )i 1-  the N-point DFT 
of x  starting at ,i 1-  a process hence 
known as SDFT.

The SDFT thus only requires two N 
additions and N multiplications, leading 

to a linear time complexity of ( ),NO  
while the full and direct computation 
of the DFT and the fast Fourier trans­
form (FFT) are ( )NO 2  and ( ),logN NO  
respectively.

Transforms such as the DFT typically 
use a window function in their compu­
tation to reduce spectral leakage and 
enhance spectral analysis. However, the 
SDFT does not allow the incorporation 
of a window function as it will break the 
process shown in (1). One solution would 
be to perform the windowing in the 
frequency domain, i.e., on the derived 
DFT through convolution. A practical 
window function for that matter could be 
the Hanning window, as the correspond­
ing windowing in the frequency domain 
equals a simple three-point convolution 
[1]. Other window functions, however, 
may not be as practical, as the correspond­
ing convolutions may involve many more 
operations, which will ultimately hurt the 
computational efficiency of the SDFT. 
Therefore, the problem is to incorporate 
any window function into the computa­
tion of the DFTs in an efficient manner 
without breaking the SDFT process.

Solution: Kernel windowing
The idea of performing the windowing 
in the frequency domain can still be ex­
ploited by reformulating the convolution  
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as a multiplication by a kernel that can 
be derived from any window function. 
Such a kernel will be independent from 
the signal to be processed and only 
need to be computed once. It will typi­
cally have a very small number of values 
that would be significant, which means 
that most of the values can then be ig­
nored. This would lead to a very sparse 
kernel, which can then be applied to the 
DFT of the signal, producing results vir­
tually equivalent to the DFT of the same 
signal modified by the corresponding 
window function while preserving the 
computational efficiency of the SDFT.

The constant-Q transform (CQT) is a 
transform with a logarithmic frequency 
resolution that was proposed as a more 
adapted alternative to the FT for analyz­
ing music signals [3]. A fast algorithm 
was proposed soon after, which translat­
ed the slow computation of the CQT into 
the multiplication of a DFT, which can 
be efficiently computed using the FFT, 
and a kernel, which is computed once 
beforehand and typically very sparse 
[4]. The idea was to use Parseval’s theo­
rem to turn the direct computation in 
the time domain into a multiplication 
between a DFT and a kernel in the fre­
quency domain, essentially demonstrat­
ing the property of energy conversation 
between the time and the frequency 
domains [5].

Parseval’s theorem is recalled in (2). 
The value X is the N-point DFT of x and 
xr  represents the complex conjugate of x
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Following a similar idea, we propose 
the use of Parseval’s theorem to trans­
late the DFT of a windowed signal into 
the DFT of the signal, multiplied by a 
kernel that is derived from the corre­
sponding window function: a multipli­
cation that will happen after the SDFT 
process. Unlike in the fast CQT case, 
the purpose here is not to speed up the 
computation of the transform by taking 
advantage of the efficiency of the FFT 
algorithm in conjunction with the use of 
sparse kernel but to extract the window­
ing operation from the DFT computa­
tion so that the SDFT process shown in 
(1) still holds.

Equation (3), shown at the bottom 
of the page, illustrates the computation 
of ,X( )i  the N-point DFT of the signal 
x starting at sample i and modified by 
the window function w, from ,X( )i 1-  the 
N-point DFT of x starting at i 1-  with­
out windowing, multiplied by the kernel 
K, which is derived from w.

As we can see in (3), the kernel is com­
pletely independent from the signal; there­
fore, it only needs to be computed once, 
before the SDFT process. Furthermore, 
given the nature of such kernel, typically 
only a very small number of its values will 
be significant, which means that most of 
the values can then be 
zeroed, given some 
threshold, leading to 
a very sparse kernel. 
The multiplication of 
the derived DFT by 
such kernel will thus 
only involve few more 
operations, keeping the 
whole process com­
putationally efficient.

Figure 1 shows 
the kernels derived 
from some common window functions, 
i.e., Hanning, Blackman, triangular, 
Gaussian, Parzen, and Kaiser windows. 
As we can see, the Hanning window 
kernel shows only three nonzero values 
per row, confirming that the correspond­
ing windowing in the frequency domain 
equals a simple three-point convolution, 
while the Blackman window kernel shows 
five nonzero values per row. Both those 
windows are actually special cases of the 

generalized cosine window whose cor­
responding windowing in the frequency 
domain equals convolutions with typically 
only few points. Unlike the Hanning and 
Blackman window kernels, the triangular, 
Parzen, Gaussian, and Kaiser window 
kernels show additional nonzero values 
around their main diagonal, suggesting 
that the corresponding windowings in 
the frequency domain equal convolutions 
with many more points. However, most 
of those nonzero values have very small 
magnitudes ( . )0 01%  and could then be 
ignored without significantly affecting 
the actual windowing process. By using 

an appropriate thresh­
old, those kernels can 
therefore be made very 
sparse with only a few 
meaningful values per 
row in the same man­
ner as in the fast CQT 
case [4].

As proposed in [4], 
we computed for each 
of those kernels the 
error in keeping the 
values greater than a 

chosen threshold by dividing the sum of 
the magnitudes of the values after thresh­
olding by the sum of the magnitudes 
of all the values before thresholding. 
A threshold of 0.01 will thus give very 
small errors of 0.049, 0.009, 0.020, and 
0.015, for the triangular, Parzen, Gauss­
ian, and Kaiser window kernels, respec­
tively, when derived for an N-point DFT 
with , .N 2 048=  With such a threshold, 
the first three kernels will then only have  
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A notable application of 
the SDFT with windowing 
can then be framing 
detection in audio signals 
that have undergone 
lossy compression 
in the context of 
audio compression 
identification.
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five nonzero values per row, while the 
latter one will have three nonzero values 
per row. This shows that only a very small 
number of values is actually significant 
in such kernels. The multiplication of 
the DFT by those very sparse kernels 
will then only involve KN multiplica­
tions and KN additions, with K 3=  or 5, 
barely affecting the computational effi­
ciency of the SDFT, still maintaining a 
linear complexity of ( ),NO  and producing 
results virtually equivalent to taking the 
DFT of the signal modified by the corre­
sponding window functions.

Computational examples 

Framing detection  
and lossy audio coding
The SDFT with kernel windowing can be 
particularly useful for fast framing detec­
tion in the context of audio compres­
sion identification. Audio compression 
identification is the recovery of infor­
mation regarding the data compression 
that an audio signal has undergone. In 
particular, the recovery of the parameters 
and framing used at the time-frequency 
decomposition stage of the encoding could 

allow for identifying the coding format or 
detecting alterations in audio signals that 
have undergone lossy compression [2], 
[6]–[9]. Lossy compression algorithms 
typically introduce traces of compres­
sion in the audio signal being encoded 
in the form of time-frequency coefficients 
quantized to zeros, which can become vis­
ible when using the same parameters and 
framing that were used for the encoding. 
One approach to identify if and when 
lossy compression was used would then be 
to compute the time-frequency represen­
tation at successive samples in the audio 
signal and search for traces of compres­
sion every time, given a set of parameters 
associated with a known coding format, 
such as time-frequency transform, win­
dow length, and window function, a pro­
cess also known as framing detection.

Lossy audio coding formats, per­
haps the most popular ones being MP3, 
Advanced Audio Coding (AAC), AC-3, 
Vorbis, and Windows Media Audio 
(WMA), are widely used for storage (e.g., 
in music and video files) or transmission 
(e.g., in radio and television broadcasting). 
Compression algorithms that can encode to 
such formats first transform the audio sig­

nal into a time-frequency representation, 
derive a psychoacoustic model to locate 
regions of perceptually less significance, 
then quantize the data given the psycho­
acoustic model, and, finally, convert it into 
a bitstream. The transform used at the time-
frequency decomposition stage is typically 
based on the MDCT, and a variety of win­
dow lengths and window functions can be 
used depending on the coding format. In 
particular, specialized window functions 
such as the sine, slope, and Kaiser–Bessel-
derived (KBD) windows, are generally 
required for the MDCT to be invertible. 
For more information about lossy audio 
coding, see [10]. The computation of the 
MDCT without windowing is
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Sliding MDCT with kernel windowing 
In this context, performing framing detec­
tion for audio compression identification 
would involve computing an MDCT for 
every set of window length and window 
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function associated with a known lossy 
coding format at successive samples in 
the audio signal and searching for time-
frequency coefficients quantized to zero 
until one of the sets shows visible traces of 
compression for a specific framing of 
the signal. We can see that such a pro­
cess will be computationally demand­
ing, as a full transform would have to be 
computed every time. The direct compu­
tation of the MDCT, including the win­
dowing using one of the specialized 
window functions presented earlier, can 
actually be translated into an SDFT with 
a kernel windowing by incorporating 
the computation of the window function 
and a part of the MDCT into a kernel, 
which will still happen to be very sparse, 
thus making the process computation­
ally efficient.

Equation (5), shown at the bottom of 
the page, shows the computation of ,Y( )i  
the N-point MDCT of signal x starting at 
sample i and modified by the window 
function w, from ,X( )i 1-  the N-point DFT 
of x starting at i 1-  without window­
ing, multiplied by the kernel K, which is 
derived from w.

Figure 2 shows the kernels derived for 
an N-point MDCT, from the sine window 
where ,N 1 152=  samples, as in MP3, 
from the slope window where ,N 2 048=  
samples, as in Vorbis, and from the KBD 
window where N 512=  samples, as in 
AC-3. As we can see, most of the values 
in those kernels appear to have negligible 
magnitudes, while the very few values 
with significant magnitudes appear to be 

concentrated around two diagonals, one 
going from the bottom-left to the top-
center and one going from the top-center 
to the bottom-right. As in [4], we com­
puted for each of those kernels the error 

in keeping the values greater than 0.01 
and obtained very small errors of 0.000, 
0.022, and 0.013, for the sine, slope, and 
KBD window kernel, respectively. With 
such a threshold, the sine kernel will only 
have around two nonzero values per row 
and the slope and KBD kernels around 
six nonzero values per row. Therefore, 
these very sparse kernels will barely 
affect the computational efficiency of 
the SDFT while still producing results 
equivalent to taking the MDCT of the 
signal modified by the corresponding 
window functions.

What we have learned
We have shown that the SDFT can incor­
porate windowing in its computation by 
using a kernel that can be derived from 
any window function and can be made 
very sparse. This SDFT with kernel win­
dowing will produce results equivalent 
to the DFT of the signal modified by the 
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N 512=  samples. The values are displayed in log of amplitude.
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corresponding window function, while 
keeping the process computationally effi­
cient. This approach may be applied in 
audio compression identification, in par­
ticular by making the process of framing 
detection much more efficient, allowing 
for the translation of a transform, such as 
the MDCT, into an efficient sliding ver­
sion of itself.
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Utility Metrics for Assessment and Subset Selection of  
Input Variables for Linear Estimation

T his tutorial article introduces the 
utility metric and its generalizations, 
which allow for a quick-and-dirty 

quantitative assessment of the relative 
importance of the different input variables 
in a linear estimation model. In particular, 
we show how these metrics can be cheap-
ly calculated, thereby making them very 
attractive for model interpretation, online 
signal quality assessment, or greedy vari-
able selection. The main goal of this article 
is to provide a transparent and consistent 
framework that consolidates, unifies, and 
extends the existing results in this area. In 
particular, we 1) introduce the basic utility 
metric and show how it can be calculated 
at virtually no cost, 2) generalize it toward 
group-utility and noise-impact metrics, 
and 3) further extend it to cope with lin-
early dependent inputs and minimum 
norm requirements.

Introduction of the utility metric
When solving a regression problem, one 
often wants to have some quantitative 
insights into the relevance of each input 
variable, i.e., how much it contributes 
to the reduction of a loss function. Such 
information can be used to interpret the 
model, assess the predictive value of 
specific input variables or signals, or 
perform a greedy variable subset selec-
tion [1]–[4]. The latter allows reducing 
the dimensionality of a model, e.g., to 
avoid overfitting [5], to make the model 

more interpretable or to reduce compu-
tational complexity, data storage, data 
transmission, or sensor costs [3], [6], [7].

In this tutorial, we focus on linear least 
squares (LS) estimation, although many 
results can also be extended to other linear 
estimation frameworks [8]. A naive heuris-
tic that is remarkably commonly used for 
variable assessment is the magnitude of the 
weights of the LS solution, thereby (incor-
rectly) assuming that important input vari-
ables will also receive a large weight in the 
LS solution. However, 
it is not difficult to see 
that this reasoning is 
flawed. For example, if 
the observations of one 
of the input variables 
would all be scaled 
with a factor ,a  then 
the corresponding weight in the LS solu-
tion will be scaled with ,1a-  whereas the 
information content of that input variable 
obviously remains unchanged.

A more relevant metric would consist 
of calculating the effective loss, i.e., the 
increase in LS cost, if an input variable 
would be removed and if the model would 
be reoptimized. We refer to this resulting 
metric as the utility of that input variable. 
Utility is a powerful heuristic for input 
variable assessment [1], [3], [4], [6] and can 
even be shown to have some optimality 
properties when used for greedy variable 
subset selection [1], which can compete 
with well-known sparse regression tech-
niques, such as the least absolute shrink-
age and selection operator (LASSO) [9].

However, computing the utility of 
M  input variables by definition requires 
solving M  different LS problems, i.e., 
one for each removal of an input vari-
able [1], [3]. As a result, the metric scales 
poorly with the dimensionality of the 
model, which can be problematic in real-
time applications and can make a greedy 
variable subset selection in very high-
dimensional problems even infeasible.

In this tutorial article, we show how 
some simple tricks from standard linear 

algebra allow com-
put ing the ut i l ity 
metric at virtually no 
cost, thereby making 
it a highly attractive 
met r ic for model 
interpretation, signal 
quality assessment, 

greedy variable selection, and so forth, 
in particular in real-time or large-scale 
applications. We also address several 
generalizations and extensions of this 
utility metric toward

■■ a group-utility metric, allowing evalu-
ation of the joint utility of a group of 
input variables

■■ a noise-impact metric, allowing evalu-
ation of the impact of additive errors 
in the input variables, e.g., to predict 
the effect of quantization or measure-
ment noise, and which contains the 
original utility metric as a special case

■■ a minimum-norm utility metric for 
ill-conditioned cases, in which linear 
dependence relationships exist be-
tween the input variables.

Digital Object Identifier 10.1109/MSP.2018.2856632
Date of publication: 13 November 2018

When solving a regression 
problem, one often wants 
to have some quantitative 
insights into the relevance 
of each input variable.
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The main goals of this article are to 1) 
provide an accessible overview and uni-
fication of existing results in this context 
with pointers to the original publications 
and 2) introduce novel extensions and 
generalizations presented in a uni-
fied framework.

