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Executive	Summary		

In	recent	years,	cybersecurity	threats	have	changed	in	three	important	ways:		

1. The	adversarial	motivation	has	changed.	Early	attack	programs	were	written	as	a	result	of	an	individual’s	
curiosity,	more	recent	attacks	are	written	by	well-funded	and	trained	militaries	in	support	of	cyberwarfare	
or	by	sophisticated	criminal	organizations.	

2. The	breadth	and	speed	of	attack	adaptation	have	increased.	Whereas	the	first	attacks	exploited	software	
weaknesses	found	by	hand,	were	propagated	using	“sneakernet,”	and	affected	single	computers,	today’s	
attacks	exploit	weaknesses	found	automatically;	are	automatically	propagated	over	the	Internet,	
packaged	even	by	unsophisticated	attackers;	and	affect	computers,	tablets,	smartphones,		and	other	
devices	across	the	globe.		

3. The	potential	impact	of	an	intrusion	has	increased	substantially.	Globally	connected	devices	and	people	
mean	that	attacks	affect	not	only	the	digital	world	as	in	the	past	but	also	the	physical	world	through	the	
Internet	of	Things	(IoT)	and	the	social	world	through	ubiquitous	social	media	platforms.	

Our	entire	community	needs	to	respond	and	develop	the	technology,	and	data	structures,	and	the	legal,	
ethical,	legislative,	and	corporate	governance	mechanisms	needed	to	secure	an	environment	that	is	
increasingly	under	siege.	

The	growing	size	of	the	attack	surface	presents	both	a	threat	and	an	opportunity	[1].	The	threat	is	that	the	
rapidly	increasing	adoption	of	connected	devices	equipped	with	conventional	security	measures	will	render	
human	security	personnel	incapable	of	defending	the	entire	system.	The	sheer	number	of	devices	across	the	
globe	makes	even	a	small	percentage	of	failures	and	compromises	a	significant	event,	beyond	the	ability	of	
human	operators	to	cope	with.	Consider	that	for	a	population	of	1	billion	(109)	devices,	a	1	percent	
vulnerability	represents	10	million	devices.	The	opportunity,	nearly	a	necessity,	is	for	security	artificial	
intelligence	(AI)/machine	learning	(ML)	to	act	as	a	force	multiplier	by	augmenting	the	cybersecurity	
workforce’s	ability	to	defend	at	scale	and	speed.	

The	agility	created	by	AI/ML	augmentation	of	a	cybersecurity	system	(henceforth,	“security	AI/ML”	or	
“security	AI/ML	system”)	is	two	sided.	Along	with	a	rapid	response	to	both	detection	and	remediation	comes	
the	potential	for	an	equally	rapid	corruption	of	systems.	Computers	do	what	they	do	really	quickly,	which	can	
include	doing	the	wrong	thing.	It	is	essential	to	keep	in	mind	that,	with	the	increasing	use	of	AI/ML,	bad	actors	
and	entities	have	AI/ML	at	their	disposal	as	well.		

AI/ML	systems	are	already	able	to	identify	and	develop	zero-day	exploits,	a	part	of	the	U.S.	Defense	Advanced	
Research	Projects	Agency	(DARPA)	2016	Cyber	Grand	Challenge.	While	the	technology	was	intended	to	help	
humans	more	rapidly	identify	and	fix	vulnerable	systems,	it	is	equally	effective	for	adversarial	use	in	finding	
and	exploiting	systems.	Malware	is	already	using	AI/ML	to	detect	when	it	is	being	monitored	within	a	“security	
sandbox,”	and	to	alter	its	behavior	to	escape	detection.	Such	a	strategy	is	similar	to	Volkswagen’s	effort	[2]	to	
program	around	sandbox	testing	of	diesel	emissions.	In	both	cases,	adept	coders	created	systems	capable	of	
behaving	in	innocuous	ways	when	in	a	security	sandbox	but	in	a	different,	malevolent	way	when	employed	in	
operational	systems.		

In	this	trend	paper,	we’ll	address	six	different	dimensions	of	the	intersection	of	AI/ML	with	cybersecurity.	They	
are:	legal	and	policy	issues;	human	factors;	data;	hardware;	software	and	algorithms;	and	operationalization.	
These	recommendations	are	intended	for	industry	(I),	academia	(A),	government	(G),	and	standardization	
bodies	(S).	In	addition	to	specific	recommendations	within	each	of	these	six	dimensions,	we	make	the	
following	five	cross-cutting	recommendations,	indexed	by	dimensions	(1–5)	and	to	whom	they	are	targeted	(I,	
A,	G,	and/or	S):	

• The	future	needs	of	cybersecurity	will	require	an	interplay	of	advances	in	technology	(hardware,	
software,	and	data),	legal	and	human	factors,	and	mathematically	verified	trust	(1,	2,	3,	4,	and	5)	(I,	A,	
and	G).	

• It	will	require	concerted	business	efforts	to	create	products	acceptable	to	the	market,	certified	by	
established	regulatory	authorities	(1,	2,	4,	and	5)	(I	and	G).	

• If	humans	are	to	trust	AI/ML,	AI/ML-fueled	cybersecurity	must	be	based	on	standardized	and	audited	
operations	(1	and	5)	(I	and	S).	
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• Regulators	will	need	to	protect	research	and	operations	
and	establish	internationally	recognized	cooperative	
organizations	(1	and	2)	(S	and	G).	

