2020 - Markos Papageorgiou

Markos Papageorgiou

Combatting congestion problems on freeways and urban centers, the vehicular traffic-flow modeling and control tools developed by Markos Papageorgiou are making travel safer and more efficient and are helping save energy and reduce emissions. His local ramp-metering algorithm ALINEA (developed in 1987) is recognized as a milestone in the field and is used around the world. The macroscopic simulation software METANET (developed in 1989) for freeway networks is still one of the most widely used traffic-flow tools. He introduced the concept of feedback in driver information and route guidance systems and contributed to the deployment of a large-scale implementation of travel-time displays in Paris, France, involving approximately 450 vehicle management systems. Developed in 2005, his coordinated ramp-metering algorithm HERO is widely considered the most advanced and efficient approach in this area.

An IEEE Life Fellow, Papageorgiou is a professor at the Technical University of Crete, Chania, Greece.

2019 - Hao Huang

Hao Huang

An innovator and technical leader of aircraft electrical power technologies, Hao Hung has been a driving force in the quest for developing the “more electric aircraft” (MEA) and beyond. The goal of MEA is to replace pneumatic and hydraulic systems with electric systems for quieter, more fuel-efficient, and environmentally friendly flight. Huang’s contributions to engine and power generation integration have considerably improved the building blocks for MEA. Huang successfully developed a regenerative and sensorless generation system incorporating a starter/generator and inverter/converter/controller that was lighter than initial generation systems. His system was used to generate 1 MW of 270 Vdc power from the dual spools of a turbine engine, which was an industry first. He was also the lead consultant on a program to develop an electrical system for next-generation aircraft with “no-bleed” engines for fuel savings and reduced carbon emissions. Beyond MEA, he is also a key technology contributor and promoter of “hybrid electric propulsion” (HEP), a major logical and progressive step to electrify aircraft beyond the electrification of the systems.

An IEEE Fellow, Huang is technology chief of General Electric Aviation Electrical Power, Dayton, OH, USA.

2018 - C.C. Chan


One of the earliest international authorities on electric vehicles, C.C. Chan has been at the forefront of developing technologies enabling clean and efficient transportation methods benefiting the environment. Chan has made extraordinary contributions to the theoretical analysis and optimization of electric machines, power electronic devices, converters, special mechanical structures, and cooling systems that meet the special needs of electric vehicles including adaptive decoupling control, electromagnetic and thermal field analysis, hybrid architectures, and energy management. Considered the first comprehensive book on the topic, Chan’s Modern Electric Vehicle Technology provided the fundamentals for modern electric vehicle technology, addressed key issues, and assessed their environmental impact. His recent research in smart charging and vehicle-to-grid systems has gained attention from not only automakers but also power utilities.

An IEEE Fellow, Chan is a professor with the University of Hong Kong’s Department of Electrical and Electronic Engineering, Hong Kong.

2017 - Claire J. Tomlin

Claire J. Tomlin

Claire J. Tomlin’s control systems expertise is making air transportation systems safer through collision avoidance techniques and avionics safety verification methods. Tomlin’s algorithms allow the development and analysis of control protocols that have guarantees of safety for hybrid system models, which represent the kinds of switched dynamical systems found in air transportation systems. Her work has been tested in simulation, on unmanned aerial vehicle test flights, and flown on commercial platforms. She built one of the first quadrotor testbeds for experimentation with these control protocols. Her methods were used to compute collision zones for two aircraft paired approaches and were flown on a Boeing T-33 test aircraft that was able to avoid collision with an F-15 flying “blunders” into its path. Her work is also integral to the development of the Next Generation Air Transportation System for modernizing air traffic control.


An IEEE Fellow, Tomlin is the Charles A. Desoer Chair in Engineering (EECS) at the University of California, Berkeley, CA, USA.


2016 - Petros Ioannou

Petros Ioannou

The pioneering innovations of Petros Ioannou have been instrumental in making adaptive cruise control (ACC) a practical reality and spurring its commercial adoption by the automotive industry. Using forward-looking sensors such as radar, ACC systems automatically adjust a vehicle’s speed to maintain a safe driving distance based on vehicles ahead of it. Unique to Ioannou’s work was implementing a time-headway approach to vehicle spacing instead of the popular belief of using vehicle-to-vehicle communications. By avoiding the complications of vehicle-to-vehicle communications, manufacturers such as Ford were able to bring ACC technology to market quickly. Ioannou’s ACC systems also provide smoother acceleration and speed response, which have demonstrated positive effects on traffic flow, fuel economy, and the environment.

An IEEE Fellow, Ioannou is a professor with the University of Southern California, Director of the Center for Advanced Transportation Technologies, and Associate Director of Research of the University Transportation Center METRANs, Los Angeles, CA, USA.

2015 - Robert D. King

Robert D. King

Robert D. King has devoted his 35-year career to changing the world’s dependence on fossil-fuel-driven vehicles. Known as GE’s “father of electric vehicle research and development,” over 50% of today’s hybrid-electric vehicles incorporate patents developed by Mr. King and his research team. He has been responsible for the design, development, and testing of electric and hybrid vehicle propulsion systems for the GE Hybrid Locomotive program, GE Hybrid Package Delivery Truck, GE/FTA Low Emissions Hybrid Bus Program, Modular Electric Vehicle Program, and the GE/DOE Hybrid Test Vehicle. Using compact ac traction drives and novel energy management system controls, Mr. King has demonstrated substantially reduced petroleum consumption for on-road hybrid passenger cars and reduced transit bus emissions via hybridization.

An IEEE Life Fellow, Mr. King, a senior electrical engineer with GE Global Research, Schenectady, NY, USA, retired in 2014.

2014 - Linos J. Jacovides

Linos J. Jacovides

A driving force in automotive electrical systems, Linos J. Jacovides’ visionary development of electric drives and systems has set the foundation for the technologies that power today’s electric and hybrid vehicles. Among Dr. Jacovides’ essential innovations that span over 40 years was the development a 4,000-horsepower induction motor drive for locomotives. He and his team also introduced automotive electronic systems, including exhaust oxygen sensors, micromechanical accelerometers, fuel injectors, electric power steering, and permanent magnet motors for propulsion and accessories. The design tools he developed during the 1970s are still in use for producing drives for today’s electric/hybrid vehicles. Since retiring as director of Delphi Research Labs in 2007, Dr. Jacovides has participated in several National Academies studies on fuel efficiency and hybrid vehicles.

An IEEE Fellow, Dr. Jacovides lives in Grosse Pointe, MI, USA.