Utility: Definition  
and core equation

Definition
Consider the LS problem with N mea-
surements of M input variables:

	 ( ) ,minJ Y
N

Y1 x d
2

x
_ - � (1) 

where Y RN M! #  is the regressor matrix, 
d RN!  is the desired response vector, 
and x RM!  is the vector with optimiza-
tion variables (we consider the real-valued 
case for simplicity, yet all results in this 
article can be easily generalized to the 
complex-valued case). Note that ( )J Y  is 
defined as an operator that evaluates the 
LS cost for the case where the informa-
tion in Y  is available, which includes an 
implicit optimization of x  [the reason 
for making the dependency on Y  explicit 
will become clear later when defining the 
utility metric in (3)]. We will refer to the 
columns of Y  as the input variables of the 
model. Depending on the context, these 
input variables could represent, e.g., 
different sensors or channels (in a sen-
sor array), time lags (in a temporal filter), 
observations of independent variables (in 
a regression model), and so forth. Assum-
ing Y  has full rank, the LS solution xt  that 
minimizes (1) is given by

	 ,R rx 1= -t � (2)

with YY= /R N1 Th^  and d.Y/N1=r Th^
To quantify the relevance of each 

input variable, we define the utility 
metric [3], which will be the focus of 
this tutorial. The utility of the kth input 
variable is defined as the increase in LS 
cost if the kth input variable would be 
removed and if the LS problem would be 
reoptimized, i.e.,

	 ( ) ( ),U J Y J Yk k_ -- � (3)

where Y k-  denotes the matrix Y with 
the kth  column removed. Note that 
a naive computation of Uk  would, in 
principle, require solving a second LS 
problem based on ,Y k-  of which the 
computational complexity scales cubi-
cally with the number of input variables, 
i.e., ( ) .O M3  Calculating the utility of all 
M input variables would then have a 
complexity of ( ),O M4  which can be 
unacceptably high for, e.g., real-time 
systems or for large-
scale problems with 
hundreds or thousands 
of input variables. In 
the sequel, we will 
show how some simple 
linear algebra tricks 
allow deriving an ef-
ficient and elegant equation to calculate 
(3) for all input variables, with a total com-
plexity of merely ( ) .O M

Core equation
Once the full LS solution (2) has been 
calculated, we show that calculating the 
utility (3) does not require solving an 
extra LS problem to evaluate ( ),J Y k-  
i.e., it can be calculated as

	 ,U
q
x

k
k

k
2

= � (4)

where qk  is the kth diagonal element of 
R 1-  and where xk  is the kth element of 
xt  in (2). This has originally been proven 
in [3], but we will derive a more general 
form of (4) in the “Group Utility” sec-
tion, which will then also prove (4) as 
a special case. From (4), it follows that 
the vector [ , , ]U Uu M

T
1 f=  contain-

ing the utilities of all input variables can 
be calculated as

	 ,u x1 2K= - t � (5)

where ·
2
 represents an elementwise 

squaring and ( )RD 1K = -  with ·( )D   
the operator that creates a diagonal 
matrix by setting all of the off-diagonal 
elements of the matrix in its argument 
to zero.

Note that (4) and (5) are remarkably 
simple and elegant. Because R 1-  is read-
ily available from the computation of xt  
in (2), the utility can be calculated with a 

complexity of merely ( )O 1  for a single 
variable, or ( )O M  for all variables. This 
should be contrasted to a naive computa-
tion of Uk or u based on the original utili-
ty definition (3), resulting in a complexity 
of ( )O M3  and ( ),O M4  respectively.

Group utility
In some applications, the input variables 
are naturally clustered in specific pre-
defined groups, in which case it could 

make more sense to 
investigate the utility 
of groups of variables, 
rather than of indi-
vidual variables. For 
example, in a multi-
channel filter, the utility 
of a channel is the joint 

utility of all of the filter taps in that channel’s 
delay line. Comparably, in a sensor net-
work with multisensor nodes, the utility of 
a node is the joint utility of all of the sensor 
signals within that node [4].

Similar to (3), the group utility of a 
predefined group of G input variables, 
denoted by the set G, is defined as [4]

	 ( ) ( ),U J Y J YGG _ -- � (6)

where Y G-  is the matrix Y with all col-
umns corresponding to the input variables 
in G removed. From now on, we assume 
that G  consists of the last G  columns 
of ,Y  which is without loss of generality 
(w.l.o.g.), because the order of the inputs 
can be arbitrarily rearranged. Define 
the following block partitioning of the 
(known) inverse of R

	 ,R
A
B

B
QT

1 =- ; E � (7)

where Q  is the G G#  matrix capturing 
the rows and columns with indices cor-
responding to the variables in G (here 
at the bottom right w.l.o.g.). As shown in 
“Derivation of the Group-Utility Core 
Equation (8),” the group-utility UG  can 
efficiently be calculated as

	 ,U Qx xT 1
G GG =

- � (8)

where xG  contains the last G entries of 
xt  (we do not add a hat to xG  because it 
is not an optimal LS solution in itself). 

In some applications, 
the input variables are 
naturally clustered in 
specific predefined 
groups.



95IEEE SIGNAL PROCESSING MAGAZINE   |   November 2018   |

Note that this group-utility equation 
reduces to the original utility equation 
(4) if .G 1=  Obviously, if ,G M%  
computing (8) is much cheaper than 
evaluating ( )J Y G-  in (6) by explicitly 
computing the reduced LS solution.

Although the derivation of (8) is not 
necessary to follow the rest of this tuto-
rial, we include it in “Derivation of the 
Group-Utility Core Equation (8)” for 
completeness and because it also reveals 
two interesting by-products, i.e., two equa-
tions, (S2) and (S5), that allow recursively 
updating 1) the inverse autocorrelation 
matrix R 1-  and 2) the LS solution xt  after 
the removal of G  input variables. This 
is interesting if the (group-)utility metric 
would be used for greedy variable selec-
tion, where (groups of) input variables are 
deleted one by one (see the “Computation-
al Benefits and Implications for Variable 
Subset Selection” section).

Generalization toward  
noise impact
The utility metric as defined in (3) measures 
the increase in the LS cost when the kth  
column of Y  is removed. Another relevant 
metric would be to measure the increase 
in the LS cost when adding some random 
noise in the kth column of ,Y  rather than 
fully removing that 
column. This is inter-
esting in situations 
where one has some 
freedom in controlling 
the accuracy of each 
individual input vari-
able. For example, in 
quantization or lossy 
compression, one can 
often modify the bit depth or the compres-
sion rate of each individual signal to reduce 
the resources required to store or transmit 
it, while increasing its noise level. Similar 

tradeoffs appear when deciding between 
cheap or accurate sensors, in applica-
tions or experiments where the accuracy 
depends on the measurement time, and so 
forth. In all of these cases, it is important 
to be able to efficiently assess and quantify 
how additive noise on each particular input 
variable would affect the estimation per-

formance, in particular 
when used in greedy 
or adaptive resource 
allocation schemes.

To quantify the ef
fect of additive noise, 
the noise-impact met-
ric was originally de
fined in [11] with the 
purpose of perform-

ing a greedy signal quantization. For the 
sake of completeness and unification, we 
generalize this result to a group-impact 
metric in this article, which has the result 

Note that evaluating ( )J Y G-  in (6) requires solving the reduced 
least squares (LS) solution

	 R rx 1
G G G=- -

-
-t � (S1)

with NR Y Y1 T
G G G=- - -^ h  and .N Y1r dT

G G=- -^ h  The 
first step in our derivation is to find a more efficient way to cal-
culate ,R 1

G-
-  based on a subresult of the blockwise matrix inver-

sion theorem [10].
Lemma
Consider the block partitioning of a matrix V  and its inverse 
V 1-  as follows:

V
A
C

B
D V E1

)

)

)
= =-,; ;E E

with A and E  square matrices of equal size. If D  and E  are 
invertible, then .E A BD C1 1= -- -

By setting V R 1= -  (consequently ),E R G= -  and using the 
notation in (7), the lemma immediately yields the following 
important result:

	 .R A BQ BT1 1
G = --
- - � (S2)

By plugging (S2) in (S1), the reduced LS solution is given by

	 .( )A BQ Bx rT1
G G= --

-
-t � (S3)

Using the partitioning in (7), we can define the following 
partitioning of the LS solution (2):

	
A B
B Q

x
x

r r
r rx T

G

G G

G

G

G
= =

+

+

- -

-
,t ; =E G � (S4)

where r G-  and rG denote subvectors of r containing the first 
M G-  and last G  entries, respectively. From (S3) and (S4), 
it can be easily verified that

	 ,BQx xx 1
G GG = -- -

-t � (S5)

which allows efficiently updating the LS solution. By 
expanding the LS cost functions in (6) in their quadratic 
terms and plugging in the corresponding LS solutions (2) 
and (S1) for x G-t  and ,xt  respectively, it can be straightfor-
wardly found that

	 .U r x r xT T
G G G= - - -t t � (S6)

By plugging in (S5), and by partitioning xt  in x G-  and 
,xG  we immediately find that

	 .( )U B Qr x r xT T 1
G G G GG = + -

- � (S7)

From the bottom half of (S4), it follows that BrT
G =-  

,Qx rT T
G G-  such that (S7) eventually yields (8). � ■

Derivation of the Group-Utility Core Equation (8)

It is important to be able 
to efficiently assess and 
quantify how additive 
noise on each particular 
input variable would 
affect the estimation 
performance.
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of [11] as a special case and generalizes 
the group-utility metric (8). Let Y ,G R  
denote the matrix Y  in which zero-
mean random noise is added to the input 
variables in ,G  with a positive definite 
noise covariance matrix .RG G!R #  In 
most cases, the noise will be uncorre-
lated across the input variables, in which 
case R is a diagonal matrix.

In line with (6), we define the noise 
impact on the group G as

	 ( )

( ),

minI
N

Y

J Y

1 x dE ,
2

x GG _R -

-

R$ . 
� (9)

where ·{ }E  denotes the expected value 
operator, which is introduced due to the 
stochastic nature of the first term. In “Deri-
vation of the Noise-Impact Core Equation 
(10),” we show that (9) can be efficiently 
calculated as

	 ( ) ,I Qx xT 1 1
G GG R R= +-

-^ h � (10)

where we again assumed that G contains 
the last G  columns of Y  w.l.o.g. This equa-
tion allows computing the noise impact of 
the input variables in G using the original 
LS solution [remember that xG consists of 
the last G  entries of xt  as in (8)]. For the 
case where ,G 1=  i.e., when evaluating 
the impact of noise with variance 2v  on 
a single input variable, (10) reduces to the 
elegant equation [compare with (4)]

	 ( ) .
x

I
q

k
k

k

2
1

2

2

v =
+

v^ h � (11)

This noise-impact metric Ik  can be 
viewed as a generalization of the utility 
metric ,Uk  as a comparison between (4) 
and (11) shows that I Uk k"  if .2

" 3v  
This should not come as a surprise, 
as adding infinitely large noise to the 
observations of the kth  input variable 
essentially results in the same loss of 
information as when the kth input vari-
able would be removed. Similarly, the 
group-impact equation (10) reduces 
asymptotically to the group-utility equa-
tion (8) if the diagonal entries in R grow 
to infinity.

Redundant input variables
If there is redundancy in the set of input 
variables, i.e., there is a linear depen-
dency or almost perfect correlation 
between some of the columns in Y, then 
the solution of (1) becomes nonunique 
or ill conditioned. A common strategy 
is then to compute the LS solution with 
the smallest 2,  norm, which is advanta-
geous against overfitting [5], [12]. In the 
sequel, we denote R  as the set contain-
ing all input variables that are redun-
dant, i.e., all columns of Y  that consist 
of a linear combination of the other 
columns of .Y  Note that, by definition, 
U 0k =  for k R! , as the removal of a 

redundant variable does not impact the 
LS cost.

If R  is nonempty, then R 1-  does not 
exist, and the LS solution of (1) is not 
unique, in which case the LS solution 
with minimal 2,  norm is given by

	 ,Y Rd rx = =+ +t � (12)

where R+ denotes the Moore–Penrose 
pseudoinverse of R  and the second 
equality follows from the ident ity 

( ) ,X X X XT T=+ +  which holds for the 
pseudoinverse of any matrix X  [10], 
[13]. As R 1-  simply has to be replaced 
with R+ in (2), it is then tempting to also 
compute the utility Uk  by setting qk  in 
(4) equal to the kth  diagonal element of 
R+ instead of .R 1-  Although it can be 
shown that this yields the correct util-
ity values Uk for the nonredundant vari-
ables ,k R"  it will result in incorrect 
(nonzero) utility values for the redun-
dant variables .k R!  The proof of this 
statement is omitted for conciseness 
but follows relatively straightforwardly 
from some subresults in [14].

To fix this issue, we have to modify 
(4) to enforce that Uk  is small (near zero) 
for ,k R!  whereas nonredundant vari-
ables k R"  should receive a nonzero 
Uk  that approximates (3). Furthermore, 
although the removal of a redundant 
variable will not affect the LS cost, it will 
increase the 2,  norm, i.e., x xk $-t t  

As the added noise is zero mean and uncorrelated to Y  
and ,d  the least squares solution of the first term is equal to

,R R FF rrx , F
T1 1

G = = +R
- -t ^ h

where F O / T1 2R= 6 @  with O  the all-zero matrix. Note 
that r  is unaffected by the noise due to the expected value 
operator and the fact that the noise is uncorrelated to .d  
Applying the Sherman–Morrison–Woodbury identity [10] 
to RF  yields

.R R R F I F R F F RF
T T1 1 1 1 1 1= - +- - - - - -^ h

With the partitioning of R 1-  in (7), this becomes

	 R R
B
Q I Q B QF

T1 1
2
1

2
1

2
1 1

2
1

R R R R= - +- -
-^ h; 6E @� (S8)

	 .R
B
Q Q B QT1 1 1
R= - +- - -^ h; 6E @ � (S9)

Similar to (S6), it can easily be verified that the noise impact 
(9) is equal to

( )
( ) .

I
R R

r x r x
r r

,
T T

T
F

1 1
G GR = -

= -

R

- -

t t

Plugging (S8) into this equation, and using the fact that xG = 
[ ]B Q rT  [see (S4)], we eventually find (10).

 � ■

Derivation of the Noise-Impact Core Equation (10)



97IEEE SIGNAL PROCESSING MAGAZINE   |   November 2018   |

for ,k R!  To maximally avoid overfit-
ting, we would like the modified utility 
measure to also reflect this change in 
norm, such that removing the redundant 
input value with the lowest modified util-
ity also induces the least increase of the 
2,  norm. We will show that both of these 

goals can be achieved if we generalize 
the utility definition to a standard ridge 
regression framework.

In ridge regression, an 2, -norm pen-
alty is added to the LS cost function 
[10], i.e., (1) becomes

	 ,min
N

Y1 dx x
2 2

x
m- +` j � (13)

where m  is a user-defined regularization 
parameter which has

	 R R Ir rx 1 1m= = +m
- -t ^ h � (14)

as a minimizer [10]. Let us now define 
utility as we did before in (3) but this 
time based on the regularized cost func-
tion (13) instead, i.e.,

	 ( )

.

YU
N

Y

N

1 x d x d

x x

k k k

k

2 2

2 2

_m

m

- - -

+ -

- -

-

t t

t t^

`

h

j
	

� (15)

Note that we have not used the min 
operators this time, but instead we 
plugged in the minimizers to explicitly 
separate the increase in LS cost in the 
first term and the increase in 2,  norm 
in the second term.