• Data,	models,	and	fault	warehouses	will	be	essential	for	
tracking	progress	and	documenting	threats,	defenses,	and	
solutions	(3,	4,	and	5)	(S,	I,	and	A).	

Our	recommendations	can	be	applied	at	different	time	
horizons.	Operationalization	takes	the	least	amount	of	time	
and	could	be	accomplished	in	no	more	than	two	years.	This	is	
similarly	true	for	data	and	software.	Addressing	legal	and	
policy	issues	takes	more	time,	at	least	several	years.	
Hardware,	e.g.,	new	processor	architectures,	typically	takes	
more	than	five	years	to	materialize.		

The	Six	Dimensions	of	Intersection	of	AI/ML	and	Cybersecurity	

In	the	following	sections,	we	describe	in	detail	the	six	most	important	dimensions	related	to	the	intersection	of	
AI/ML	with	cybersecurity.	We	identify	threats,	challenges,	and	opportunities	and	make	recommendations	for	
each	dimension.	

1.	 Legal	and	Policy	Issues:	Building	Trust	through	Accountability		
AI/ML	augmentation	of	cybersecurity	systems	may	seem	a	highly	technical	topic	best	left	to	a	small	group	of	
expert	computer	scientists.	However,	the	most	formidable	challenges	for	the	future	of	AI/ML	are	likely	to	be	
social	in	nature.	While	AI/ML	promises	to	improve	security	by	automating	some	aspects	of	defense,	caution	
is	needed	for	the	creation,	deployment,	and	use	of	these	systems.	Unless	developed	and	used	very	carefully,	
Al/ML	may	irretrievably	damage	national	security,	economic	stability,	and	other	social	structures.	As	such,	it	
should	not	be	viewed	as	a	panacea,	and	our	social	structures	(and	the	humans	who	rely	on	them)	must	be	
prepared	for	the	inevitability	that	the	systems	will	fail	in	both	anticipated	and	unanticipated	ways.	Safety	
nets	of	legal	and	ethical	constraints	are	needed.	Building	a	world—a	social,	ethical,	and	legal	context—that	
is	ready	for	the	incorporation	of	AI/ML	matters	as	much	as	the	creation	of	the	technical	systems	themselves.		

Despite	(or	perhaps	because	of)	the	considerable	enthusiasm	for	AI	in	marketing	circles,	the	meaning	of	the	
term	is	now	ambiguous	in	common	parlance.	This	fact	should	act	as	a	warning	to	proceed	with	care	as	we	
enter	an	age	of	AI/ML.	Creators	and	users	of	AI/ML	should	not	be	financially	rewarded	for	shipping	or	
implementing	code	prematurely	without	a	thorough	analysis	and	testing.	While	it	is	common	for	companies	
to	ship	code	having	known	errors	with	plans	to	correct	these	in	a	future	update,	this	model	of	shipping	code	
does	not	work	for	AI/ML.	The	stakes	of	possible	harm	are	simply	too	high	with	flawed	AI/ML.	In	2016,	the	
Mirai	botnet	heralded	the	arrival	of	a	new	category	of	attack:	distributed	denial	of	service	(DDoS)	attacks	
carried	out	by	botnets	consisting	entirely	of	vulnerable	IoT	consumer	devices.	Despite	these	devices	having	
relatively	little	computing	power,	Mirai	nevertheless	succeeded	in	DDoS	to	some	of	the	best-defended	
websites	on	the	Internet	[3].	Now,	imagine	the	scale	of	damage	a	sophisticated,	well-resourced,	and	
security-compromised	AI/ML	might	cause	in	the	physical	world.		

In	situations	where	a	developer	or	operator	loses	control	of	security	AI/ML	and	causes	catastrophic	harm,	
the	public’s	trust	in	AI/ML	will	be	shaken.	A	strong	legal	response	will	be	needed	to	rebuild	public	trust	in	
AI/ML.	Up	to	now,	however,	courts	and	regulators	in	most	countries	have	been	slow	to	assess	legal	liability	
for	harm	arising	from	software	malfunction.	This	reticence	will	need	to	change	in	the	context	of	AI/ML.	
Courts	and	regulators	will	be	willing	to	ascribe	liability—and	perhaps	even	criminal	culpability—when	
corporate	assets,	humans,	and	infrastructure	are	physically	harmed	because	of	malfunctions	or	inadequate	
care	in	the	creation,	deployment,	and	use	of	AI/ML.		

We	should	start	preparing	now	for	the	AI/ML-caused	disasters	that	will	inevitably	occur.	Here	are	10	things	we	
can	do	now.			
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1. Support	the	creation	of	enhanced	regulatory	structures.	As	standards	start	to	emerge	from	the	technical	
community,	regulators	will	begin	to	construct	a	proactive	set	of	shared	minimum	baselines	for	reasonable	
conduct—what	might	be	called	“floors	of	care”—for	security	AI/ML.	We	have	seen	these	floors	of	care	
already	emerge	generally	in	computer	security	enforcement.	While	consensus	about	the	optimal	design	of	
AI/ML	systems	may	still	be	developing,	consensus	around	basic	types	of	building,	implementation,	and	
security	errors	likely	exists	already.	A	set	of	tailored	regulatory	and	enforcement	measures	will	be	needed	
to	prevent	low-quality	or	otherwise	flawed	security	AI/ML	from	damaging	the	market	for	responsible	
builders	and	operators.	For	example,	in	the	United	States,	enforcement	will	likely	fall	partially	within	the	
jurisdiction	of	the	Federal	Trade	Commission	(FTC)	under	its	Section	5	FTC	Act	authority.	However,	in	most	
instances,	the	FTC	currently	does	not	have	standalone	rulemaking	and	fining	authority.	As	such,	the	legal	
evolution	of	certain	regulators’	authority	(and	budgets)	is	likely	necessary	for	building	trust	in	and	policing	
AI/ML.		

