

IEEE EPPC Working Group on Energy IEEE ICA "Sustainable Maritime"

Smart and Sustainable ports

J. Prousalidis, NTUA jprousal@naval.ntua.gr 16 Nov 2023

IEEE Sustainable Maritime: Smart and Sustainable ports

Policy document on smart & sustainable ports (IEEE/EPPC/GPPC)

J. Prousalidis

National Technical University of Athens

School of Naval Architecture and Marine Engineering jprousal@naval.ntua.gr

Addate Addate Addate The second addate The second addate The second addate Addate The second addate

- > The biggest Technical body of engineers (supporting the science and training),
- > 423,000 members,
- > 160 countries,
- > 150 peer reviewed journals,
- > 1,800 conferences/year in 95 countries,
- > 1,200 standards (e.g. IEEE 802.11: WiFi, IEEE 45: Shipboard installations, IEC/ISO/IEEE 80005: cold ironing)

Facing New challenges

Facing New challenges

• **→** 55% fit package of directives

Documents released on July 14th, 2021 **→** maritime related

The set of documents-directives released by the European Commission is enlisted below:

- > amendment-regulation-co2-emission-standards-cars-vans-with-annexes_en
- ➤ amendment-renewable-energy-directive-2030-climate-target-with-annexes_en
- carbon_border_adjustment_mechanism_0
- chapeau_communication
- fueleu_maritime_-_green_european_maritime_space
- > notification-carbon-offsetting-and-reduction-scheme-international-aviation-corsia_en
- proposal_for_a_directive_on_energy_efficiency_recast
- proposal-amendment-effort-sharing-regulation-with-annexes_en
- refueleu_aviation_-_sustainable_aviation_fuels
- revision_of_the_directive_on_deployment_of_the_alternative_fuels_infrastructure_with_annex_0
- revision_of_the_energy_tax_directive_0
- revision_of_the_eu_emission_trading_system_for_aviation
- \blacktriangleright revision-eu-ets_with-annex_en_0(1)
- revision-market-stability-reserve_with-annex_en
- revision-regulation-ghg-land-use-forestry_with-annex_en(1)
- social-climate-fund_with-annex_en
- strategic_rollout_plan_support_rapid_deployment_of_alternative_fuels_infrastructure

Facing New challenges

Mandate

AFIR+FuelEuMaritime (09/2023): electric interconnection of ships in ports 1/1/2030

Electrification is considered as the ultimate alternative towards green shipping

Port Electrification

Facing New challenges in ports

Viable, Profitable, Long-lasting,...

The starting point: Electric power interconnection between ships and shore

Shore side electricity (cold ironing)

Port Electrification

Standardization of shore-to-ship interconnection

List of standards related to 80005 series

IEC 60034 Rotating machinery IEC 60090-151-2001 Electrotechnical Vocabulary IEC 60076 Power transformers IEC 60079 Explosive atmospheres IEC 60092-101 Electrical Installations in ships	IEC/ISO/IEEE 80005-1 80005-2 80005-3 80005-4? Ex. IEEE-1713		IEC 60502-2 Power cables IEC 60947-5-1 Low voltage switchgear IEC 61363-1 Procedures for calculating short-circ currents IEC 61936-1 Power installations exceeding 1 kV a IEC 62271-200 High voltage switchgear and cont gear IEC 62613-2 Plugs-sockets, outlets and ship coup for high voltage shore connection systems	
IEC 60092-201 Ship System Design IEC 60092-301 Ship Equipment			IEEE Recommended Practice for Electrical Installations on Shipboard	
IEC 60092-503 Ship special features	Г		IEEE 45.1: Design	
IEC 60092-504 Automation Control & Instrumentation		MoU	IEEE 45.2: Automation & Control	
IEC 60146-11-2000 Static Frequency converters		IEEE	IEEE 45.3: Systems Engineering	
IEC 60332-1-2 Tests on electric and optical fibre cables under fi		ISO	IEEE 45.4: Marine Sector & Mission Systems	
conditions		IEC	IEEE 45.5: Safety Considerations	
IEC 60364-4-41 LV electrical Installations	L		IEEE 45.6: Electrical Testing	
Amendments of IEC 80005-1,-3,-4 (DC)			IEEE 45.7: AC Switchboards IEEE 45.8: Cable Systems	

Current status of electric Grids

Electric Grids in the Decarbonization era

Battery boxer

Electrolyte Tanks

Increased demands for green electric energy

Port Electrification

Analysis of Roadmap

- 1. EU fit-for-55% (2030→ 2050)+ 2017/352/EU+2019/944/EU
- 2. Ministries of a) Energy + Environment b) Maritime Transport +...
- 3. Estimation of peak power demands of ports (load forecasting)
- 4. Accurate load forecasting of ports (case by case, all loads included)
 - 1. Core ports
 - 2. Ports of the comprehensive network
 - 3. Other ports
 - 1. Mainland
 - 2. Islands (electrically interconnected)
 - 3. Islands (electrically non-interconnected)
- 5. Grid expansion planning
 - 1. DSO (5-year development plan)
 - 1. Technical issues phase 1: planning+design
 - 2. Regulatory issues (?)
 - 2. TSO (10-year development plan)