The following three theoretical 
results, which are proven in “Proofs of the 
Three Results on the Extended Utility 
Metric,” demonstrate that this new utility 
definition (15) indeed resolves the afore-

mentioned issues and can still be calcu-
lated efficiently (these results can also 
easily be extended to the group-utility 
framework):

■■ Result 1 (efficient calculation): The 
modified utility ( )Uk m  defined in 
(15) can be calculated using the effi-
cient formula (4) where qk  is now set 
to the kth diagonal element of R 1

m
-  

instead of .R 1-

■■ Result 2 (consistency): If  ,0 1 %m e  
with e  the smallest nonzero eigenval-
ue of ,R  then ( )U 0k .m  if ,k R!  
and ( )U Uk k.m  if ,k R"  where the 
approximations become asymptoti-
cally exact for an arbitrarily small .m

■■ Result 3 (minimum norm revealing): 
If m  is sufficiently small, ( )Uk m  will 
be smallest for the k R!  that results 
in the smallest 2, -norm x k-t  after 
removal of input .k  More specifically,

Here we provide the outline of the proofs for the three results 
listed in the “Redundant Input Variables” section.
Result 1: It can be easily verified that the derivation in 

“Derivation of the Group-Utility Core Equation (8)” is also 
valid for ( )Uk m  if R  is replaced with Rm everywhere.
Result 2: If ,0"m  the second term in (15) will vanish, 

so it can be ignored. Furthermore, it is a known fact that

	 ,limR Rr r
0

1 =
"m

m
- + � (S10)

which holds even if R 1-  does not exist (see, e.g., [10, p. 263]). 
This means that xt  and x k-t  get asymptotically close to the mini-
mum-norm least squares solution of the nonregularized cost (1) 
when .0"m  As a result, the first term gets asymptotically close 
to Uk  according to the original definition of the nonregular-
ized utility in (3), which is by definition equal to zero if k R! .
Result 3: If ,k R!  then both terms in (12) will vanish if 

,0"m  i.e., ( )U 0k "m  (see Result 2). Note that the second 
term vanishes linearly with .m  Therefore, to prove Result 3, we 
have to show that the first term vanishes superlinearly with 

,m  ,k R6 !  such that the second term dominates over the 
first term if m  becomes small. To this end, we study 

( )/lim Uk0 m m"m  instead. Based on l’Hôpital’s rule, we find that

	 :
( ) ( )

,lim limk
U

d
dU

R
k k

0 0
6 !

m

m

m

m
=

" "m m
� (S11)

i.e., the limit is obtained by taking the derivative of ( )Uk m . By 
plugging (14) into (15) and expanding it in its quadratic 
terms, we find that the derivative of (15) can be calculated as

	
( )

,
d

dU
d
d R Rr r r r,

k T
k

T
k k

1 1

m

m

m
= -m m

-
- -

-
-^ h � (S12)

where R , km -  denotes the matrix Rm with the kth row and column 
removed, and r k-  denotes r  with the kth entry removed. 
The following basic identity is found in [13] and [18] for an 
invertible matrix :A

.
dx

dA A
dx
dA A

1
1 1=-

-
- -

Using this identity, it can be straightforwardly found that 
(S12) reduces to

( )
.

d
dU

R Rr r r r,
k

k
T

k k
T2 2

m

m
= -m m- -

-
-

-^ h

Taking the limit for 0"m  and using (S10) and (S11), this 
reduces to

,

:
( )

limk
U

R R

x x

r rR
k

k k

k

0

2 2

2 2

6 !
m
m

=

= -

-

"m

-

-
+

-
+

t t

where the last equality immediately follows from (12). This 
shows that selecting the redundant variable k R!  with the 
lowest utility will induce the lowest increase in 2,  norm, 
which proves Result 3.
� ■

Proofs of the Three Results on the Extended Utility Metric
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	 :
( )

,k
U

x xR
k

k
2 26 ! .

m

m
--t t

	 where the approximation becomes 
asymptotically exact for an arbitrari-
ly small .m

To validate these results, we have cal-
culated the modified utility metric (15) 
on a toy example with random data with 
M 20=  input variables. The last five 
columns of Y  are generated as random 
linear combinations of columns 11–15, 
such that { , , } .11 20R f=  We set 
m = / ,100e  where e  denotes the small-
est nonzero eigenvalue of R. Figure 1(a) 
shows the values ( )Uk m  for , ,k 1 20f=  
in blue for the naive calculation based 
on the definition (15) using (12) to find 
xt  and ,x k-t  and in red when calculated 
using the efficient equation (5) where 
R  is replaced with Rm  (see Result 1). 

It can be observed that both calcula-
tion methods result in the same util-
ity value. Note that the ten redundant 
variables have an almost-zero utility, 
which is consistent with Result 2. To 
validate Result 3, we zoom in on the 
ten redundant variables [Figure 1(b)] 
and plot the difference xx k

2 2--t t  
(in green) versus the value ( ) ,Uk m m^ h
where we observe that both result in the 
same value. This allows selecting the 
redundant input variable that will yield 
the smallest increase in 2,  norm when 
removed (in this case, variable 14).

Computational benefits  
and implications for  
variable subset selection
To demonstrate the impressive reduc-
tion in computation time achieved 

by the core equations (4) and (5) and 
their genera l izat ions/extensions, 
we measured the calculation times 
on a standard laptop running MAT-
LAB. In Figure 2, we compare the 
time to compute the complete utility 
vector [ , , ]U Uu M

T
1 f=  when using 

the efficient equation (5) and using a 
naive calculation based on the defini-
tion (3), as a function of the number of 
input variables .M  We performed the 
naive calculation two times: once with 
and once without redundant input 
variables, where (12) is used to find 
the minimum-norm LS solution in the 
former case. In both cases, the compu-
tation time is several orders of magni-
tude lower when using (5).

These strong computational sim-
plifications facilitate the use of 
(group-)utility metrics for a backward 
greedy variable selection procedure—
even in large-scale problems—in 
which the input variables with low-
est utility are recursively removed one 
by one, until a sufficiently small set is 
obtained or until any removal would 
result in a too-large increase in LS 
cost [1]–[4], [6]. This can be viewed 
as an alternative for the well-known 
(group-)LASSO algorithm [9], [15]. 
The backward greedy algorithm can 
even be shown to be optimal if an 
exact or almost-exact sparse solution 
exists [1]. In a similar fashion, the 
noise-impact metrics (10) and (11) can 
be used for a greedy adaptive quanti-
zation, e.g., where in each iteration a 
certain amount of quantization noise 
is added to the input with the lowest 
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noise impact [11], [16]. Finally, a utility-
based greedy variable selection based 
on (15) yields a combination of variable 
selection with 2, -norm minimization, 
which is akin to the so-called elastic 
net procedure [17].

Overall, utility-based greedy versions 
have some useful properties, i.e., they 
bypass the tedious 
tuning of sparsity-
inducing regulariza-
tion parameters, they 
are cheap to compute, 
and they are easy to implement. Further-
more, the low computational complexity 
is particularly attractive for online util-
ity tracking, e.g., in recursive LS adap-
tive filters to (temporarily) eliminate 
signals of which the utility goes under a 
predefined threshold [3] or to guarantee 
that the overall loss does not exceed a 
predefined threshold. Note that every 
time a (group of) input variable(s) G  is 
removed, the LS solution and inverse 
autocorrelation matrix have to be up-
dated according to the remaining set 
of variables. These updates can be ef-
ficiently calculated using (S2) and (S5) 
in “Derivation of the Group-Utility Core 
Equation (8).” Indeed, after the removal 
of the input variables in ,G  these equa-
tions allow recursively updating the 
inverse of the reduced autocorrelation 
matrix R 1

G
-  and the corresponding LS 

solution at a low cost, based on the 
original R 1-  and .xt  For the nongrouped 
case, i.e., ,G 1=  the matrix inversion 
of Q in (S2) and (S5) reduces to a sim-
ple scalar inversion.

If one also wants to monitor the 
utility of input variables that are to 
be added to the model, e.g., for a for-
ward greedy variable selection instead 
of backward deletion, there also exist 
additive versions of the utility met-
ric with efficient calculation schemes 
[3], [4]. However, it should be noted 
that these metrics are less elegant and 
computationally less attractive than the 
deletion-based utility metrics that were 
introduced previously, yet they are 
still more efficient than a naive brute-
force computation.

Conclusions
In this article, the core equations for the 
efficient calculation of utility metrics have 
been reviewed and unified. These have 
been extended toward group metrics and 
a minimum-norm revealing utility metric. 
All of these metrics can be elegantly and 
inexpensively calculated, thereby mak-

ing them attractive as 
a quick-and-dirty tool 
for model interpre-
tation, online signal 
quality assessment, or 

greedy variable selection.
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In the field of digital signal analysis and 
processing, the ubiquitous domain trans-
formation is the discrete Fourier trans-

form (DFT), which converts the signal 
of interest within a limited time window 
from discrete time to the discrete frequen-
cy domain. The active 
use in real-time or 
quasi-real-time appli-
cations has been made 
possible by a family of 
fast implementations 
of the DFT, called 
fast Fourier transform 
(FFT) algorithms.

Although highly optimized and effi-
cient FFT algorithms are available, their 
operation remains block oriented with 
nonrecursive operations. An alterna-
tive approach to this technique is the 
sliding DFT (SDFT), where the calcu-
lations are performed for a fixed-size 
sliding window.

The basic idea behind the SDFT algo-
rithm is to recursively calculate the DFT 
spectrum of the input stream [1], [2]. It is 
based on a Lagrange structure, built up on 
a comb filter and complex resonators for 
the various frequency bins. The biggest 
disadvantage of this algorithm is that it 
suffers from stability problems caused by 
numerical imperfections. Various solu-
tions have been proposed to counteract 
this effect, keeping the original function-
ality. The modulated SDFT (mSDFT) [3] 
addresses the problem with a modified 
structure moving the complex multipli-
cation factor out of the resonator. Another 
SDFT variant is the hopping SDFT 
(hSDFT) [4], which is optimized for the 
calculation of the SDFT with larger steps 
( )L  than a single sample but smaller than 
the observation window: .L N2a 1=

In this article, we investigate the 
observer-based SDFT (oSDFT), a lesser-
known alternative solution for the recur-
sive calculation of the DFT that is based 
on the observer theory. It was originally 
developed by Hostetter [5] and generalized 

by Péceli [6]. Software 
implementation issues 
of the structure were 
recently presented in 
[7]. The structure is 
proved to be stable, 
with a small sensitivi-
ty to numerical imper-
fections. Throughout 

this article we will compare it to the SDFT 
and mSDFT structures.

SDFT
The formula for calculating the DFT 
coefficient in the kth  frequency posi-
tion over the N  samples block of [ ]x n  
is given as

	 , ,X x n W k N0 1k N
kn

n

N

0

1

f= = --

=

-

6 @/  
�

(1)

where eW j N
N

2= r^ h
 with j  being the 

imaginary unit. The calculation of (1) in a 
sliding manner, the DFT component can 
be expressed as

[ ] ,X n x q m W1k
C

m

N

N
km

0

1

+ = +
=

-
-6 @/

� (2)

where N0 1f -=k  and .1N+-n=q  
Through this operation we obtain a rotat-
ing DFT coefficient, a complex DFT 
component [ ],X nk

C  since [ ]x n  slides 
while WN

km-  stands still relative to the 
sampling window. The upper index C  in 

[ ]X nk
C  refers to the component nature of 

the DFT value to distinguish it from the 
DFT coefficient [ ] .X nk  Given a periodic 
signal with periodicity of ,N  the DFT 
component equals the DFT coefficient at 
every Nth step

	 [ ] , , , .X n X n N N0 2k
C

k f= = � (3)

The recursive equivalent of (2) can 
be expressed based on the previous DFT 
component [ ],X nk

C  the current signal 
sample [ ]x n  and the former signal sample 

[ ]x n N-  as

	
[ ] ( [ ]

( [ ] [ ])).

X n W X n

x n x n N

1k
C

N
k

k
C+ =

+ - -
�
(4)

Figure 1 shows how (4) can be imple-
mented as a comb filter followed by a 
resonator stage. The resonator stage is 
an integrator containing a complex mul-
tiplication factor, which is an infinite 
impulse response (IIR) filter. The trans-
fer function of the SDFT structure can 
be expressed as

	
( )

( )
( )

( ),H z
X z
X z

z H z1,k
k
C

N
kSDFT = = - -^ h

�
(5)
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Although highly optimized 
and efficient FFT 
algorithms are available, 
their operation remains 
block oriented with 
nonrecursive operations.
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FIGURE 1. A single SDFT branch for the calculation of the kth frequency bin.
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where the transfer function of the reso-
nator ( )H zk  can be determined as

	 ( ) .H z
W z

W z
1

k
N
k

N
k

1

1

=
- -

-

� (6)

This structure is considered to be 
only marginally stable in practice [1] as 
the WN

k  poles, in the presence of numeri-
cal imperfections, may be located inside 
or outside the unit circle. To avoid a 
potential divergence in the results, with-
out altering the structure, a straightfor-
ward method is given by a compensated  
SDFT [1] enforcing the poles inside the 
unit circle by applying a constant multi-
plication factor ,r  slightly smaller than 
one, to all WN

k  factors. As a drawback, 
it leads to a modified DFT calculation, 
thus it gives inaccurate results [3].

mSDFT
A slightly modified structure of the 
SDFT is the mSDFT [3], which aims to 
solve the aforementioned stability issue 
without sacrificing accuracy through 
utilizing the DFT’s frequency shift theo-
rem property. The mSDFT-based struc-
ture calculating the kth frequency bin is 
shown in Figure 2.

First, it transforms the kth frequency 
bin to dc ( )k 0=  by a complex multipli-
cation with the sequence ,WN

kn-  then the 
calculations of (2) is applied for .k 0=  
Finally, it transforms the result back by 
up conversion with a multiplication of 
the sequence .WN

kn  With this described 
technique, the resonators became stable 
integrators performing simple averaging.

Via down conversion, the mSDFT cal-
culates the DFT coefficients, recursively as

	
[ ]

( [ ] ( [ ] [ ])) .

X n

X n W x n x n N

1k

k N
kn

+ =

+ - --

t

t  
�

(7)

To get the same output as the SDFT in 
(2), namely the DFT component, an up-
conversion sequence has to be applied 
by multiplying the DFT coefficient Xk  
with ,WN

kn

	 [ ] [ ] .X n X n Wk
C

k N
kn=t t � (8)

As a result, the transfer function of an 
mSDFT branch is theoretically identical 
with the transfer function of an SDFT 
branch presented in (5).

oSDFT
In this section, we introduce a lesser-
known alternative approach to the SDFT 
problem: the oSDFT. The main idea 
behind the oSDFT, the application of the 
state observer, is widely used in system 
control theory [8] and also can be success-
fully adapted for digital signal processing 
purposes [5], [6].

The observer theory model
The observer theory supposes the system 
model that the measured signal [ ]x n^ h is 
a linear combination of the elements of a 
given basis system

	 [ ] [ ],x n X c nk k
k

N

0

1

=
=

-

/ � (9)

where N  is the rank of the basis system, 
[ ]c nk  is the kth basis vector, and Xk  its 

matching weighting factor.
This system model is considered for 

the signal construction and can be seen 
as the generator of the signal [ ]x n  on the 
left side of Figure 3, wherein weighting 
factors are stored in discrete integrators 
as initial values.

The observer, which can be seen on 
the right side of Figure 3, by mirroring the 
system model’s structure, estimates the 

[ ]x n  input signal’s Xk  weighting factors 
in its internal state variables Xkt  through 
signal decomposition. For the refinement 
of this estimation, a negative feedback 
is created with a reconstructed signal 

[ ]y n  from the estimated Xkt  weighting 
factors. This negative feedback also acts 
as a stabilizing control loop for our state 
observer [6], [9].

The kth  state variable can be ex
pressed as
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where [ ]y n  can be expressed as
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Péceli proves the following four state-
ments in [6], which are crucial from the 
SDFT aspect:
1)	 The observer is convergent, if [ ]c nk  

and [ ]g nk  are basis-reciprocal basis 
systems for n N0 1f= -  with a 
normalization factor of / :N1

	 [ ] [ ] , .
N

c n g n k1 1k k
n

N

0

1

6=
=

-

/ � (12)

	 Moreover, in this scenario the system 
is deadbeat in N step (i.e., after N  
steps [ ] ) .X n Xk k=t

2)	 The state variables Xkt  of the observ-
er are the DFT coefficients accord-
ing to  (9),  i f  [ ]g n Wk N

kn= -  and 
[ ] .c n Wk N

kn=  The modulated state 
variables [ ]X n 1k

C +t  are the sliding 
DFT components of the input signal 

[ ]x n  as presented in (2).
3)	 Based on the fact that the oSDFT 

structure is a control loop with a 
negative feedback, the transfer func-
tion of the kth branch of the oSDFT 
can be expressed as
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where ( )H zk  is given in (6).
4)	 The oSDFT structure is equivalent 

to the SDFT structure presented in 
Figure 1 in such a way that their trans-
fer functions of the kth branches are 
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FIGURE 2. A single mSDFT branch for the calculation of the kth frequency bin.
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equal. The proof of the theoretical 
equivalence can be found in “Proof 
of the Equivalence of the SDFT 
and oSDFT.”

Resonator-based oSDFT
An alternative version of the oSDFT 
structure is depicted in Figure 4, which 
is based solely on resonators, which 
are IIR filters, without down- and up-
converters, similar to the SDFT struc-
ture. The proof of the equivalence of 
the two oSDFT structures is provided 
in “Proof of the Equivalence of Two 
oSDFT Structures.”

Complexity analysis
In this section we analyze the computa-
tional complexity and memory require-
ments for the various SDFT structures 
when calculating all N  DFT components. 
The comparison will be performed based 
on the calculation of a single input sample. 
All elements are considered to be com-
plex valued. The requirements are sum-
marized in Table 1.