2. Urge	the	creation	of	additional	technical	feedback	loops	for	regulators.	An	important	step	toward	ensuring	
suitable	regulatory	approaches	involves	constructing	formal	technical	feedback	loops	inside	national	
legislative	and	regulatory	bodies.	In	the	United	States,	for	example,	Congress	and	regulatory	agencies	will	
serve	as	a	starting	point	for	most	AI/ML	policy.	However,	Congress	currently	lacks	a	funded	office	of	
technology	assessment	to	offer	technical	feedback.	As	such,	Congress	should	resurrect	this	technical	body	
as	the	Office	of	Information	Technology	Assessment,	with	a	budget	and	staff	of	technical	practitioners	
knowledgeable	about	AI	[4].	

3. Urge	stronger	legal	protection	for	security	research.	A	single	uncaught	vulnerability	in	security	AI/ML	may	
result	in	significant	harm.	Similarly,	training	AI/ML	systems	will	depend	on	the	availability	of	high-quality	
security	research.	While	rogue	attackers	require	prosecution,	legal	systems	should	also	be	careful	to	
facilitate,	rather	than	burden,	this	essential	security	research.	For	example,	in	the	United	States,	security	
researchers	both	inside	and	outside	the	academia	require	at	least	two	corrective	legal	buffers	as	soon	as	
possible:	1)	congressional	codification	of	the	security	research	exemption	granted	by	the	Librarian	of	
Congress	to	Section	1201	of	the	Digital	Millennium	Copyright	Act	[5]	and	2)	an	amendment	of	the	
Computer	Fraud	and	Abuse	Act	to	provide	clarity	arising	from	statutory	ambiguities	regarding	computer	
intrusion,	absent	definitions	of	key	statutory	terms,	and	judicial	divisions	in	interpretation	[4].	

4. Recognize	that	international	legal	and	regulatory	harmonization	will	present	challenges.	As	the	recent	
negotiations	over	security	tools	and	the	restrictions	of	the	Wassenaar	Arrangement	[6]	have	
demonstrated,	coordination	and	harmonization	of	regimes	across	borders	and	policy	areas	present	
formidable	obstacles—and	may	also	require	years	of	negotiations.	Discussions	concerning	AI/ML	will	also	
trigger	a	need	to	reconcile	various	legal	frameworks	from	prior	eras	and	across	jurisdictions.	Because	of	
different	legal	approaches	to	privacy,	security,	and	tort	recourse	for	consumers	in	particular,	the	creators	
and	operators	of	AI/ML	may	find	themselves	the	subject	of	litigation	in	international	forums	where	their	
AI/ML	has	allegedly	caused	harm.	The	contractual	choice	of	forum	provisions	and	limitations	of	liability	
will	not	be	universally	enforced.	However,	any	discussion	of	statutory	limitations	of	liability	for	AI/ML	is	
premature	at	this	juncture:	it	would	erode	public	trust	in	these	systems	and	create	negative	incentives	for	
unsafe	conduct	by	builders	and	users.		

5. Demand	that	criminal	enforcers	be	wary	of	security	AI/ML.	As	the	defeat	devices	employed	by	Volkswagen	
in	its	diesel	cars	remind	us	[7],	computer	code	can	be	leveraged	directly	for	purposes	of	avoiding	
regulatory	requirements	and	facilitating	criminality.	The	current	set	of	tools	available	for	identifying	and	
prosecuting	crimes	facilitated	by	AI/ML	may	require	reassessment.	Regulators	should	consider	offering	
avenues	for	both	corporate	and	governmental	whistle-blowers	to	report	dangerous	AI/ML	systems	in	a	
manner	shielded	from	legal	consequences.	Without	these	opportunities	for	whistle-blowing,	dangerous	
AI/ML	systems	are	likely	to	result	in	avoidable	and	severe	levels	of	harm,	which,	in	turn,	will	result	in	a	
breakdown	of	trust	in	AI/ML	as	a	whole.	

6. Recognize	that	the	use	of	security	AI/ML	for	criminal	enforcement	has	the	potential	to	violate	individual	
civil	liberties	guarantees.	As	described	in	the	“Human	Factors”	section,	AI/ML	systems	are	only	as	good	as	
the	human-curated	training	data	and	the	strategic	choices	made	for	training	methodologies.	Even	the	
highest-quality	systems	can	produce	false	positive	results.	Particularly	when	full	transparency	into	their	
functionality	is	absent,	AI/ML	systems	do	not	meet	the	legal	standards	of	individualized	justice	beyond	a	
reasonable	doubt	for	a	criminal	defendant,	and	this	should	not	be	used	in	lieu	of	thorough	investigations	
and/or	the	independent	judgment	of	a	finder	of	fact	(a	judge	or	jury).	Creating	trust	in	AI/ML	requires,	
first	and	foremost,	preservation	of	traditional	legal	baselines	of	liberty	and	justice	for	citizens.		
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7. Use	the	legal	lag	for	technical	standards	creation.	A	lag	always	exists	between	progress	within	the	
scientific	community	and	the	catching	up	of	legal	and	regulatory	mechanisms.	However,	this	lag	
sometimes	represents	a	positive	feature	rather	than	a	bug.	For	security	AI/ML,	the	legal	lag	creates	a	
window	of	opportunity	for	builders,	operators,	and	international	organizations	such	as	the	IEEE	to	initiate	
a	policy	conversation	with	regulators	to	craft	shared	minimum	baselines,	or	floors,	for	reasonable	care	of	
the	AI/ML.	In	other	words,	these	conversations	should	occur	in	advance	of	any	catastrophic	global	AI/ML	
incident	that	will	likely	trigger	reactionary	and	potentially	aggressive	regulation.	