6. Port energy transformation

- 1. OPS planning
- 2. Energy transformation planning
- 7. Implementation
 - 1. Grid expansion
 - 2. Port infrastructure procurement + installation
 - 3. Investigation of technical issues phase 2: before the operation
 - 4. Commissioning and testing
- 8. Preparation for Operation
 - 1. Establishment of port business model (energy market)
 - 2. Investigation of technical issues
 - 3. Training
 - 4. Operation

Following the Roadmap - Further Challenges

1. Planning Grid expansion

- 1. Future Peak Power and energy demands
- 2. Stability issues (frequency, voltage)
- 3. Power quality (e.g. harmonic distortion, EMT- transients)
- 4. Resilience
- 5. Deployment of RES+batteries
- 2. SSE ship ID
- 3. SSE port ID
- 4. Power Quality problems
 - 1. Harmonic distortion
 - 1. Frequency converters
 - 2. LEDs
 - 3. Cranes
 - 2. Inrush and sympathetic inrush
 - 1. Isolation transformer(s) energization
 - 2. Centralized configuration of frequency converters + many isolation transformers in parallel
 - 3. Earthing, protection, equipotential bonding issues, corrosion
- 5. DC and inductive charging
- 6. Port demand management + flexibility
 - 1. load shedding,
 - 2. operation in economy mode: exploitation of RES, ESS
- 7. Ship demand management (load shedding, economy mode)
- 8. Operating models of ports and ships in the electric market
- 9. Regulatory issues, pricing policy, tax exemptions
- 10. Re-cycling policy (esp. batteries)
- 11. Training and Education (port electrical engineering)

The port networks must be (in brief) Robust, Resilient, Reliable and Flexible

The port must

- > help the energy supply chain
- > Comply with energy market

Holistic Energy Upgrade of Ports

- Cold Ironing (Ship-to-Shore interconnection):
 - Ports in Europe (projects: ELEMED, EALING, CIPORT, ALFION)
- Charging of battery based electric/hybrid waterborne vessels
- Energy storage (buffering, swapping)
- RES deployment
- Electric Vehicle charging stations
- Reefer power supply
- Smart LED Lighting
- Regenerative crane braking
- Energy management system
-Further steps

The Proteus Plan

Holistic Energy Upgrade of Ports

The smart & sustainable port

- Ship-to-shore interconnection(cold ironing)
 - +

• Smart grids of fairly large power capacity (flexibility)

- Charging battery based ships with electric propulsion
- Electric vehicle charging stations
- Interconnect off-shore or near-shore RES
- Reverse cold ironing by green ships
- Storage for peak shaving ή saving excesses of power and/or <u>battery swapping</u> or cloud storage (sharing electric energy storage capacity in win-win schemes)
- Sophisticated Energy Management Systems
 → sustainable port Grids
- Participation in the Energy Market

Deployment of PV's and small scale wind generator in port areas

PV installation in P.o.L.A. (USA)

VIEEE The smart & sustainable port

Utilization of Energy Storage Systems at the port area

Contex, Restaurt Dance Debusie

200MW/800MWh VRFB Project

The first floor : Electrolyte tank

The second floor: Power unit + control unit The third floor: PCS + Transformer

Not only Li-ion but flow batteries (e.g. VRB's) too

ESS can be used to store offpeak energy from the Grid, or energy from Renewable Sources or energy recovered from Cranes. [Energy buffering]

Energy Storage is a

significant feature in designing a port's energy management system that can give the opportunity to the port to **participate in the energy market**.

Support to ships based on batteries [Battery swapping]

Extending Smart – grids concept

Energy buffering Battery swapping

Flow Batteries + Cold Ironed Ships

Electrolyte Tank

Pillars of the project

- Swappable containerized waterborne transport Li-Ion battery
- EaaS (Energy as a Service) Platform

Future steps: following the steps of the evolution in computer systems

Combination of parking/charging stations for EV's and PV's

Parking/charging under P/V+Storage

Electric Vehicles of the ports

IEEE Advancing Technology for Humanity The smart & sustainable port

Reefers

Reefers have significant thermal inertia. When switched off they can hold temperature for relatively long time.