Independent from the chosen algo-
rithms, N  registers are required for stor-
ing the state variables of the resonators or 
the integrators. The SDFT and mSDFT 
algorithms used N  additional registers 
for the comb filter’s N-step delay line. 
Furthermore, the SDFT and the resona-
tor-based oSDFT structure require N  
memories to store the multiplication fac-
tors Wk

N^ h for all branches. The mSDFT 

and the oSDFT structures can obtain the 
values of the modulator and demodu-
lator signals WN

nk^  and WN
nk- h from a 

look-up-table (LUT). The LUT stores N  
samples for each branch, as the values 
are periodic to .N

Resonator-based implementations 
(i.e., SDFT and resonator-based oSDFT) 
require N  multipliers, whereas the 
demodulation and modulation ap-
proaches (i.e., mSDFT and oSDFT) use 

N2  multipliers.
For all algorithms, each branch 

requires one two-input adder. In case of 
the oSDFT structures, they both apply 
an N-input adder to 
calculate the feed-
back signal [ ]y n  and 
a two-input adder is 
used to calculate the 
difference of the input 
and the feedback sig-
nal as shown in (10).

The biggest advantage of these 
structures compared to the FFT-based 
block-wise calculation is that the opera-
tional load can be distributed between the 
incoming samples, as the SDFT structure 
can operate continuously. As soon as the 
Nth sample of a block has arrived, the 
calculation with the last input sample can 
be executed in a single step with parallel 
calculations. The spectral components 
will be available faster compared to the 
block-wise operational FFT where this 
can be performed in log N2  steps.

Simulations

Floating-point implementation
A simulation environment for the com-
parison of the aforementioned sliding 
DFT algorithms (i.e., mSDFT, oSDFT, 
and resonator-based oSDFT) was devel-
oped in MATLAB2017a (x64 PC). For 
the algorithms we applied 32-bit, single-
precision, floating-point arithmetic and 
compared the numerical imperfections 
of the various methods to the results of a 
64-bit, double-precision arithmetic slid-
ing FFT, utilizing the built-in fft  func-
tion. We applied the following simulation 

scenario: within an 
N 64=  frequency 
bin setup, an aperi-
odic white gaussian 
noise was used, where 
the noise signal was 
generated using the 
built-in randn func-

tion operating with default seed option 
and a unit variance as:

% setting the seed 

rng(‘default’); 

% variance of the noise signal

var = 1; 

% noise signal with single precision

x = var * randn(1,32000,‘single’);

The usage of white noise as excita-
tion signal ensures that all the branches 
system-wide are statistically equally 
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FIGURE 3. The observer theory model: system model and observer.

The basic idea behind 
the SDFT algorithm is to 
recursively calculate the 
DFT spectrum of the input 
stream.
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excited, so the behavior of each struc-
ture can be better characterized and 
evaluated as a dynamic system.

The results of the various SDFT 
methods were compared through double-
precision arithmetic to the results of the 
sliding FFT, and the average error signal 
over the branches was formulated as

[ ] [ ] [ ]n
N

X n X n1
, ,k

C
k
C

k

N

0

1

xSDFT FFTf = -
=

-

,t t/  
� (14)

where xSDFT stands for the mSDFT 
and oSDFT algorithms.

In Figure 5, the error progress in the 
function of the time index is compared in 
the case of mSDFT and oSDFT. The  error 
of the mSDFT is not stable and slowly 
drifts over the time samples. On the con-
trary, the oSDFT algorithm is stable, but it 
is noisy as well due to the numerical errors.

In Figure 6 the error progress in 
function of the time index is shown 
for the oSDFT and the resonator-based 
oSDFT algorithms. Both algorithms 

produce a stable-but-noisy error over 
the discrete time samples. Additionally, 
the oSDFT outperforms the resonator-
based oSDFT.
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FIGURE 4. A resonator-based oSDFT. 

To prove the equivalence of the SDFT and oSDFT structures, 
we will show that the transfer functions for each branch, 

( )H z,k SDFT  and ( ),H z,k oSDFT  are equal. The transfer function 
of the SDFT and the oSDFT structures are expressed accord-
ing to (5) and (13) as
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where ( )H zk  is the transfer function of the kth resonator 
and ( )H z0  is the transfer function of the open loop in 
the oSDFT structure. The transfer function ( )H zk  is deter-
mined as
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First, we will prove that
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As we unfold and rearrange the first part of (S4) using the 
formula for the sum of a geometric series, we obtain
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Emphasizing the fact that for the sum of the powers of a unit 
root, the following expression is valid:
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We can simplify (S5) using the formula for the sum of a geo-
metric series to 
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This is what we wanted to prove.
Now, if we substitute (S4) into (S2) we get the following sim-

plified equation:
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As a result, we have proved that the transfer function of the 
two structures according to (S1) and (S2) are equivalent. �

■

Proof of the Equivalence of the SDFT and oSDFT
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Both oSDFT algorithms are built upon either one of the two 
main substructures, namely the down conversion–integrator–
up conversion or the resonator scheme as shown in Figure S1. 
Here, we intend to show the theoretical equivalence of 
these two substructures. We present this statement through 
an alternative graphical method, while a mathematical 
approach can be found in [3] and [12].

Starting from Step (a) in Figure S2: 

(b)	 Push the up-converting sequence into the loop, before 
the feedback exit point. To ensure the same functional-
ity, we have to compensate for the effect of the newly 
introduced in-loop multiplication into the feedback path 
as well.

(c)	 Move the up-converting sequence even further, through 
the delay element. Due to the delay element, only the 
time indexing has to be modified.

(d)	 Push the compensating term, introduced in Step (b), further 
down the feedback-loop, until it stands after the feedback 
entry point. Additionally, to counterpreserve the functional-
ity, we have to also divide the input (i.e., signal) with the 
compensating term. Finally, as they are in the same posi-
tion, we can contract the modulating and demodulating 
sequences into one term. As a result, we have reached the 
same structure as presented in Figure S1(b) based on the 
following equivalences:

	 ·[ ] · [ ] ,g n c n W W 1k k N
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N
nk
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Proof of the Equivalence of Two oSDFT Structures
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The observed performance difference 
between the two oSDFT structures has 
two attributes with a common root cause: 
multiplication within the resonators with 
constant ,WN

k  at every time step. The two 
distinct differences experienced in Figure 6 
are an offset and a higher noise variance.

The offset is caused by the fact that for 
every step of n the WN

kn  modulator and 
demodulator values for the oSDFT are 
taken periodically from a precomputed 
sequence stored in a LUT, and within this 
LUT the error introduced by rounding (i.e., 
finite precision storage) is averaged out over 
a sequence period. This way the oSDFT’s 
modulation and demodulation process 
will be more precise regarding the average 
frequency accuracy over a sequence period 
than the resonator-based oSDFT, where the 
numerical error in the constant WN

k  pole 
can’t be averaged out over the same period, 
thus leading to a constant frequency offset 
in the center frequency of the resonators.

The higher variance of the error sig-
nal comes from the fact that the finite 
precision multiplication by WN

k  within 
the resonator’s loop is an additional 
noise source which will dominate the 
variance due to the structure, thus it will 
lead to slightly misplaced WN

k  poles in a 
random manner over the complex plain.

Fixed-point implementation
As to further investigate and cover wider 
use-case scenarios, the results for fixed-
point implementations are also presented. 

During the comparison simulations with 
the 32-bit, single-precision, floating-point 
variants, the signed fixed-point calcu-
lations were implemented with a word 
length of 32 bits, from which 31 bits were 
used for the fractional 
part, and a rounding 
toward zero method 
was applied to main-
tain the stability of the 
feedback structures. 
Otherwise, the simu-
lation environment, 
the test signals, and the error term defini-
tion were the same as with the floating-
point scenario presented earlier.

The error progress of the various 
SDFT structures for signed Q0.31 format 
fixed-point implementation can be seen 
in Figure 7. The results are similar to 
the case where the structures are imple-
mented using single-precision, although 
the overall errors are slightly smaller 
for each method. The reason for this is 

that, the IEEE 754-2008 single-precision 
standard, used by MATLAB, the frac-
tional part is defined as only 23 bits, thus 
within the same range, it offers lower res-
olution, resulting in more imprecise 

WN
kn  modulator and 

WN
k  pole values.
Furthermore, the 

averaged error [ ]nf  
over the samples n for 
the fixed-point imple-
mentation in function 
of the fraction part 

is shown in Figure 8. For  both methods 
with an enlarged fraction part, the error is 
exponentially decreasing.

Summary
In this article, an alternative structure for 
the calculation of the SDFT, the oSDFT, 
was presented, which is based on the 
observer theory, a method taken from 
control theory. The core structure of the 
oSDFT is similar to the other SDFT 
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Table 1. The complexity comparison of the various SDFT structures.

Memory Adders

Type 
Read-Only 
Memory 

Random-Access 
Memory  LUTN Multipliers Two Input N Input 

SDFT N N + N 0 N N + 1 0 

mSDFT 0 N + N 1 2N N + 1 0 

oSDFT 0 N 1 2N N + 1 1 

oSDFT  
(resonator) 

N N 0 N N + 1 1 

With this described 
technique, the resonators 
became stable integrators 
performing simple 
averaging.
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methods, but it applies a recursive overall 
feedback branch, which allows the elimi-
nation of the feedforward comb filter and 
its N-tap delay line, achieving long-term 
stability in contrast 
to other well-known 
SDFT methods. The 
various SDFT struc-
tures were also com-
pared based on their 
memory and arithmet-
ical requirements.

It was also shown 
that the oSDFT structure has a lower 
sensitivity to numerical imperfections 
compared to other SDFT structures. The 
oSDFT is stable for input signals contain-
ing aperiodic white noise as well, due to 
the control-loop feedback structure, and 
keeps its stability and behavior with fixed-
point implementations as well.

The application of the oSDFT struc-
ture can be especially advantageous 
not only for the long-term stability but 
because a large percentage of the N  
DFT components are required to be 
calculated in a sliding manner. From a 
practical aspect, the oSDFT structure 
can be advantageously used as a tunable 
filter [10] or as a nonlinear adaptive fre-
quency estimator [11].
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Well-Log and Seismic Data Integration for Reservoir Characterization: A
Signal Processing and Machine-Learning Perspective. Chaki, S., +, MSP
March 2018 72-81

Filtering
Retrieving Low Wavenumber Information in FWI: An Overview of the
Cycle-Skipping Phenomenon and Solutions. Hu, W., +, MSP March 2018
132-141

Filtering algorithms
Complex Autoregressive Time-Frequency Analysis: Estimation of Time-
Varying Periodic Signal Components. Andrade, M., +, MSP March 2018
142-153

Finite impulse response filters
Converting Infinite Impulse Response Filters to Parallel Form [Tips &
Tricks]. Bank, B., MSP May 2018 124-130

Forensics
Forensic Camera Model Identification: Highlights from the IEEE Signal
Processing Cup 2018 Student Competition [SP Competitions]. Stamm, M.,
+, MSP Sept. 2018 168-174

Fourier transforms
Closed-Form Impulse Responses of Linear Time-Invariant Systems: A Uni-
fying Approach [Lecture Notes]. Shahrrava, B., MSP July 2018 126-132

Frequency modulation
Practical Backscatter Communication Systems for Battery-Free Internet of
Things: A Tutorial and Survey of Recent Research. Xu, C., +, MSP Sept.
2018 16-27

Frequency shift keying
The Art of Signal Processing in Backscatter Radio for µW (or Less) In-
ternet of Things: Intelligent Signal Processing and Backscatter Radio En-
abling Batteryless Connectivity. Bletsas, A., +, MSP Sept. 2018 28-40

Fuel processing industries
Advances in Seismic Data Compression via Learning from Data: Compres-
sion for Seismic Data Acquisition. Payani, A., +, MSP March 2018 51-61

G

Game theory
Transforming Energy Networks via Peer-to-Peer Energy Trading: The
Potential of Game-Theoretic Approaches. Tushar, W., +, MSP July 2018
90-111

Gas industry
Advances in Seismic Data Compression via Learning from Data: Compres-
sion for Seismic Data Acquisition. Payani, A., +, MSP March 2018 51-61

Array Processing in Microseismic Monitoring: Detection, Enhancement,
and Localization of Induced Seismicity. McClellan, J., +, MSP March
2018 99-111

Digital Rock Physics: Using CT Scans to Compute Rock Properties. Al-Mar-
zouqi, H., MSP March 2018 121-131

Subsurface Structure Analysis Using Computational Interpretation and
Learning: A Visual Signal Processing Perspective. AlRegib, G., +, MSP
March 2018 82-98

Gaussian distribution
On Hypothesis Testing for Comparing Image Quality Assessment Metrics
[Tips & Tricks]. Zhu, R., +, MSP July 2018 133-136

Gaussian noise
On Hypothesis Testing for Comparing Image Quality Assessment Metrics
[Tips & Tricks]. Zhu, R., +, MSP July 2018 133-136

Generators
Generative Adversarial Networks: An Overview. Creswell, A., +, MSP Jan.
2018 53-65

Geologic measurements
Wireless Digital Communication Technologies for Drilling: Communication
in the Bits/s Regime. Jarrot, A., +, MSP March 2018 112-120

Geophysical measurements
An Approximate Representation of the Fourier Spectra of Irregularly Sam-
pled Multidimensional Functions: A Cost-Effective, Memory-Saving Al-
gorithm. Santos de Oliveira, A., MSP March 2018 62-71

Geophysics
Subsurface Exploration: Recent Advances in Geo-Signal Processing, Inter-
pretation, and Learning [From the Guest Editors]. AlRegib, G., +, MSP
March 2018 16-18

Geospatial analysis
Machine Learning for Volcano-Seismic Signals: Challenges and Perspec-
tives. Malfante, M., +, MSP March 2018 20-30

Subsurface Exploration: Recent Advances in Geo-Signal Processing, Inter-
pretation, and Learning [From the Guest Editors]. AlRegib, G., +, MSP
March 2018 16-18

Graphics processing
Deep Learning for Understanding Faces: Machines May Be Just as Good,
or Better, than Humans. Ranjan, R., +, MSP Jan. 2018 66-83

H

Headphones
Signal Processing Supports a New Wave of Audio Research: Spatial and
Immersive Audio Mimics Real-World Sound Environments [Special Re-
ports]. Edwards, J., MSP March 2018 12-15

Heart rate
Bringing Wearable Sensors into the Classroom: A Participatory Approach
[SP Education]. Kanna, S., +, MSP May 2018 110-130

Hidden Markov models
Artificial Intelligence in the Rising Wave of Deep Learning: The Historical
Path and Future Outlook [Perspectives]. Deng, L., MSP Jan. 2018 180-177

Crowd-Based Learning of Spatial Fields for the Internet of Things: From
Harvesting of Data to Inference. Arias-de-Reyna, E., +, MSP Sept. 2018
130-139

High-speed optical techniques
The "Light" Side of Signal Processing: Research Teams Work Toward a
Signal Processing-Enabled Photonics Future [Special Reports]. Edwards,
J., MSP May 2018 11-14

Hilbert space
[For Your Consideration]. MSP Sept. 2018 186
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Home appliances
The Promise of Radio Analytics: A Future Paradigm of Wireless Positioning,
Tracking, and Sensing. Wang, B., +, MSP May 2018 59-80

Hydraulic systems
Array Processing in Microseismic Monitoring: Detection, Enhancement,
and Localization of Induced Seismicity. McClellan, J., +, MSP March
2018 99-111

I

IIR filters
Converting Infinite Impulse Response Filters to Parallel Form [Tips &
Tricks]. Bank, B., MSP May 2018 124-130

Image coding
Theoretical Foundations of Deep Learning via Sparse Representations: A
Multilayer Sparse Model and Its Connection to Convolutional Neural Net-
works. Papyan, V., +, MSP July 2018 72-89

Image color analysis
Forensic Camera Model Identification: Highlights from the IEEE Signal
Processing Cup 2018 Student Competition [SP Competitions]. Stamm, M.,
+, MSP Sept. 2018 168-174

What Is a Signal? [Lecture Notes]. Chakravorty, P., MSP Sept. 2018 175-177
Image processing

Forensic Camera Model Identification: Highlights from the IEEE Signal
Processing Cup 2018 Student Competition [SP Competitions]. Stamm, M.,
+, MSP Sept. 2018 168-174

Subsurface Structure Analysis Using Computational Interpretation and
Learning: A Visual Signal Processing Perspective. AlRegib, G., +, MSP
March 2018 82-98

Image quality
On Hypothesis Testing for Comparing Image Quality Assessment Metrics
[Tips & Tricks]. Zhu, R., +, MSP July 2018 133-136