8. Correct	currently	imperfect	security	indexing	and	reporting	structures.	Our	current	systems	of	assessing	
vulnerability	and	issuing	advisories	suffer	from	deficiencies	in	scalability	and	accuracy	[8].	Similarly,	
patching	and	disclosure	practices	vary	across	entities	in	ways	that	sometimes	place	consumers,	national	
security,	and	business	partners	at	avoidable	risk.	In	preparation	for	the	expedited	pace	of	flaws	that	
security	AI/ML	will	uncover	and	report,	these	deficiencies	require	immediate	remediation.	Corrections	will	
necessitate,	among	other	things,	standardizing	security	advisory	formats	to	the	greatest	extent	possible	
and	enforcing	failures	to	accurately	disclose	(and	patch)	flaws	in	a	reasonably	timely	manner.	These	
corrections	to	existing	structures	will	pave	the	way	for	the	types	of	transparency	disclosures	(the	
limitations	of	selected	data	sources;	training,	strategy,	and	end	of	life	plans;	and	other	key	characteristics)	
that	will	distinguish	various	AI/ML	systems	from	one	another.		

9. Support	the	robust	enforcement	of	security	by	design.	Preserving	public	trust	in	security	AI/ML	requires	
that,	first	and	foremost,	these	systems	be	constructed	as	securely	as	possible	from	the	beginning.	Security	
cannot	be	retrofitted;	adding	security	after	code	has	shipped	in	a	vulnerable	state	inevitably	introduces	
new	vulnerabilities	and	undesirably	increases	complexity.	For	this	reason,	the	current	focus	on	post-
breach	enforcement	should	be	replaced	with	a	focus	on	security	by	design	and	security	processes.	
Unfortunately,	lessons	from	past	generations	of	security	products	warn	that	such	products	are	sometimes	
themselves	vulnerable,	placing	their	users	at	greater	security	risk	rather	than	better	defending	them	[9].	
In	such	circumstances,	regulatory	enforcement	action	should	require	immediate	correction:	levying	fines	
and/or	requiring	the	removal	of	unsafe	AI/ML	from	the	marketplace.		

10. Engage	in	discussion	and	the	choice	of	ethical	design.	The	creation	of	policy	guidelines	around	issues	of	
ethical	design	presents	an	opportunity	for	organizations	such	as	the	IEEE	to	expand	their	current	
discussions.	Engaging	the	broader	technology	and	user	community	in	issues	of	ethical	design	for	security	
AI/ML	will	facilitate	public	trust	and	nudge	improvements	among	builders	and	operators.	In	the	case	of	an	
individual	builder,	a	robust	strategy	for	legal	risk	mitigation	should	involve	working	with	counsel	to	
document	the	corporate	decision-making	process	around	ethical	design	choices.	For	example,	as	the	
WannaCry	worm	demonstrates	[10],	the	presence	of	a	remote	(albeit	accidental	in	this	instance)	“kill-
switch”	and	constant	human	oversight	are	two	strategies	for	mitigating	harm	when	code	malfunctions.	
Ultimately,	regulators	will	analyze	whether	there	is	proof	of	ethical	and	safer	design	choices.	Such	
documented	choices	aimed	at	reducing	risk	to	innocent	third	parties	demonstrate	a	degree	of	care	that	is	
likely	to	mitigate	findings	of	liability.	

	

2.	 Human	Factors:	Building	Technical	and	Human	Trust	
In	1983,	Stanislav	Petrov,	a	Soviet	officer,	helped	avert	nuclear	war.	Petrov	had	been	on	duty	at	the	
Serpukhov-15	secret	command	center	outside	Moscow	when	the	attack	detection	algorithms	running	his	
systems	warned	that	the	United	States	had	launched	five	intercontinental	ballistic	missiles	at	the	U.S.S.R.	
[11].	Instead	of	reporting	the	alarm	to	his	superiors,	Petrov	paused	[11].	Although	he	knew	that	the	
algorithms	had	processed	over	4,000	variables,	his	years	of	experience	(and	his	awareness	that	the	system	
had	been	deployed	in	a	hurried	manner)	counseled	caution	[11];	he	did	not	trust	the	system	[11].	Deeming	
the	notification	a	false	alarm,	he	chose	not	to	report	it.	Later,	forensic	analysis	showed	that	Petrov’s	distrust	
of	the	system	was	well	founded.	The	predictive	algorithms	had,	indeed,	been	confused.	The	alarm	had	been	
falsely	triggered	by	the	sun’s	reflections	from	clouds	[11],	a	data	input	the	system’s	programmers	had	
apparently	not	adequately	anticipated.		