Energy conservation by Reefers is significant in designing a port's energy management system

Small increase of temperature despite the long switching-off time intervals (~1.5°C/9h)

Lighting

LED Lighting

Port of Killini	Energy Consumpti on of LED lamps (kW)	Energy Consumpti on of Conventio nal lamps (kW)	Energy saving
Main Port	160.5	240	31.25 %
North Port	50.0	80	36.8 %
Fishing Docks	30.2	80	40.8 %

- The introduction of LED technology in ports for dock lighting has been a proven low power consumption alternative.
- **Different light** colors (hot or cold) are suitable for different applications.
- Attention must be paid on how to off-set the **harmonic distortion** and the high reactive power demand.
- LED lamp controls can be integrated in a smart lighting system that can optimize the luminance/light efficiency versus the cost of energy.

LED Lighting

6

((0)

802.1

Port of Killini	Energy Consumpti on of LED lamps (kW)	Energy Consumpti on of Conventio nal lamps (kW)	Energy saving
Main Port	160.5	240	31.25 %
North Port	50.0	80	36.8 %
Fishing Docks	30.2	80	40.8 %

Communication and Control Li-Fi

- **Multiuser**
- **Terabit/s**
- optical wireless capacity two orders of magnitude higher than 5G

Ultra Low Latency

Quality of Connection

Straightforward to integrate

IEEE 802.3 Speeds Rate (b/s) 1T 100G 10G Enterprise 1G Automotive 100M Industrial 10M 1980 1990 2000 2010 2020 - New IEEE 802.3 Ethernet speed approved - New IEEE 802.3 Ethernet speed projected X - New IEEE 802.3 automotive PHY - New SONET/SDH/OTN speed approved

Evolution of speed in data transmission

Lighting

IEEE Advancing Technology for Humanity

Cranes

Cranes with regenerative braking can have a significant **energy recovery** factor

Operating profile (two full cycles of operation) of **one** single port crane.

IEEE Advancing Technology for Humanity The smart & sustainable port

Port Power Management System

A Port Power Management System (P-PMS) can improve the overall efficiency of the system since it comprise multiple functionalities & features (SCADA):

- Electric Network Monitoring Protection & Control
- Power Generation Management
- Shore to Ship connection Management
- Energy Storage Management
- Billing System
- Asset Management & Work Force Management
- Incident Management
- Automatic Meter Reading
- Energy Meter Data Management
- Water & Gas Meter Data Management
- Lighting Control & Monitoring
- EV Charging Management

To step further....

More standards??

- DC interconnection
- Power quality (distortion, inrush, sympathetic inrush load shedding/switching transients)
- Earthing in ports
- Corrosion in ports
- Smart grids + special type distribution networks of large power capacity
- Grid forming power converters with active front ends enabling bidirectional energy transactions + virtual inertia
- Zonal distribution networks in ports
- Smart lighting standards
- Li-fi standards

To step further.... Training/Education

- Training Port electrical engineering
- CPD programs
- MSc Program
 - Fundamental environmental issues
 - Power Transformers
 - Rotating machinery
 - Power converters
 - Synchronization & parallel operation
 - Power quality
 - Protection
 - ➤ Earthing
 - High Voltage technology
 - RES (PV's)
 - Batteries
 - Smart grids

To step further.... Training/Education

Continuing Professional Development (CPD)

Maritime Electrification

University of Strathclyde Glasgow

Case study: Port of Igoumenitsa (OLIG s.a.)

ALFION Alternative Fuel Implementation in IgOumenitsa Port

CEF-Transport-2019 – General Envelope» funding studies (up to FEED) for:

- **OPS/SSE** (cold ironing)
- Battery swapping
- Electric vehicle charging stations
- Energy storage systems
- Energy management system platform

Co-financed by the European Union Connecting Europe Facility

Main Connections of the port of Igoumenitsa +

Series of possible synergies with Italian ports and other ports in the Mediterranean

- Cultivate further the maritime interconnections
- Establish a common regulatory framework and tariff policy
- Reinforce further the electric power interconnection and the energy transactions

Acknowledge the contributions from discussions and collaboration

To probe further

IEEE Electrification Magazine special issue (March 2023): Smart ports

Upcoming Related events – Support info

Roundtable

"Operating models of ports and ships in the open electric market"

Invited panelists from DGENER and DGMOVE, (Eurelectric, ACER, NTSO-e, EU-DSO)

• Webinar

"Means of sustainable electrification of ships and ports in view of decarbonisation".

Ongoing Amendments of IEC 80005-1,-3,-4 (DC), IEEE 45.1, 45.2, 45.7 (+DC) → 2023

Improvement of MRV-Thetis: collecting data of demands at berth

Electricity is the sole alternative fuel with a **plethora** of readily available *standards, rules, guidelines, know-how on*

planning, design, operation, control

We must help it succeed

Thank you very much for your interest

J. Prousalidis,

National Technical University of Athens School of Naval Architecture & Marine Engineering Vice chairman of IEEE/PES/MSCC Head of IEEE ICA-22-13 Sustainable Maritime Member of IEEE/EPPC/WG on Energy Member of IEC/ISO/IEEE JWG 28

Tel. +30-210-772.2869, 210-772.1111 jprousal@naval.ntua.gr