Image recognition
Deep Convolutional Neural Networks [Lecture Notes]. Gonzalez, R., MSP
Nov. 2018 79-87

Image reconstruction
Reconstruction of a Signal from the Real Part of Its Discrete Fourier Trans-
form [Tips & Tricks]. So, S., +, MSP March 2018 162-174

Using Deep Neural Networks for Inverse Problems in Imaging: Beyond An-
alytical Methods. Lucas, A., +, MSP Jan. 2018 20-36

Image resolution
Generative Adversarial Networks: An Overview. Creswell, A., +, MSP Jan.
2018 53-65

Image segmentation
Conditional Random Fields Meet Deep Neural Networks for Semantic Seg-
mentation: Combining Probabilistic Graphical Models with Deep Learning
for Structured Prediction. Arnab, A., +, MSP Jan. 2018 37-52

Imaging
Reconstruction of a Signal from the Real Part of Its Discrete Fourier Trans-
form [Tips & Tricks]. So, S., +, MSP March 2018 162-174

Information analysis
Automation Is Coming to Research [In the Spotlight]. Loskot, P., MSP July
2018 140-138

Input variables
Utility Metrics for Assessment and Subset Selection of Input Variables for
Linear Estimation [Tips & Tricks]. Bertrand, A., MSP Nov. 2018 93-99

Intelligent sensors
A Survey on Smart Homes for Aging in Place: Toward Solutions to the Spe-
cific Needs of the Elderly. Nathan, V., +, MSP Sept. 2018 111-119

Interference
Analog-to-Digital Cognitive Radio: Sampling, Detection, and Hardware.
Cohen, D., +, MSP Jan. 2018 137-166

Cognitive Radars: On the Road to Reality: Progress Thus Far and Possibili-
ties for the Future. Greco, M., +, MSP July 2018 112-125

Internet of Things
Approaches to Secure Inference in the Internet of Things: Performance
Bounds, Algorithms, and Effective Attacks on IoT Sensor Networks.
Zhang, J., +, MSP Sept. 2018 50-63

Crowd-Based Learning of Spatial Fields for the Internet of Things: From
Harvesting of Data to Inference. Arias-de-Reyna, E., +, MSP Sept. 2018
130-139

From Surveillance to Digital Twin: Challenges and Recent Advances of
Signal Processing for Industrial Internet of Things. He, Y., +, MSP Sept.
2018 120-129

IoT Security Techniques Based on Machine Learning: How Do IoT Devices
Use AI to Enhance Security? Xiao, L., +, MSP Sept. 2018 41-49

Security and Privacy for the Industrial Internet of Things: An Overview of
Approaches to Safeguarding Endpoints. Zhou, L., +, MSP Sept. 2018 76-87

Signal Processing and the Internet of Things [From the Guest Editors]. Xu,
C., +, MSP Sept. 2018 13-15

Signal Processing Opens the Internet of Things to a New World of Possibil-
ities: Research Leads to New Internet of Things Technologies and Appli-
cations [Special Reports]. Edwards, J., MSP Sept. 2018 9-12

Sparse Signal Processing for Grant-Free Massive Connectivity: A Future
Paradigm for Random Access Protocols in the Internet of Things. Liu, L.,
+, MSP Sept. 2018 88-99

The Internet of Things: Secure Distributed Inference. Chen, Y., +, MSP Sept.
2018 64-75

The Promise of Radio Analytics: A Future Paradigm of Wireless Positioning,
Tracking, and Sensing. Wang, B., +, MSP May 2018 59-80

Interpolation
An Approximate Representation of the Fourier Spectra of Irregularly Sam-
pled Multidimensional Functions: A Cost-Effective, Memory-Saving Al-
gorithm. Santos de Oliveira, A., MSP March 2018 62-71

Inverse problems
Correlation Awareness in Low-Rank Models: Sampling, Algorithms, and
Fundamental Limits. Pal, P., MSP July 2018 56-71

Using Deep Neural Networks for Inverse Problems in Imaging: Beyond An-
alytical Methods. Lucas, A., +, MSP Jan. 2018 20-36

Iterative algorithms
A Bayesian Interpretation of Distributed Diffusion Filtering Algorithms
[Lecture Notes]. Bruno, M., +, MSP May 2018 118-123

K

Kalman filters
A Bayesian Interpretation of Distributed Diffusion Filtering Algorithms
[Lecture Notes]. Bruno, M., +, MSP May 2018 118-123

Kernel
Sliding Discrete Fourier Transform with Kernel Windowing [Lecture
Notes]. Rafii, Z., MSP Nov. 2018 88-92

Knowledge discovery
Automation Is Coming to Research [In the Spotlight]. Loskot, P., MSP July
2018 140-138

L

Learning systems
A Feature Article Cluster on Exploiting Structure in Data Analytics: Low-
Rank and Sparse Structures [From the Guest Editor]. Vaswani, N., MSP
July 2018 12-13

Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and
Robust Subspace Recovery. Vaswani, N., +, MSP July 2018 32-55

Legged locomotion
Signal Processing Powers Next-Generation Prosthetics: Researchers Inves-
tigate Techniques That Enable Artificial Limbs to Behave More Like Their
Natural Counterparts [Special Reports]. Edwards, J., MSP Jan. 2018 13-16

Lighting
Internet of Things for Green Building Management: Disruptive Innovations
Through Low-Cost Sensor Technology and Artificial Intelligence. Tushar,
W., +, MSP Sept. 2018 100-110

Linear systems
Closed-Form Impulse Responses of Linear Time-Invariant Systems: A Uni-
fying Approach [Lecture Notes]. Shahrrava, B., MSP July 2018 126-132

Cognitive Speech Coding: Examining the Impact of Cognitive Speech Pro-
cessing on Speech Compression. Cernak, M., +, MSP May 2018 97-109

Loaded antennas
The Art of Signal Processing in Backscatter Radio for µW (or Less) In-
ternet of Things: Intelligent Signal Processing and Backscatter Radio En-
abling Batteryless Connectivity. Bletsas, A., +, MSP Sept. 2018 28-40

Loss measurement
Introducing Information Measures via Inference [Lecture Notes]. Simeone,
O., MSP Jan. 2018 167-171
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Loudspeakers
Signal Processing Supports a New Wave of Audio Research: Spatial and
Immersive Audio Mimics Real-World Sound Environments [Special Re-
ports]. Edwards, J., MSP March 2018 12-15

Low power electronics
Practical Backscatter Communication Systems for Battery-Free Internet of
Things: A Tutorial and Survey of Recent Research. Xu, C., +, MSP Sept.
2018 16-27

M

Machine learning
A Feature Article Cluster on Exploiting Structure in Data Analytics: Low-
Rank and Sparse Structures [From the Guest Editor]. Vaswani, N., MSP
July 2018 12-13

Advanced Deep-Learning Techniques for Salient and Category-Specific Ob-
ject Detection: A Survey. Han, J., +, MSP Jan. 2018 84-100

Artificial Intelligence in the Rising Wave of Deep Learning: The Historical
Path and Future Outlook [Perspectives]. Deng, L., MSP Jan. 2018 180-177

Cognitive Speech Coding: Examining the Impact of Cognitive Speech Pro-
cessing on Speech Compression. Cernak, M., +, MSP May 2018 97-109

Deep Learning for Understanding Faces: Machines May Be Just as Good,
or Better, than Humans. Ranjan, R., +, MSP Jan. 2018 66-83

Deep Learning for Visual Understanding: Part 2 [From the Guest Editors].
Porikli, F., +, MSP Jan. 2018 17-19

Errata. MSP Jan. 2018 178
Generative Adversarial Networks: An Overview. Creswell, A., +, MSP Jan.
2018 53-65

Internet of Things for Green Building Management: Disruptive Innovations
Through Low-Cost Sensor Technology and Artificial Intelligence. Tushar,
W., +, MSP Sept. 2018 100-110

Model Compression and Acceleration for Deep Neural Networks: The Prin-
ciples, Progress, and Challenges. Cheng, Y., +, MSP Jan. 2018 126-136

Model Selection Techniques: An Overview. Ding, J., +, MSP Nov. 2018 16-34
Recent Advances in Zero-Shot Recognition: Toward Data-Efficient Under-
standing of Visual Content. Fu, Y., +, MSP Jan. 2018 112-125

Signal Processing and the Internet of Things [From the Guest Editors]. Xu,
C., +, MSP Sept. 2018 13-15

The Deep Regression Bayesian Network and Its Applications: Probabilistic
Deep Learning for Computer Vision. Nie, S., +, MSP Jan. 2018 101-111

Theoretical Foundations of Deep Learning via Sparse Representations: A
Multilayer Sparse Model and Its Connection to Convolutional Neural Net-
works. Papyan, V., +, MSP July 2018 72-89

Using Deep Neural Networks for Inverse Problems in Imaging: Beyond An-
alytical Methods. Lucas, A., +, MSP Jan. 2018 20-36

Magnetic resonance imaging
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and
Robust Subspace Recovery. Vaswani, N., +, MSP July 2018 32-55

Malware
IoT Security Techniques Based on Machine Learning: How Do IoT Devices
Use AI to Enhance Security? Xiao, L., +, MSP Sept. 2018 41-49

Mathematical model
Errata. MSP Jan. 2018 16
Real-Time Ultrasound Thermography and Thermometry [Life Sciences].
Ebbini, E., +, MSP March 2018 166-174

Theoretical Foundations of Deep Learning via Sparse Representations: A
Multilayer Sparse Model and Its Connection to Convolutional Neural Net-
works. Papyan, V., +, MSP July 2018 72-89

Utility Metrics for Assessment and Subset Selection of Input Variables for
Linear Estimation [Tips & Tricks]. Bertrand, A., MSP Nov. 2018 93-99

Matlab
Converting Infinite Impulse Response Filters to Parallel Form [Tips &
Tricks]. Bank, B., MSP May 2018 124-130

Matrix decomposition
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and
Robust Subspace Recovery. Vaswani, N., +, MSP July 2018 32-55

Maximum likelihood detection
A Bayesian Interpretation of Distributed Diffusion Filtering Algorithms
[Lecture Notes]. Bruno, M., +, MSP May 2018 118-123

Measurement
Errata. MSP Jan. 2018 178

On Hypothesis Testing for Comparing Image Quality Assessment Metrics
[Tips & Tricks]. Zhu, R., +, MSP July 2018 133-136

Measurement uncertainty
Efficient Multisensor Localization for the Internet of Things: Exploring a
New Class of Scalable Localization Algorithms. Win, M., +, MSP Sept.
2018 153-167

Introducing Information Measures via Inference [Lecture Notes]. Simeone,
O., MSP Jan. 2018 167-171

Medical devices
Signal Processing Leads to New Clinical Medicine Approaches: Innovative
Methods Promise Improved Patient Diagnoses and Treatments [Special Re-
ports]. Edwards, J., MSP Nov. 2018 12-15

Signal Processing Powers Next-Generation Prosthetics: Researchers Inves-
tigate Techniques That Enable Artificial Limbs to Behave More Like Their
Natural Counterparts [Special Reports]. Edwards, J., MSP Jan. 2018 13-16

Memristors
Signal Processing Opens the Internet of Things to a New World of Possibil-
ities: Research Leads to New Internet of Things Technologies and Appli-
cations [Special Reports]. Edwards, J., MSP Sept. 2018 9-12

Metadata
Sparse Signal Processing for Grant-Free Massive Connectivity: A Future
Paradigm for Random Access Protocols in the Internet of Things. Liu, L.,
+, MSP Sept. 2018 88-99

Mice
Something to Talk About: Signal Processing in Speech and Audiology Re-
search: Promising Investigations Explore New Opportunities in Human
Communication [Special Reports]. Edwards, J., MSP Nov. 2018 8-12

Microphones
Something to Talk About: Signal Processing in Speech and Audiology Re-
search: Promising Investigations Explore New Opportunities in Human
Communication [Special Reports]. Edwards, J., MSP Nov. 2018 8-12

Microsoft Windows
Complex Autoregressive Time-Frequency Analysis: Estimation of Time-
Varying Periodic Signal Components. Andrade, M., +, MSP March 2018
142-153

Microwave radiometry
Real-Time Ultrasound Thermography and Thermometry [Life Sciences].
Ebbini, E., +, MSP March 2018 166-174

MIMO communication
Sparse Representation for Wireless Communications: A Compressive
Sensing Approach. Qin, Z., +, MSP May 2018 40-58

Sub-Nyquist Radar Systems: Temporal, Spectral, and Spatial Compression.
Cohen, D., +, MSP Nov. 2018 35-58

Minerals
Digital Rock Physics: Using CT Scans to Compute Rock Properties. Al-Mar-
zouqi, H., MSP March 2018 121-131

Minimization
Low-Rank Matrix Completion [Lecture Notes]. Chi, Y., MSP Sept. 2018
178-181

Mobile communication
Analog-to-Digital Cognitive Radio: Sampling, Detection, and Hardware.
Cohen, D., +, MSP Jan. 2018 137-166

Mobile computing
Analog-to-Digital Cognitive Radio: Sampling, Detection, and Hardware.
Cohen, D., +, MSP Jan. 2018 137-166

Monitoring
A Seismic Shift in Scalable Acquisition Demands New Processing: Fiber-
Optic Seismic Signal Retrieval in Urban Areas with Unsupervised Learning
for Coherent Noise Removal. Martin, E., +, MSP March 2018 31-40

A Survey on Smart Homes for Aging in Place: Toward Solutions to the Spe-
cific Needs of the Elderly. Nathan, V., +, MSP Sept. 2018 111-119

From Surveillance to Digital Twin: Challenges and Recent Advances of
Signal Processing for Industrial Internet of Things. He, Y., +, MSP Sept.
2018 120-129

Internet of Things for Green Building Management: Disruptive Innovations
Through Low-Cost Sensor Technology and Artificial Intelligence. Tushar,
W., +, MSP Sept. 2018 100-110

Mutual information
Introducing Information Measures via Inference [Lecture Notes]. Simeone,
O., MSP Jan. 2018 167-171
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N

Navigation
Efficient Multisensor Localization for the Internet of Things: Exploring a
New Class of Scalable Localization Algorithms. Win, M., +, MSP Sept.
2018 153-167

Network security
Approaches to Secure Inference in the Internet of Things: Performance
Bounds, Algorithms, and Effective Attacks on IoT Sensor Networks.
Zhang, J., +, MSP Sept. 2018 50-63

Neural networks
Artificial Intelligence in the Rising Wave of Deep Learning: The Historical
Path and Future Outlook [Perspectives]. Deng, L., MSP Jan. 2018 180-177

Deep Convolutional Neural Networks [Lecture Notes]. Gonzalez, R., MSP
Nov. 2018 79-87

Deep Learning for Understanding Faces: Machines May Be Just as Good,
or Better, than Humans. Ranjan, R., +, MSP Jan. 2018 66-83

Model Compression and Acceleration for Deep Neural Networks: The Prin-
ciples, Progress, and Challenges. Cheng, Y., +, MSP Jan. 2018 126-136

Using Deep Neural Networks for Inverse Problems in Imaging: Beyond An-
alytical Methods. Lucas, A., +, MSP Jan. 2018 20-36

Neuroimaging
Electroencephalography Source Connectivity: Aiming for High Resolution
of Brain Networks in Time and Space. Hassan, M., +, MSP May 2018 81-96

Neuroscience
Electroencephalography Source Connectivity: Aiming for High Resolution
of Brain Networks in Time and Space. Hassan, M., +, MSP May 2018 81-96

Next generation networking
Advances in Seismic Data Compression via Learning from Data: Compres-
sion for Seismic Data Acquisition. Payani, A., +, MSP March 2018 51-61

Nonlinear filters
A Bayesian Interpretation of Distributed Diffusion Filtering Algorithms
[Lecture Notes]. Bruno, M., +, MSP May 2018 118-123

Nuclear measurements
Low-Rank Matrix Completion [Lecture Notes]. Chi, Y., MSP Sept. 2018
178-181

Numerical stability
Observer-Based Recursive Sliding Discrete Fourier Transform [Tips &
Tricks]. Kollar, Z., +, MSP Nov. 2018 100-106

O

Object detection
Advanced Deep-Learning Techniques for Salient and Category-Specific Ob-
ject Detection: A Survey. Han, J., +, MSP Jan. 2018 84-100