While	not	every	security	situation	is	as	serious	as	a	nuclear	standoff,	this	incident	serves	as	an	important	
reminder	that	the	future	of	security	AI/ML	will	rely	not	only	on	technical	trust	but	also	on	human	trust.	Even	
the	best-engineered	systems	can	fail.	The	key	question,	then,	becomes	whether	they	will	“fail	well,”	that	is,	
in	a	manner	that	preserves	humans’	trust	in	security	AI/ML	and	minimizes	harm.	Indeed,	it	will	be	these	
human	trust	factors	in	the	operationalization	of	AI/ML	systems	that	will	dictate	their	adoption	rates.		
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1. Trust-building	through	transparency	and	preemptive	risk	assessment.	In	the	1980s,	in	his	treaty	
negotiations	with	the	Soviets,	US	President	Ronald	Reagan	often	quoted	the	Russian	proverb	“trust	but	
verify.”	It’s	still	a	useful	touchstone	as	we	discuss	security	AI/ML.	Trust	in	AI/ML	can	be	substantially	
buttressed	through	the	builders’	transparency	in	disclosing	strategic	choices,	updating	processes,	and	
providing	contingency	plans	to	assist	their	systems	in	“failing	well.”		
a. All	training	data	are	not	equal.	The	first	layer	of	necessary	transparency	involves	the	human	

processes	for	selecting	the	data	used	to	train	security	AI/ML.	As	social	scientists	and	statisticians	have	
amply	demonstrated	[12],	the	selection	of	data	sets	will	potentially	suffer	from	a	number	of	sampling	
errors	and	biases.	Every	training	sample	will	have	a	certain	degree	of	sampling	error,	and	this	error	
requires	analysis	and	disclosure	to	avoid	creating	a	false	sense	of	confidence	in	a	particular	training	
methodology.	Different	training	methodologies	will	vary	in	success	based,	in	part,	on	the	extent	of	
this	sampling	error.	Builders	of	AI/ML	systems	should	also	disclose	the	extent	of	any	affirmative	steps	
they	have	taken	to	avoid	sampling	bias	in	selection.	In	other	words,	they	should	articulate	why	they	
are	confident	that	the	sample	used	for	training	data	is,	in	fact,	accurately	representative	of	the	entire	
population	of	real-world	deployment	situations	that	the	AI/ML	system	is	likely	to	encounter.	For	
example,	one	infamous	AI/ML	training	failure	occurred	in	March	2016	when	Microsoft	introduced	
Tay,	an	“AI	chatbot”	on	Twitter.	Within	one	day,	Twitter	users	“taught”	Tay	to	spout	racist	and	Nazi	
propaganda	[13],	a	highly	undesirable	outcome	from	Microsoft’s	perspective.	Most	importantly,	as	
with	every	rigorous	scientific	process,	the	measurement	and	selection	processes	with	respect	to	
training	data	should	be	replicable	by	independent	third	parties.	Replicable	measurement	processes,	
along	with	what	social	scientists	call	“interrater	reliability”	checks,	build	confidence	and	trust.	It	is	
through	this	level	of	rigor,	planning,	and	transparency	that	builders	can	reassure	both	users	and	
policymakers	that	their	systems	are	well	built	and	thus,	to	the	greatest	extent	possible,	protected	
against	malfunctioning	in	catastrophic	ways.		

b. Building	needs	to	be	accomplished	with	attackers	in	mind.	As	with	all	code,	the	question	related	to	an	
AI/ML	security	compromise	is	“when”	and	not	“if.”	Yet,	as	daily	headlines	about	data	breaches	remind	
us,	both	the	public	and	private	sector	still	struggle	with	even	rudimentary	questions	of	security,	and	
legal	accountability	has	been	slow.	Adversaries	will	attempt	to	fool	systems	as	built	and	try	to	
repurpose	systems	for	their	own	nefarious	interests.	Builders	and	operators	of	AI/ML	systems	must	
recognize	and	plan	for	this	unfortunate	and	inevitable	security	reality,	preparing	technical	incident	
response	capabilities	and	corporate	processes	for	mitigating	harms	to	third	parties	caused	by	
compromised	AI/ML.	

c. Risk	management	should	leverage	humans	in	the	loop—as	a	feature,	not	a	bug.	A	second	trust-
building	disclosure	involves	an	honest	acknowledgment	of	the	limitations	of	security	AI/ML	systems	
and	their	risks.	Although	security	AI/ML	presents	a	potentially	game-changing	improvement	for	
extending	the	capacity	of	computers	and	humans	to	jointly	defend	against	attackers,	as	Petrov’s	story	
cautions,	malfunctions	carry	significant	risks	and	potentially	devastating	consequences.	In	particular,	
the	more	sensitive	the	deployment	context,	the	more	important	it	becomes	to	retain	human	
oversight	as	a	part	of	the	decision	loop.	Some	contexts	may	even	prove	too	fragile	for	the	use	of	
AI/ML.	When	appropriate,	properly	designed	and	implemented	AI/ML	can	leverage	preexisting	and	
new	knowledge	to	assist	in	more	effectively	securing	systems	at	a	speed	and	efficiency	beyond	
human	abilities.	However,	the	implementation	of	AI/ML	systems	should	not	be	viewed	as	an	excuse	
to	eliminate	humans	or	limit	the	exercise	of	necessary	discretion	and	judgment.	Indeed,	humans	
should	remain	the	ultimate	arbiters	for	all	decisions	that	may	have	potentially	catastrophic	
consequences.	

As	the	DARPA	Cyber	Grand	Challenge	organizers	explain	[14],	careful	planning	beforehand	was	
required	to	constrain	the	competitors’	security	AI/ML	systems	and	predict	their	possible	
malfunctions.	Accurately	predicting	and	avoiding	harm	constitute	a	dispositive	component	of	building	
trust	in	AI/ML	system	capabilities.	Similarly,	the	competitors	in	the	DARPA	Grand	Challenge	
demonstrated	that,	even	when	two	systems	appear	on	their	face	to	be	parallel	in	their	functionality	
and	training	data,	the	builders	of	each	have	made	different	key	strategic	behavioral	determinations.	
They	have	also	potentially	employed	dissimilar	training	methodologies	[14].	Consequently,	individual	
AI/ML	systems	will	behave	differently,	even	in	the	same	deployment	environment	and	relying	on	the	
same	training	data.	These	strategic	choices	by	builders	should	similarly	be	disclosed	to	generate	trust	
in	AI/ML.	Disclosure	will	assist	the	market	(and,	later,	legal	enforcers)	in	more	accurately	assessing	
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suitability	for	particular	deployments	and	the	extent	of	care	that	went	into	the	construction	(or	
selection)	of	particular	AI/ML	systems.		

2. Trust	building	through	accountability.	It	is	inevitable	that	some	security	AI/ML	will	malfunction,	just	as	
Petrov’s	system	did.	To	maintain	trust	in	light	of	this	expected	malfunction	reality,	builders	and	operators	
should	strive	to	self-audit,	third-party	audit,	and	build	systems	that	fail	safely	in	ways	that	limit	harm.	
However,	some	builders’	attempts	at	self-audit	and	correction	will	prove	inadequate.	In	these	
circumstances,	preserving	trust	in	AI/ML	will	necessarily	lead	to	regulation,	enforcement,	and	legally	
mandated	damages	recoveries	by	harmed	third	parties.		

We	offer	the	following	four	recommendations	to	assist	with	the	development	of	human	trust	in	security	
AI/ML.	

1. Participate	in	standards	development.	Because	standards	usually	chase	industry	innovation,	we	
recommend	that	the	academic	community,	standards-setting	organizations	such	as	the	IEEE,	builders	of	
AI/ML	systems,	and	regulators	convene	standards	meetings	on	an	ongoing	basis	to	articulate	the	
minimum	floors	of	care	required	in	building	and	operating	security	AI/ML.	Examples	are	the	IEEE	
Cybersecurity	initiative	[15]	and	IEEE	Standard	for	Ethically	Aligned	Design	[16].	
a. In	particular,	this	group	of	interdisciplinary	experts	should	issue	recommendations	with	respect	to	

data	selection	for	systems	training,	borrowing	methodologies	from	social	science	and	statistics	
research	regarding	sampling	bias	and	errors.	Identifying	data	blind	spots	and	articulating	floors	of	
care	in	an	interdisciplinary	manner	will	build	trust	in	AI	and	security.		

b. Further,	this	body	of	interdisciplinary	experts	should	continue	convening	on	a	regular	basis	to	engage	
with	evolving	practices	in	AI	as	they	are	implemented	in	individual	security	AI/ML	systems.	In	
particular,	these	experts	should	perform	postmortem	analyses	of	systems	that	malfunction	due	to	
identifiable	design	or	strategic	choices	made	by	their	creators	and	users.		

2. Assist	in	demystification.	Academia,	industry,	and	regulators	should	each	independently	engage	with	the	
daunting	process	of	public	education	to	demystify	the	benefits	and	limitations	of	security	AI/ML.	As	one	
important	example,	the	public	currently	lacks	a	set	of	narratives	that	realistically	assesses	the	functioning	
of	AI/ML.	Current	narratives	either	err	on	the	side	of	unrealistically	utopian	visions	or	dramatically	
dystopian	ones	leading	to,	for	example,	the	extinction	or	enslavement	of	humanity.			

3. Regularly	perform	robust	self-audit.	Builders	and	operators	of	security	AI/ML	should	engage	with	existing	
standards	of	care,	such	as	those	reflected	by	International	Organization	for	Standardization	
(ISO)	standards	[17],	and	analyze	their	organizations	for	the	existence	of	robust	and	rigorous	self-audit	
and	technical	governance	processes.	Each	AI/ML	builder	and	operator	should,	in	particular,	ensure	that	
security	by	design	principles	are	in	place	throughout	the	organization.	Because	of	the	severe	risks	
presented	by	malfunctioning	AI/ML,	each	organization	should	make	certain	that	a	designated	ethics	
officer	is	in	place	who	has	expertise	in	both	AI	and	security.	This	ethics	officer	should	work	closely	with	the	
chief	information	security	officer	(CISO),	general	counsel,	and	other	C-suite	executives	to	craft	meaningful	
accountability	processes	that	accurately	assess	the	limitations	of	AI/ML.		

4. Regularly	perform	robust	external	audit.	Rampant	data	breaches	and	vulnerabilities	remind	us	that	all	
code	contains	errors.	In	addition	to	self-audit	mechanisms,	third-party	technical	audits	offer	a	key	
verification	method	for	security	AI/ML	safety.	Robust	regulatory	enforcement	presents	another	necessary	
trust-preserving	audit	mechanism	for	the	future	of	AI/ML.		
	