Object recognition
[For Your Consideration]. MSP Sept. 2018 186
Errata. MSP Jan. 2018 178

Observers
Observer-Based Recursive Sliding Discrete Fourier Transform [Tips &
Tricks]. Kollar, Z., +, MSP Nov. 2018 100-106

Oil drilling
Advances in Seismic Data Compression via Learning from Data: Compres-
sion for Seismic Data Acquisition. Payani, A., +, MSP March 2018 51-61

Array Processing in Microseismic Monitoring: Detection, Enhancement,
and Localization of Induced Seismicity. McClellan, J., +, MSP March
2018 99-111

Subsurface Structure Analysis Using Computational Interpretation and
Learning: A Visual Signal Processing Perspective. AlRegib, G., +, MSP
March 2018 82-98

Wireless Digital Communication Technologies for Drilling: Communication
in the Bits/s Regime. Jarrot, A., +, MSP March 2018 112-120

Optical fiber cables
A Seismic Shift in Scalable Acquisition Demands New Processing: Fiber-
Optic Seismic Signal Retrieval in Urban Areas with Unsupervised Learning
for Coherent Noise Removal. Martin, E., +, MSP March 2018 31-40

Optical fiber communication
The "Light" Side of Signal Processing: Research Teams Work Toward a
Signal Processing-Enabled Photonics Future [Special Reports]. Edwards,
J., MSP May 2018 11-14

Optical fiber sensors
A Seismic Shift in Scalable Acquisition Demands New Processing: Fiber-
Optic Seismic Signal Retrieval in Urban Areas with Unsupervised Learning
for Coherent Noise Removal. Martin, E., +, MSP March 2018 31-40

Optical fiber theory
A Seismic Shift in Scalable Acquisition Demands New Processing: Fiber-
Optic Seismic Signal Retrieval in Urban Areas with Unsupervised Learning
for Coherent Noise Removal. Martin, E., +, MSP March 2018 31-40

Optical signal processing
The "Light" Side of Signal Processing: Research Teams Work Toward a
Signal Processing-Enabled Photonics Future [Special Reports]. Edwards,
J., MSP May 2018 11-14

Optimization
Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Esti-
mation: Recent Theory and Fast Algorithms via Convex and Nonconvex
Optimization. Chen, Y., +, MSP July 2018 14-31

Low-Rank Matrix Completion [Lecture Notes]. Chi, Y., MSP Sept. 2018
178-181

Oral communication
Cognitive Speech Coding: Examining the Impact of Cognitive Speech Pro-
cessing on Speech Compression. Cernak, M., +, MSP May 2018 97-109

P

Partial transmit sequences
Sparse Signal Processing for Grant-Free Massive Connectivity: A Future
Paradigm for Random Access Protocols in the Internet of Things. Liu, L.,
+, MSP Sept. 2018 88-99

Patient monitoring
Signal Processing Leads to New Clinical Medicine Approaches: Innovative
Methods Promise Improved Patient Diagnoses and Treatments [Special Re-
ports]. Edwards, J., MSP Nov. 2018 12-15

Peer-to-peer computing
Transforming Energy Networks via Peer-to-Peer Energy Trading: The
Potential of Game-Theoretic Approaches. Tushar, W., +, MSP July 2018
90-111

Permeability
Digital Rock Physics: Using CT Scans to Compute Rock Properties. Al-Mar-
zouqi, H., MSP March 2018 121-131

Perturbation methods
[For Your Consideration]. MSP Sept. 2018 186

Petroleum industry
Digital Rock Physics: Using CT Scans to Compute Rock Properties. Al-Mar-
zouqi, H., MSP March 2018 121-131

Phase shift keying
Wireless Digital Communication Technologies for Drilling: Communication
in the Bits/s Regime. Jarrot, A., +, MSP March 2018 112-120

Photonics
The "Light" Side of Signal Processing: Research Teams Work Toward a
Signal Processing-Enabled Photonics Future [Special Reports]. Edwards,
J., MSP May 2018 11-14

Pollution measurement
The Internet of Things: Secure Distributed Inference. Chen, Y., +, MSP Sept.
2018 64-75

Pose estimation
Deep Learning for Understanding Faces: Machines May Be Just as Good,
or Better, than Humans. Ranjan, R., +, MSP Jan. 2018 66-83

Position measurement
Efficient Multisensor Localization for the Internet of Things: Exploring a
New Class of Scalable Localization Algorithms. Win, M., +, MSP Sept.
2018 153-167

Power grid
Transforming Energy Networks via Peer-to-Peer Energy Trading: The
Potential of Game-Theoretic Approaches. Tushar, W., +, MSP July 2018
90-111

Power markets
Transforming Energy Networks via Peer-to-Peer Energy Trading: The
Potential of Game-Theoretic Approaches. Tushar, W., +, MSP July 2018
90-111

Prediction algorithms
Complex Autoregressive Time-Frequency Analysis: Estimation of Time-
Varying Periodic Signal Components. Andrade, M., +, MSP March 2018
142-153
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Well-Log and Seismic Data Integration for Reservoir Characterization: A
Signal Processing and Machine-Learning Perspective. Chaki, S., +, MSP
March 2018 72-81

Predictive models
Cognitive Speech Coding: Examining the Impact of Cognitive Speech Pro-
cessing on Speech Compression. Cernak, M., +, MSP May 2018 97-109

Internet of Things for Green Building Management: Disruptive Innovations
Through Low-Cost Sensor Technology and Artificial Intelligence. Tushar,
W., +, MSP Sept. 2018 100-110

Model Selection Techniques: An Overview. Ding, J., +, MSP Nov. 2018 16-34
Pricing

Transforming Energy Networks via Peer-to-Peer Energy Trading: The
Potential of Game-Theoretic Approaches. Tushar, W., +, MSP July 2018
90-111

Principal component analysis
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and
Robust Subspace Recovery. Vaswani, N., +, MSP July 2018 32-55

Privacy
IoT Security Techniques Based on Machine Learning: How Do IoT Devices
Use AI to Enhance Security? Xiao, L., +, MSP Sept. 2018 41-49

Security and Privacy for the Industrial Internet of Things: An Overview of
Approaches to Safeguarding Endpoints. Zhou, L., +, MSP Sept. 2018 76-87

Probabilistic logic
Introducing Information Measures via Inference [Lecture Notes]. Simeone,
O., MSP Jan. 2018 167-171

The Deep Regression Bayesian Network and Its Applications: Probabilistic
Deep Learning for Computer Vision. Nie, S., +, MSP Jan. 2018 101-111

Prosthetics
Errata. MSP Jan. 2018 16
Signal Processing Powers Next-Generation Prosthetics: Researchers Inves-
tigate Techniques That Enable Artificial Limbs to Behave More Like Their
Natural Counterparts [Special Reports]. Edwards, J., MSP Jan. 2018 13-16

Pulse modulation
Analog-to-Digital Compression: A New Paradigm for Converting Signals
to Bits. Kipnis, A., +, MSP May 2018 16-39

Q

Quantization (signal)
Analog-to-Digital Compression: A New Paradigm for Converting Signals
to Bits. Kipnis, A., +, MSP May 2018 16-39

Model Compression and Acceleration for Deep Neural Networks: The Prin-
ciples, Progress, and Challenges. Cheng, Y., +, MSP Jan. 2018 126-136

Utility Metrics for Assessment and Subset Selection of Input Variables for
Linear Estimation [Tips & Tricks]. Bertrand, A., MSP Nov. 2018 93-99

R

Radar
Approaches to Secure Inference in the Internet of Things: Performance
Bounds, Algorithms, and Effective Attacks on IoT Sensor Networks.
Zhang, J., +, MSP Sept. 2018 50-63

Radar antennas
Sub-Nyquist Radar Systems: Temporal, Spectral, and Spatial Compression.
Cohen, D., +, MSP Nov. 2018 35-58

Radar imaging
Sub-Nyquist Radar Systems: Temporal, Spectral, and Spatial Compression.
Cohen, D., +, MSP Nov. 2018 35-58

Radar signal processing
Cognitive Radars: On the Road to Reality: Progress Thus Far and Possibili-
ties for the Future. Greco, M., +, MSP July 2018 112-125

Radar tracking
Cognitive Radars: On the Road to Reality: Progress Thus Far and Possibili-
ties for the Future. Greco, M., +, MSP July 2018 112-125

Radio frequency
Analog-to-Digital Cognitive Radio: Sampling, Detection, and Hardware.
Cohen, D., +, MSP Jan. 2018 137-166

Practical Backscatter Communication Systems for Battery-Free Internet of
Things: A Tutorial and Survey of Recent Research. Xu, C., +, MSP Sept.
2018 16-27

Radio spectrum management
Analog-to-Digital Cognitive Radio: Sampling, Detection, and Hardware.
Cohen, D., +, MSP Jan. 2018 137-166

Radiofrequency identification
From Surveillance to Digital Twin: Challenges and Recent Advances of
Signal Processing for Industrial Internet of Things. He, Y., +, MSP Sept.
2018 120-129

Microlocation for Smart Buildings in the Era of the Internet of Things: A
Survey of Technologies, Techniques, and Approaches. Spachos, P., +, MSP
Sept. 2018 140-152

Ranking (statistics)
A Feature Article Cluster on Exploiting Structure in Data Analytics: Low-
Rank and Sparse Structures [From the Guest Editor]. Vaswani, N., MSP
July 2018 12-13

Real-time systems
Real-Time Ultrasound Thermography and Thermometry [Life Sciences].
Ebbini, E., +, MSP March 2018 166-174

Wireless Digital Communication Technologies for Drilling: Communication
in the Bits/s Regime. Jarrot, A., +, MSP March 2018 112-120

Receivers
Array Processing in Microseismic Monitoring: Detection, Enhancement,
and Localization of Induced Seismicity. McClellan, J., +, MSP March
2018 99-111

Sub-Nyquist Radar Systems: Temporal, Spectral, and Spatial Compression.
Cohen, D., +, MSP Nov. 2018 35-58

Reflectivity
Improving Sparse Multichannel Blind Deconvolution with Correlated
Seismic Data: Foundations and Further Results. Nose-Filho, K., +, MSP
March 2018 41-50

Reflector antennas
The Art of Signal Processing in Backscatter Radio for µW (or Less) In-
ternet of Things: Intelligent Signal Processing and Backscatter Radio En-
abling Batteryless Connectivity. Bletsas, A., +, MSP Sept. 2018 28-40

Remote sensing
Subsurface Exploration: Recent Advances in Geo-Signal Processing, Inter-
pretation, and Learning [From the Guest Editors]. AlRegib, G., +, MSP
March 2018 16-18

Rendering (computer graphics)
Signal Processing Supports a New Wave of Audio Research: Spatial and
Immersive Audio Mimics Real-World Sound Environments [Special Re-
ports]. Edwards, J., MSP March 2018 12-15

Renewable energy sources
Privacy-Aware Smart Metering: Progress and Challenges. Giaconi, G., +,
MSP Nov. 2018 59-78

Transforming Energy Networks via Peer-to-Peer Energy Trading: The
Potential of Game-Theoretic Approaches. Tushar, W., +, MSP July 2018
90-111

Research and development
Automation Is Coming to Research [In the Spotlight]. Loskot, P., MSP July
2018 140-138

Something to Talk About: Signal Processing in Speech and Audiology Re-
search: Promising Investigations Explore New Opportunities in Human
Communication [Special Reports]. Edwards, J., MSP Nov. 2018 8-12

The "Light" Side of Signal Processing: Research Teams Work Toward a
Signal Processing-Enabled Photonics Future [Special Reports]. Edwards,
J., MSP May 2018 11-14

Reservoirs
Digital Rock Physics: Using CT Scans to Compute Rock Properties. Al-Mar-
zouqi, H., MSP March 2018 121-131

Well-Log and Seismic Data Integration for Reservoir Characterization: A
Signal Processing and Machine-Learning Perspective. Chaki, S., +, MSP
March 2018 72-81

Resonantor filters
Observer-Based Recursive Sliding Discrete Fourier Transform [Tips &
Tricks]. Kollar, Z., +, MSP Nov. 2018 100-106

Resonators
Observer-Based Recursive Sliding Discrete Fourier Transform [Tips &
Tricks]. Kollar, Z., +, MSP Nov. 2018 100-106

RFID tags
Signal Processing Opens the Internet of Things to a New World of Possibil-
ities: Research Leads to New Internet of Things Technologies and Appli-
cations [Special Reports]. Edwards, J., MSP Sept. 2018 9-12

Robots
Errata. MSP Jan. 2018 16
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Robustness
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and
Robust Subspace Recovery. Vaswani, N., +, MSP July 2018 32-55

Rocks
Digital Rock Physics: Using CT Scans to Compute Rock Properties. Al-Mar-
zouqi, H., MSP March 2018 121-131

Improving Sparse Multichannel Blind Deconvolution with Correlated
Seismic Data: Foundations and Further Results. Nose-Filho, K., +, MSP
March 2018 41-50

S

Sampling methods
Analog-to-Digital Compression: A New Paradigm for Converting Signals
to Bits. Kipnis, A., +, MSP May 2018 16-39

Scattering
Retrieving Low Wavenumber Information in FWI: An Overview of the
Cycle-Skipping Phenomenon and Solutions. Hu, W., +, MSP March 2018
132-141

Seismic measurements
A Seismic Shift in Scalable Acquisition Demands New Processing: Fiber-
Optic Seismic Signal Retrieval in Urban Areas with Unsupervised Learning
for Coherent Noise Removal. Martin, E., +, MSP March 2018 31-40

Advances in Seismic Data Compression via Learning from Data: Compres-
sion for Seismic Data Acquisition. Payani, A., +, MSP March 2018 51-61

Improving Sparse Multichannel Blind Deconvolution with Correlated
Seismic Data: Foundations and Further Results. Nose-Filho, K., +, MSP
March 2018 41-50

Machine Learning for Volcano-Seismic Signals: Challenges and Perspec-
tives. Malfante, M., +, MSP March 2018 20-30

Retrieving Low Wavenumber Information in FWI: An Overview of the
Cycle-Skipping Phenomenon and Solutions. Hu, W., +, MSP March 2018
132-141

Semantics
Conditional Random Fields Meet Deep Neural Networks for Semantic Seg-
mentation: Combining Probabilistic Graphical Models with Deep Learning
for Structured Prediction. Arnab, A., +, MSP Jan. 2018 37-52

Generative Adversarial Networks: An Overview. Creswell, A., +, MSP Jan.
2018 53-65

Recent Advances in Zero-Shot Recognition: Toward Data-Efficient Under-
standing of Visual Content. Fu, Y., +, MSP Jan. 2018 112-125

Sensor systems
A Survey on Smart Homes for Aging in Place: Toward Solutions to the Spe-
cific Needs of the Elderly. Nathan, V., +, MSP Sept. 2018 111-119

Sensors
Analog-to-Digital Cognitive Radio: Sampling, Detection, and Hardware.
Cohen, D., +, MSP Jan. 2018 137-166

Correlation Awareness in Low-Rank Models: Sampling, Algorithms, and
Fundamental Limits. Pal, P., MSP July 2018 56-71

Efficient Multisensor Localization for the Internet of Things: Exploring a
New Class of Scalable Localization Algorithms. Win, M., +, MSP Sept.
2018 153-167

Sparse Representation for Wireless Communications: A Compressive
Sensing Approach. Qin, Z., +, MSP May 2018 40-58

Sparse Signal Processing for Grant-Free Massive Connectivity: A Future
Paradigm for Random Access Protocols in the Internet of Things. Liu, L.,
+, MSP Sept. 2018 88-99

The Promise of Radio Analytics: A Future Paradigm of Wireless Positioning,
Tracking, and Sensing. Wang, B., +, MSP May 2018 59-80

Signal processing
Electroencephalography Source Connectivity: Aiming for High Resolution
of Brain Networks in Time and Space. Hassan, M., +, MSP May 2018 81-96

From Surveillance to Digital Twin: Challenges and Recent Advances of
Signal Processing for Industrial Internet of Things. He, Y., +, MSP Sept.
2018 120-129

Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Esti-
mation: Recent Theory and Fast Algorithms via Convex and Nonconvex
Optimization. Chen, Y., +, MSP July 2018 14-31