3.	 Data:	New	Information	Frontiers	
In	2014,	the	International	Data	Corporation	reported	that	the	amount	of	data	was	doubling	every	year	and	
would	reach	44	zetabytes	(44	×	1021	bytes)	by	2020	[18].	This	figure	includes	data	from	individuals,	devices,	
technical	networks,	social	networks,	and	various	applications.	As	security	AI/ML	requires	large	and	diverse	
data	sets	for	effective	training	and	the	networks	that	the	AI/ML	will	be	applied	to	produce	significant	amounts	
of	real-time	data,	it	is	clear	that	data	represent	a	critical	dimension.	

To	be	effective,	security	AI/ML	algorithms	must	be	trained	on	large,	diverse	training	data	sets.	As	such,	the	
effectiveness	of	the	algorithms	is	directly	proportional	to	the	quantity	and	quality	of	the	data.	While	large	
training	data	sets	are	often	available,	one	challenge	is	the	completeness	of	the	data.	Existing	devices	and	
networks	were	not	originally	designed	with	instrumentation	and	measurement	as	an	integral	feature;	
therefore,	the	data	available	from	these	devices	and	networks	are	not	capturing	critical	conditions.	
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Additionally,	data	sets	are	often	incomplete	because	individuals	and	organizations	are	influenced	by	liability	
and	reputational	concerns	and	withhold	data	about	potentially	embarrassing	cybersecurity	events	that	could	
reduce	customer	and	investor	confidence.	Consumer	privacy	concerns,	government	policies	and	regulation,	
and	protection	of	proprietary	information	also	contribute	to	incomplete	data	sets.	

Relevancy	and	integrity	are	additional	factors	associated	with	data.	While	simulated	data	sets	are	convenient	
to	generate,	they	are	often	artificial	because	they	do	not	properly	encapsulate	reality	and	the	human	
dimension	of	adversarial	actions.	Additionally,	to	be	effective,	data	sets	must	be	continually	updated	so	they	
include	the	most	recent	evolution	of	threat	results.	Data	that	do	not	include	the	most	recent	attack	data	
cannot	be	effective	against	those	attacks.	Data	integrity	affects	both	the	effectiveness	of	and	confidence	in	
AI/ML.	Data	collection	techniques,	by	their	very	nature,	often	include	unintended	human	and	technical	biases.	
Understanding,	documenting,	and	sharing	those	biases	are	important	to	ensure	AI/ML	effectiveness	and	
operation.	Data	integrity	also	affects	human	confidence	in	AI/ML.	If	the	AI/ML	training	data	set	is	incomplete,	
includes	questionable	biases,	or	is,	in	general,	not	fully	understood,	then	confidence	in	the	entire	system	is	
diminished.	Preprocessing	of	the	data	prior	to	use	for	training	can	also	alter	data	integrity	and	reduce	
confidence.	

Beyond	the	actual	data	used	for	the	training	and	operational	employment	of	AI/ML	in	cybersecurity	
applications,	storing,	sharing,	and	ensuring	the	integrity	of	the	data	impact	the	effectiveness	of	and	confidence	
in	the	respective	systems.	No	centralized,	standardized,	and	qualified	data	warehouses	for	cybersecurity	data	
currently	exist	that	allow	broad	sharing	across	industry,	government,	and	academia.		

Because	data	in	the	cybersecurity	domain	continue	to	grow	at	an	increasing	rate,	it	is	important	to	consider	
alternative	algorithmic	approaches	that	abstract	threat	anomalies	from	the	data	level	to	higher-level	ensemble	
indicators.	Characterizing	common	attack	patterns	will	allow	AI/ML	models	to	focus	on	features	that	predict	
outcomes.	Additionally,	rare	threat	events,	while	potentially	devastating,	are	often	underrepresented	in	a	
probabilistic	model	that	encompasses	all	threats.	As	a	result,	there	is	a	need	within	the	AI/ML	development	
community	to	devise	a	feature-engineering	approach.	This	will	allow	AI/ML	systems	to	analyze	common	attack	
patterns,	then	generate	representative	attack	scenarios,	subsequently	analyze	those	patterns	to	identify	
variations,	and	ultimately	update	and	improve	the	algorithms.	

It	is	well	known	within	the	military	that,	while	operations	are	planned	with	great	precision,	the	enemy	gets	a	
vote	on	the	final	outcome.	Security	AI/ML	models	are	complex,	and	a	sophisticated	adversary	can	determine	
the	boundaries	of	the	model	and	potentially	exploit	these	boundaries.	The	fundamental	challenge	is	that	
detection-driven	data	potentially	create	a	false	representation	of	an	attack	landscape,	and	the	models	are	
then	updated	to	prevent	only	attackers	who	are	willingly	or	unwittingly	transparent	[19].	Primary	data	
gathered	from	professional	attackers	show	a	completely	different	landscape	than	the	corresponding	landscape	
inferred	from	detections	[20].		

We	offer	the	following	recommendations	for	the	data	dimension.		

1. The	sponsorship	of	data	warehouses,	with	support	from	analysts,	can	maintain	data	quality	and	facilitate	
feature	engineering.	Government	and	industry	are	both	capable	of	providing	financial	support	and	
leadership	for	coordinated	data	management.	