Internet of Things for Green Building Management: Disruptive Innovations
Through Low-Cost Sensor Technology and Artificial Intelligence. Tushar,
W., +, MSP Sept. 2018 100-110

Signal Processing and the Internet of Things [From the Guest Editors]. Xu,
C., +, MSP Sept. 2018 13-15

Signal Processing Opens the Internet of Things to a New World of Possibil-
ities: Research Leads to New Internet of Things Technologies and Appli-
cations [Special Reports]. Edwards, J., MSP Sept. 2018 9-12

Signal Processing Supports a New Wave of Audio Research: Spatial and
Immersive Audio Mimics Real-World Sound Environments [Special Re-
ports]. Edwards, J., MSP March 2018 12-15

Sparse Signal Processing for Grant-Free Massive Connectivity: A Future
Paradigm for Random Access Protocols in the Internet of Things. Liu, L.,
+, MSP Sept. 2018 88-99

Transforming Energy Networks via Peer-to-Peer Energy Trading: The
Potential of Game-Theoretic Approaches. Tushar, W., +, MSP July 2018
90-111

What Is a Signal? [Lecture Notes]. Chakravorty, P., MSP Sept. 2018 175-177
Signal processing algorithms

[For Your Consideration]. MSP Sept. 2018 186
A Bayesian Interpretation of Distributed Diffusion Filtering Algorithms
[Lecture Notes]. Bruno, M., +, MSP May 2018 118-123

An Approximate Representation of the Fourier Spectra of Irregularly Sam-
pled Multidimensional Functions: A Cost-Effective, Memory-Saving Al-
gorithm. Santos de Oliveira, A., MSP March 2018 62-71

Approaches to Secure Inference in the Internet of Things: Performance
Bounds, Algorithms, and Effective Attacks on IoT Sensor Networks.
Zhang, J., +, MSP Sept. 2018 50-63

Artificial Intelligence in the Rising Wave of Deep Learning: The Historical
Path and Future Outlook [Perspectives]. Deng, L., MSP Jan. 2018 180-177

Complex Autoregressive Time-Frequency Analysis: Estimation of Time-
Varying Periodic Signal Components. Andrade, M., +, MSP March 2018
142-153

Crowd-Based Learning of Spatial Fields for the Internet of Things: From
Harvesting of Data to Inference. Arias-de-Reyna, E., +, MSP Sept. 2018
130-139

Efficient Multisensor Localization for the Internet of Things: Exploring a
New Class of Scalable Localization Algorithms. Win, M., +, MSP Sept.
2018 153-167

Errata. MSP Jan. 2018 16
Forensic Camera Model Identification: Highlights from the IEEE Signal
Processing Cup 2018 Student Competition [SP Competitions]. Stamm, M.,
+, MSP Sept. 2018 168-174

Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Esti-
mation: Recent Theory and Fast Algorithms via Convex and Nonconvex
Optimization. Chen, Y., +, MSP July 2018 14-31

Low-Rank Matrix Completion [Lecture Notes]. Chi, Y., MSP Sept. 2018
178-181

Machine Learning for Volcano-Seismic Signals: Challenges and Perspec-
tives. Malfante, M., +, MSP March 2018 20-30

Observer-Based Recursive Sliding Discrete Fourier Transform [Tips &
Tricks]. Kollar, Z., +, MSP Nov. 2018 100-106

Privacy-Aware Smart Metering: Progress and Challenges. Giaconi, G., +,
MSP Nov. 2018 59-78

Retrieving Low Wavenumber Information in FWI: An Overview of the
Cycle-Skipping Phenomenon and Solutions. Hu, W., +, MSP March 2018
132-141

Security and Privacy for the Industrial Internet of Things: An Overview of
Approaches to Safeguarding Endpoints. Zhou, L., +, MSP Sept. 2018 76-87

Signal Processing Leads to New Clinical Medicine Approaches: Innovative
Methods Promise Improved Patient Diagnoses and Treatments [Special Re-
ports]. Edwards, J., MSP Nov. 2018 12-15

Well-Log and Seismic Data Integration for Reservoir Characterization: A
Signal Processing and Machine-Learning Perspective. Chaki, S., +, MSP
March 2018 72-81

Signal resolution
Complex Autoregressive Time-Frequency Analysis: Estimation of Time-
Varying Periodic Signal Components. Andrade, M., +, MSP March 2018
142-153

Electroencephalography Source Connectivity: Aiming for High Resolution
of Brain Networks in Time and Space. Hassan, M., +, MSP May 2018 81-96

Generative Adversarial Networks: An Overview. Creswell, A., +, MSP Jan.
2018 53-65

Well-Log and Seismic Data Integration for Reservoir Characterization: A
Signal Processing and Machine-Learning Perspective. Chaki, S., +, MSP
March 2018 72-81

+ Check author entry for coauthors
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Signal to noise ratio
Array Processing in Microseismic Monitoring: Detection, Enhancement,
and Localization of Induced Seismicity. McClellan, J., +, MSP March
2018 99-111

Silicon compounds
Practical Backscatter Communication Systems for Battery-Free Internet of
Things: A Tutorial and Survey of Recent Research. Xu, C., +, MSP Sept.
2018 16-27

Smart buildings
Microlocation for Smart Buildings in the Era of the Internet of Things: A
Survey of Technologies, Techniques, and Approaches. Spachos, P., +, MSP
Sept. 2018 140-152

Smart devices
The Promise of Radio Analytics: A Future Paradigm of Wireless Positioning,
Tracking, and Sensing. Wang, B., +, MSP May 2018 59-80

Smart grids
Privacy-Aware Smart Metering: Progress and Challenges. Giaconi, G., +,
MSP Nov. 2018 59-78

The Internet of Things: Secure Distributed Inference. Chen, Y., +, MSP Sept.
2018 64-75

Transforming Energy Networks via Peer-to-Peer Energy Trading: The
Potential of Game-Theoretic Approaches. Tushar, W., +, MSP July 2018
90-111

Smart homes
A Survey on Smart Homes for Aging in Place: Toward Solutions to the Spe-
cific Needs of the Elderly. Nathan, V., +, MSP Sept. 2018 111-119

Smart meters
Privacy-Aware Smart Metering: Progress and Challenges. Giaconi, G., +,
MSP Nov. 2018 59-78

Solid modeling
Signal Processing Supports a New Wave of Audio Research: Spatial and
Immersive Audio Mimics Real-World Sound Environments [Special Re-
ports]. Edwards, J., MSP March 2018 12-15

Space heating
[For Your Consideration]. MSP Sept. 2018 186

Sparse matrices
A Feature Article Cluster on Exploiting Structure in Data Analytics: Low-
Rank and Sparse Structures [From the Guest Editor]. Vaswani, N., MSP
July 2018 12-13

Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Esti-
mation: Recent Theory and Fast Algorithms via Convex and Nonconvex
Optimization. Chen, Y., +, MSP July 2018 14-31

Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and
Robust Subspace Recovery. Vaswani, N., +, MSP July 2018 32-55

Sparse Representation for Wireless Communications: A Compressive
Sensing Approach. Qin, Z., +, MSP May 2018 40-58

Theoretical Foundations of Deep Learning via Sparse Representations: A
Multilayer Sparse Model and Its Connection to Convolutional Neural Net-
works. Papyan, V., +, MSP July 2018 72-89

Spatial analysis
Crowd-Based Learning of Spatial Fields for the Internet of Things: From
Harvesting of Data to Inference. Arias-de-Reyna, E., +, MSP Sept. 2018
130-139

Spatial resolution
Retrieving Low Wavenumber Information in FWI: An Overview of the
Cycle-Skipping Phenomenon and Solutions. Hu, W., +, MSP March 2018
132-141

Special issues and sections
A Feature Article Cluster on Exploiting Structure in Data Analytics: Low-
Rank and Sparse Structures [From the Guest Editor]. Vaswani, N., MSP
July 2018 12-13

Deep Learning for Visual Understanding: Part 2 [From the Guest Editors].
Porikli, F., +, MSP Jan. 2018 17-19

Signal Processing and the Internet of Things [From the Guest Editors]. Xu,
C., +, MSP Sept. 2018 13-15

Subsurface Exploration: Recent Advances in Geo-Signal Processing, Inter-
pretation, and Learning [From the Guest Editors]. AlRegib, G., +, MSP
March 2018 16-18

Speech coding
Cognitive Speech Coding: Examining the Impact of Cognitive Speech Pro-
cessing on Speech Compression. Cernak, M., +, MSP May 2018 97-109

Speech enhancement
Reconstruction of a Signal from the Real Part of Its Discrete Fourier Trans-
form [Tips & Tricks]. So, S., +, MSP March 2018 162-174

Speech processing
Cognitive Speech Coding: Examining the Impact of Cognitive Speech Pro-
cessing on Speech Compression. Cernak, M., +, MSP May 2018 97-109

Reconstruction of a Signal from the Real Part of Its Discrete Fourier Trans-
form [Tips & Tricks]. So, S., +, MSP March 2018 162-174

Speech recognition
Artificial Intelligence in the Rising Wave of Deep Learning: The Historical
Path and Future Outlook [Perspectives]. Deng, L., MSP Jan. 2018 180-177

Cognitive Speech Coding: Examining the Impact of Cognitive Speech Pro-
cessing on Speech Compression. Cernak, M., +, MSP May 2018 97-109

SPICE
Errata. MSP Jan. 2018 178

Spread spectrum communication
What Is a Signal? [Lecture Notes]. Chakravorty, P., MSP Sept. 2018 175-177

State-space methods
A Bayesian Interpretation of Distributed Diffusion Filtering Algorithms
[Lecture Notes]. Bruno, M., +, MSP May 2018 118-123

Stochastic processes
[For Your Consideration]. MSP Sept. 2018 186

Surface impedance
Array Processing in Microseismic Monitoring: Detection, Enhancement,
and Localization of Induced Seismicity. McClellan, J., +, MSP March
2018 99-111

T

Target recognition
Recent Advances in Zero-Shot Recognition: Toward Data-Efficient Under-
standing of Visual Content. Fu, Y., +, MSP Jan. 2018 112-125

Target tracking
Cognitive Radars: On the Road to Reality: Progress Thus Far and Possibili-
ties for the Future. Greco, M., +, MSP July 2018 112-125

Task analysis
Deep Convolutional Neural Networks [Lecture Notes]. Gonzalez, R., MSP
Nov. 2018 79-87

Machine Learning for Volcano-Seismic Signals: Challenges and Perspec-
tives. Malfante, M., +, MSP March 2018 20-30

Theoretical Foundations of Deep Learning via Sparse Representations: A
Multilayer Sparse Model and Its Connection to Convolutional Neural Net-
works. Papyan, V., +, MSP July 2018 72-89

What Is a Signal? [Lecture Notes]. Chakravorty, P., MSP Sept. 2018 175-177
Telecommunications

A Seismic Shift in Scalable Acquisition Demands New Processing: Fiber-
Optic Seismic Signal Retrieval in Urban Areas with Unsupervised Learning
for Coherent Noise Removal. Martin, E., +, MSP March 2018 31-40

Telemetry
Wireless Digital Communication Technologies for Drilling: Communication

Temperature dependence
Real-Time Ultrasound Thermography and Thermometry [Life Sciences].
Ebbini, E., +, MSP March 2018 166-174

Temperature measurement
The Internet of Things: Secure Distributed Inference. Chen, Y., +, MSP Sept.
2018 64-75

Wireless Digital Communication Technologies for Drilling: Communication
in the Bits/s Regime. Jarrot, A., +, MSP March 2018 112-120

in the Bits/s Regime. Jarrot, A., +, MSP March 2018 112-120

Temperature sensors
Real-Time Ultrasound Thermography and Thermometry [Life Sciences].
Ebbini, E., +, MSP March 2018 166-174

Testing
Introducing Information Measures via Inference [Lecture Notes]. Simeone,
O., MSP Jan. 2018 167-171

On Hypothesis Testing for Comparing Image Quality Assessment Metrics
[Tips & Tricks]. Zhu, R., +, MSP July 2018 133-136

Time measurement
Efficient Multisensor Localization for the Internet of Things: Exploring a
New Class of Scalable Localization Algorithms. Win, M., +, MSP Sept.
2018 153-167

Time series analysis
Electroencephalography Source Connectivity: Aiming for High Resolution
of Brain Networks in Time and Space. Hassan, M., +, MSP May 2018 81-96
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Time-domain analysis
Closed-Form Impulse Responses of Linear Time-Invariant Systems: A Uni-
fying Approach [Lecture Notes]. Shahrrava, B., MSP July 2018 126-132

Time-frequency analysis
Complex Autoregressive Time-Frequency Analysis: Estimation of Time-
Varying Periodic Signal Components. Andrade, M., +, MSP March 2018
142-153

Sliding Discrete Fourier Transform with Kernel Windowing [Lecture
Notes]. Rafii, Z., MSP Nov. 2018 88-92

Something to Talk About: Signal Processing in Speech and Audiology Re-
search: Promising Investigations Explore New Opportunities in Human
Communication [Special Reports]. Edwards, J., MSP Nov. 2018 8-12

Tracking
The Promise of Radio Analytics: A Future Paradigm of Wireless Positioning,
Tracking, and Sensing. Wang, B., +, MSP May 2018 59-80

Training
Deep Convolutional Neural Networks [Lecture Notes]. Gonzalez, R., MSP
Nov. 2018 79-87

Recent Advances in Zero-Shot Recognition: Toward Data-Efficient Under-
standing of Visual Content. Fu, Y., +, MSP Jan. 2018 112-125

Training data
Generative Adversarial Networks: An Overview. Creswell, A., +, MSP Jan.
2018 53-65

Model Compression and Acceleration for Deep Neural Networks: The Prin-
ciples, Progress, and Challenges. Cheng, Y., +, MSP Jan. 2018 126-136

The Deep Regression Bayesian Network and Its Applications: Probabilistic
Deep Learning for Computer Vision. Nie, S., +, MSP Jan. 2018 101-111

Transfer functions
Converting Infinite Impulse Response Filters to Parallel Form [Tips &
Tricks]. Bank, B., MSP May 2018 124-130

Observer-Based Recursive Sliding Discrete Fourier Transform [Tips &
Tricks]. Kollar, Z., +, MSP Nov. 2018 100-106

Signal Processing Supports a New Wave of Audio Research: Spatial and
Immersive Audio Mimics Real-World Sound Environments [Special Re-
ports]. Edwards, J., MSP March 2018 12-15

Transient analysis
Machine Learning for Volcano-Seismic Signals: Challenges and Perspec-
tives. Malfante, M., +, MSP March 2018 20-30

Transmitters
Cognitive Radars: On the Road to Reality: Progress Thus Far and Possibili-
ties for the Future. Greco, M., +, MSP July 2018 112-125

Tutorials
Reconstruction of a Signal from the Real Part of Its Discrete Fourier Trans-
form [Tips & Tricks]. So, S., +, MSP March 2018 162-174

Utility Metrics for Assessment and Subset Selection of Input Variables for
Linear Estimation [Tips & Tricks]. Bertrand, A., MSP Nov. 2018 93-99

TV
Analog-to-Digital Cognitive Radio: Sampling, Detection, and Hardware.
Cohen, D., +, MSP Jan. 2018 137-166

U

Ultrasonic imaging
Real-Time Ultrasound Thermography and Thermometry [Life Sciences].
Ebbini, E., +, MSP March 2018 166-174

Reconstruction of a Signal from the Real Part of Its Discrete Fourier Trans-
form [Tips & Tricks]. So, S., +, MSP March 2018 162-174

Uncertainty
The Deep Regression Bayesian Network and Its Applications: Probabilistic
Deep Learning for Computer Vision. Nie, S., +, MSP Jan. 2018 101-111

V

Videos
Deep Learning for Understanding Faces: Machines May Be Just as Good,
or Better, than Humans. Ranjan, R., +, MSP Jan. 2018 66-83

Visual perception
Deep Learning for Visual Understanding: Part 2 [From the Guest Editors].
Porikli, F., +, MSP Jan. 2018 17-19

Visual systems
Using Deep Neural Networks for Inverse Problems in Imaging: Beyond An-
alytical Methods. Lucas, A., +, MSP Jan. 2018 20-36

Visualization
Advanced Deep-Learning Techniques for Salient and Category-Specific Ob-
ject Detection: A Survey. Han, J., +, MSP Jan. 2018 84-100

Conditional Random Fields Meet Deep Neural Networks for Semantic Seg-
mentation: Combining Probabilistic Graphical Models with Deep Learning
for Structured Prediction. Arnab, A., +, MSP Jan. 2018 37-52

Deep Learning for Visual Understanding: Part 2 [From the Guest Editors].
Porikli, F., +, MSP Jan. 2018 17-19

Recent Advances in Zero-Shot Recognition: Toward Data-Efficient Under-
standing of Visual Content. Fu, Y., +, MSP Jan. 2018 112-125

Volcanoes
Machine Learning for Volcano-Seismic Signals: Challenges and Perspec-
tives. Malfante, M., +, MSP March 2018 20-30

W

Wearable computers
Bringing Wearable Sensors into the Classroom: A Participatory Approach
[SP Education]. Kanna, S., +, MSP May 2018 110-130

Wearable sensors
A Survey on Smart Homes for Aging in Place: Toward Solutions to the Spe-
cific Needs of the Elderly. Nathan, V., +, MSP Sept. 2018 111-119

Wireless communication
From Surveillance to Digital Twin: Challenges and Recent Advances of
Signal Processing for Industrial Internet of Things. He, Y., +, MSP Sept.
2018 120-129

Microlocation for Smart Buildings in the Era of the Internet of Things: A
Survey of Technologies, Techniques, and Approaches. Spachos, P., +, MSP
Sept. 2018 140-152

Sparse Representation for Wireless Communications: A Compressive
Sensing Approach. Qin, Z., +, MSP May 2018 40-58

The Promise of Radio Analytics: A Future Paradigm of Wireless Positioning,
Tracking, and Sensing. Wang, B., +, MSP May 2018 59-80

Wireless fidelity
Microlocation for Smart Buildings in the Era of the Internet of Things: A
Survey of Technologies, Techniques, and Approaches. Spachos, P., +, MSP
Sept. 2018 140-152

Wireless sensor networks
Crowd-Based Learning of Spatial Fields for the Internet of Things: From
Harvesting of Data to Inference. Arias-de-Reyna, E., +, MSP Sept. 2018
130-139

From Surveillance to Digital Twin: Challenges and Recent Advances of
Signal Processing for Industrial Internet of Things. He, Y., +, MSP Sept.
2018 120-129

Microlocation for Smart Buildings in the Era of the Internet of Things: A
Survey of Technologies, Techniques, and Approaches. Spachos, P., +, MSP
Sept. 2018 140-152

Signal Processing Opens the Internet of Things to a New World of Possibil-
ities: Research Leads to New Internet of Things Technologies and Appli-
cations [Special Reports]. Edwards, J., MSP Sept. 2018 9-12

Sparse Representation for Wireless Communications: A Compressive
Sensing Approach. Qin, Z., +, MSP May 2018 40-58

Sparse Signal Processing for Grant-Free Massive Connectivity: A Future
Paradigm for Random Access Protocols in the Internet of Things. Liu, L.,
+, MSP Sept. 2018 88-99

The Promise of Radio Analytics: A Future Paradigm of Wireless Positioning,
Tracking, and Sensing. Wang, B., +, MSP May 2018 59-80

Utility Metrics for Assessment and Subset Selection of Input Variables for
Linear Estimation [Tips & Tricks]. Bertrand, A., MSP Nov. 2018 93-99

+ Check author entry for coauthors
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of so-called grand challenges, which 
aim to objectively benchmark the state 
of the art and promote the open-source 
publication of standardized data sets, 
evaluation metrics, algorithms, and 
software tools. Various successful chal-
lenges have already been organized 
by BISP-TC members and colleagues 
in recent years, especially at ISBI and 
MICCAI, but much work remains in 
keeping them up to date and expanding 
and harmonizing them. This goes hand 
in hand with activities to integrate the 
best-performing data processing meth-
ods in user-friendly software tools and 
to catalog their design criteria, modes 
of operation, boundary conditions, and 
optimal parameter settings for the bene-
fit of both researchers and practitioners.

With these and many other ongo-
ing developments, the future is bright 
for bioimaging and signal processing. 
Everyone with an interest in the inter-
disciplinary scope and activities of the 
BISP-TC is cordially invited to register 
via the website as an affiliate member. 
Professionals with expertise in tech-

nologies complementary to those cov-
ered by the current BISP-TC members 
are especially encouraged to sign up. 
The same applies to professionals in 
industries working within the TC’s scope 
or on closely related topics. Elections of 
SPS members interested in becoming 
an associate member or full member are 
held yearly in the autumn. Membership 
in any form offers a great opportunity to 
get actively involved in groundbreaking 
activities and discussions to help shape 
the field of bioimaging and signal pro-
cessing. We look forward to welcoming 
many new members soon.
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Michiel Bacchiani and Eric Fosler-Lussier

An Overview of the IEEE SPS Speech and Language  
Technical Committee

s part of the IEEE Signal Processing 
Society (SPS), the Speech and Lan-
guage Technical Committee (SLTC) 

promotes research and development 
activities for technologies that are used 
to process speech and natural language. 

Much of the SLTC’s efforts are devoted 
to the annual IEEE International Confer-
ence on Acoustics, Speech, and Signal 
Processing (ICASSP), where the SLTC 
manages the review of papers covering 
speech and language and organizes 
conference sessions, special sessions, 
and tutorials. In addition, it promotes 
and supports various workshops, most 

prominently the Automatic Speech 
Recognition and Understanding (ASRU) 
and the Spoken Language Technology 
(SLT) workshops.

The ASRU and SLT workshops are 
both held biannually in alternating years. 
This year, the SLT workshop will be 
held in Athens, Greece [1]. The SLTC 
recently conducted a search for the venue 
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for ASRU 2019. A four-member work-
shop subcommittee disseminated calls 
for proposals as well as used personal 
connections to reach out and find strong 
groups that could potentially organize 
the workshops in diverse geographic 
locations. The subcommittee supported 
the prospective proposers in ensuring they 
constructed a viable, well-planned pro-
posal. The SLTC successfully gathered 
very strong collaborative proposals from 
three lead institutions: 
the Qatar Computing 
Research (for Doha, 
Qatar), the National 
University of Singa-
pore (for  Sentosa 
Island, Singapore),  
and Friedrich-Alex-
ander-Universität (for 
Cartagena, Colombia). 
The SLTC selected 
Singapore for ASRU 2019 in a close vote 
(all proposals were within four percent-
age points), demonstrating the significant 
influence of the proposers as well as the 
process to recruit and vet the workshops. 
We look forward to a successful ASRU 
2019 in Singapore!

Our speech and language community 
is strong and growing. Our 2017 annual 
election had 54 candidates for 19 posi-
tions, with 12 first-time members being 
elected. Our vice-chair election also had 
four candidates. ICASSP 2018 submis-
sions in our speech and language area 
were up as well, with a 40% increase in 
submissions (to 634) during 2017, repre-
senting a 22% share of papers presented 
at the conference. Our work also received 
significant appreciation as reflected by 
IEEE SPS awards including the Society 
Award earned by Alex Acero and the 
Meritorious Service Award earned by 
Mari Ostendorf. 

The most recent decade has wit-
nessed language technologies receiv-
ing wide acceptance by the general 
public. Speech recognition interfaces to 
smartphones and smart speakers that  

provide question-and-answer or dialog 
technologies are becoming unremark-
able in the eyes of consumers. As a 
result, the amount of available data 
from those interactions is growing 
very rapidly. This increase of data leads 
to a virtuous cycle where more data 
allows for larger and/or better-trained 
state-of-the-art neural network models. 
The systems’ improved performance, 
in turn, gives an incentive for users to 

engage more with this 
technology. As a result, 
our community has 
become increasingly 
entangled with the 
more fundamental 
research in machine 
lea rn ing,  and the 
recent maturing of 
SLT presents itself 
as a means to widen 

our community scope. Some exciting 
directions in that area include leverag-
ing neural machine learning with mul-
tiple objectives to transfer systems that 
work well in one condition to another 
space (e.g., robustness to unique noise 
conditions). We are also starting to see 
work that ties modalities together, such 
as learning techniques that map speech 
and language utterances to visual inputs 
(pictures, movies). This cross-modal 
integration will be an important direc-
tion for the future of our technical com-
mittee and a point of contact across 
technical committees.

For those interested in participating 
in our community, various opportunities 
exist. SLTC members are elected every 
November for a three-year term, with 
nominations proposed well in advance (as 
early as summer). For details of our last 
election nomination, see [2]. As space 
on the technical committee is limited (we 
typically have a 3:1 candidate to electee 
ratio), we also offer an affiliate member-
ship in our committee. Prospective appli-
cants should refer to [3] for details on how 
to apply for such a position.
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Erik Meijering and Arrate Muñoz-Barrutia

Spotlight on Bioimaging and Signal Processing

T he Bio-Imaging and Signal Process-
ing Technical Committee (BISP-TC) 
of the IEEE Signal Processing Soci-

ety (SPS) promotes activities in the broad 
technical areas of computerized image 
and signal processing with a clear focus 
on applications in biology and medicine. 
Specific topics of interest include image 
reconstruction, compressed sensing, 
superresolution, image restoration, re
gistration and segmentation, pattern rec-
ognition, object detection, localization, 
tracking, quantification and classifi
cation, machine learning, multimodal 
image and signal fusion, analytics, visu-
alization, and statistical modeling. Appli-
cation areas covered by the TC include 
biomedical imaging from nano to mac-
roscale, encompassing all modalities of 
molecular imaging and microscopy, ana-
tomical imaging, and functional imaging, 
as well as genomic signal processing, 
computational biology, and bioinformat-
ics, with the ultimate overarching aim of 
enabling precision medicine.

Since its creation in 2004, the TC has 
served as the expert review and organi-
zation panel for the IEEE International 
Symposium on Biomedical Imaging 
(ISBI) as well as the bioimaging and 
signal processing tracks of the IEEE 
International Conference on Acous-
tics, Speech, and Signal Processing and 
the IEEE International Conference 
on Image Processing. Over the years, 
members of the TC have played leading 
roles in these flagship SPS meetings and 

organized numerous workshops, special 
sessions, and tutorials to deepen the 
understanding of theoretical concepts, 
broaden their range of applications, and 
highlight emerging hot topics in the field.

The TC maintains strong ties with 
other communities within SPS, the 
IEEE, and beyond. For example, multi-
ple past and present members are active 
in the SPS Computational Imaging Spe-
cial Interest Group, the Engineering 
in Medicine and Biology Society Bio-
medical Imaging and Image Process-
ing TC, the cross-Society IEEE Life 
Sciences Technical Community, the 
Medical Image Computing and Com-
puter-Assisted Intervention Society 
(MICCAI), the International Society for 
Optical Engineering, and the Society for 
Industrial and Applied Mathematics. 
Many TC members also serve on the 
editorial boards of SPS publications, such 
as IEEE Transactions on Medical Imag-
ing, IEEE Transactions on Computation-
al Imaging, IEEE Transactions on Image 
Processing, and IEEE Transactions on 
Signal Processing.

Computerized image and signal pro-
cessing technologies have been key to 
biological research and medical diag-
nostics for at least a half-century. Revo-
lutionary inventions such as magnetic 
resonance imaging (2003 Nobel Prize), 
superresolution microscopy (2014 Nobel 
Prize), cryo-electron microscopy (2017 
Nobel Prize), and, in a sense, even the 
sequencing of the human genome (which 
will inevitably be awarded a Nobel Prize) 
all relied on or spurred the development 
of image and signal processing. As a con-

sequence, we now live in an era that 
is flooded with data produced by imag-
ing and sequencing devices and craves 
powerful solutions to extract maximum 
knowledge from them. Undoubtedly, 
machine-learning approaches, in particu-
lar, deep learning using artificial neural 
networks, will be an essential ingredient 
of these solutions and are already per-
vading the field, outperforming classical 
image and signal processing approaches 
in many tasks. But many open questions 
remain as to how they can be optimally 
designed and trained in a semi- or weakly 
supervised manner to get around the need 
for excessive human input in data annota-
tion and to improve their transferability 
between applications.

Another question is how to improve 
the interpretability of the decisions 
made by deep neural networks, which 
is crucial, especially in areas such as 
medical diagnostics, where accountabil-
ity is important and failures may have 
serious legal consequences. Notwith-
standing open questions, deep learning 
seems perfectly suited for integrative 
data processing in emerging fields, e.g., 
imaging genomics, in which multiscale 
and multimodal imaging and genom-
ic information are harnessed for the 
comprehensive and systematic diagno-
ses of complex diseases, such as cancer 
and dementia.

One activity that has stimulated the 
development of innovative solutions 
and has fostered collaborative efforts 
perhaps more than any is the organization 

Digital Object Identifier 10.1109/MSP.2018.2864772
Date of publication: 13 November 2018 (continued on page 125)



What + If = IEEE

420,000+ members in 160 countries.  
Embrace the largest, global, technical community.
People Driving Technological Innovation.

ieee.org/membership #IEEEmember

k n o w l e d g e       c o m m u n i t y       p r o f e s s i o n a l  d e v e l o p m e n t       c a r e e r  a d v a n c e m e n t



You can simulate, prototype, 
and verify wireless systems 
right in MATLAB. Learn how 
today’s MATLAB supports RF, 
LTE, WLAN and 5G development 
and SDR hardware.

mathworks.com/wireless

©
20

18
 T

he
 M

at
hW

or
ks

, I
nc

.

 WIRELESS
DESIGN

     MATLAB SPEAKS


	cover1r_35msp06
	cover2_35msp06
	001_35msp06
	002_35msp06
	003_35msp06
	004_35msp06
	005_35msp06
	006_35msp06
	007_35msp06
	008_35msp06
	009_35msp06
	010_35msp06
	011_35msp06
	012_35msp06
	013_35msp06
	014_35msp06
	015_35msp06
	016_35msp06
	017_35msp06
	018_35msp06
	019_35msp06
	020_35msp06
	021_35msp06
	022_35msp06
	023_35msp06
	024_35msp06
	025_35msp06
	026_35msp06
	027_35msp06
	028_35msp06
	029_35msp06
	030_35msp06
	031_35msp06
	032_35msp06
	033_35msp06
	034_35msp06
	035_35msp06
	036_35msp06
	037_35msp06
	038_35msp06
	039_35msp06
	040_35msp06
	041_35msp06
	042_35msp06
	043_35msp06
	044_35msp06
	045_35msp06
	046_35msp06
	047_35msp06
	048_35msp06
	049_35msp06
	050_35msp06
	051_35msp06
	052_35msp06
	053_35msp06
	054_35msp06
	055_35msp06
	056_35msp06
	057_35msp06
	058_35msp06
	059_35msp06
	060_35msp06
	061_35msp06
	062_35msp06
	063_35msp06
	064_35msp06
	065_35msp06
	066_35msp06
	067_35msp06
	068_35msp06
	069_35msp06
	070_35msp06
	071_35msp06
	072_35msp06
	073_35msp06
	074_35msp06
	075_35msp06
	076_35msp06
	077_35msp06
	078_35msp06
	079_35msp06
	080_35msp06
	081_35msp06
	082_35msp06
	083_35msp06
	084_35msp06
	085_35msp06
	086_35msp06
	087_35msp06
	088_35msp06
	089_35msp06
	090_35msp06
	091_35msp06
	092_35msp06
	093_35msp06
	094_35msp06
	095_35msp06
	096_35msp06
	097_35msp06
	098_35msp06
	099_35msp06
	100_35msp06
	101_35msp06
	102_35msp06
	103_35msp06
	104_35msp06
	105_35msp06
	106_35msp06
	107_35msp06
	108_35msp06
	109_35msp06
	110_35msp06
	111_35msp06
	112_35msp06
	113_35msp06
	114_35msp06
	115_35msp06
	116_35msp06
	117_35msp06
	118_35msp06
	119_35msp06
	120_35msp06
	121_35msp06
	122_35msp06
	123_35msp06
	124_35msp06
	125_35msp06
	126_35msp06
	127_35msp06
	128_35msp06
	cover3_35msp06
	cover4_35msp06