2. A	sponsored	data	warehousing	organization	should	drive	a	move	toward	international	data	storage	
standards	to	facilitate	information	sharing	across	organizations.	These	standards	should	be	sufficiently	
flexible	to	evolve	as	threats,	models,	and	networks	change	over	the	ten-year	horizon.	

3. If	we	try	to	harmonize	rules	and	standards,	there	could	be	a	race	to	meet	the	lowest	common	
denominator.	This	may	lose	data	granularity.	We	should	look	at	“norms”	in	addition	to	standards.	We	
should	also	use	the	format	of	data,	or	metadata,	to	ensure	trust	and	interoperability	among	organizations	
with	different	security	AI/ML.	Governments	should	establish	regulations,	rules,	and	norms	on	new,	frontier	
data	sets	for	smart	cities,	smart	cars,	and	the	IoT.	Care	should	be	taken	regarding	how	data	are	handled:	
Can	personal	data	be	collected?	Do	vendors	get	access?		

4. Academia	should	be	invited	to	work	on	a	framework.	We	need	cross-disciplinary	research	across	AI/ML,	
cybersecurity,	data	science,	human-factor	cyber	engineering,	the	social	sciences,	and	the	work	of	futurists.	
Research	is	required	for	contextual	and	inferential	data	collection,	using	data	formatting	as	well	as	sensors	
to	collect	data.		

5. Economic	incentives	should	be	introduced	so	that	sensors	are	in	place	to	collect	data.	Governments	at	all	
levels	should	decide	how	to	collect	and	make	use	of	their	data.	Information	should	be	collected	that	
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respects	set	policies.	To	leverage	data	for	cybersecurity,	while	maintaining	privacy	and	security	
considerations,	the	cybersecurity	community	should	investigate	sharing	data	through	trusted	third	
parties.		

6. Mechanisms	to	measure	the	confidence	level	of	data’s	relevance	and	accuracy	should	be	established.	Will	
the	market	help	ensure	data	accuracy	and	relevance,	especially	when	people	are	paying	for	the	data?	

7. Data	collection	and	feature	engineering	should	focus	on	cybersecurity	attributes	that	have	a	reasonably	
small	probability	of	being	manipulated	by	bad	actors.	Oversampling	techniques	can	increase	the	presence	
of	threat	cases	in	the	training	set.	Where	positive	examples	are	rare,	the	number	of	features	in	any	model	
should	be	limited.	

	

4.	 Hardware	for	AI/ML	and	Cybersecurity	
Nathaniel	Fick,	chief	executive	officer	of	Endgame,	has	stated	that	“the	attackers’	advantage	is	getting	ever	
stronger.	Companies	have	growing	attack	surfaces	driven	by	device	proliferation:	the	IoT,	mobility,	automation	
and	AI,	and	infrastructure	as	a	service	(IaaS).	Meanwhile,	barriers	to	entry	to	creating	and	deploying	
sophisticated	cyber	weapons	continue	to	fall.”	The	network	is	no	longer	defined	by	the	electronic	equipment	
within	the	physical	protection	of	buildings	and	campuses.	Today,	the	network	consists	of	human	users	
connected	by	mobile	devices	anywhere	in	the	world	and	autonomous	devices	broadcasting	sensor	information	
from	remote	locations.	This	is	a	very	large	and	varied	attack	surface	to	manage	and	defend	against	adversaries	
deploying	sophisticated	cyberattacks	aided	by	AI	bots.	The	problem	appears	impossibly	hard	to	solve,	with	
many	leading	CISOs	admitting	that	they	no	longer	view	cyberattacks	as	a	question	of	whether	they	will	be	
hacked,	but	rather	when.		

Hardware	is	an	integral	part	of	this	solution	in	three	ways.	The	first	is	by	integrating	security	into	hardware	
device	designs.	The	second	is	by	creating	hardware	network	architectures	that	can	intelligently	monitor	the	
network’s	security	state.	The	third	is	by	creating	hardware	that	allows	AI/ML	systems	to	solve	more	complex	
problems	by	eliminating	existing	compute	barriers.		

Because	IoT	and	mobile	devices	usually	lack	the	computational	power	needed	to	run	advanced	security	
software,	security	must	be	embedded	within	the	hardware	of	the	devices	themselves.	The	devices	must	
become	the	front	line	of	defense,	or	they	will	be	used	to	enable	attacks.	This	was	shown	in	the	October	2016	
DDoS	attack	[21],	[22]	in	which	millions	of	DVRs	and	webcams	were	converted	into	botnets	by	the	Mirai	
malware	and	then	used	to	launch	a	continuous	and	massive	stream	of	traffic	that	resulted	in	shutting	down	
Netflix	and	other	major	websites.	The	ability	exists	to	mitigate	these	attacks	or	make	them	more	difficult	by	
implementing	hardware-based	security	features	such	as	ARM’s	TrustZone	technology	[23],	which	supports	
secure	end	points	and	a	device	root	of	trust.	These	features	are	essential	for	an	AI-based	system,	if	IoT	devices	
can	manage	to	defeat	simple	attacks	and	provide	an	AI	algorithm	not	only	to	understand	the	current	state	of	
the	network	but	also	to	find	and	defend	against	anomalies.	In	the	highly	competitive,	low-cost	environment	of	
the	IoT,	it	is	hard	to	convince	device	manufacturers	to	commit	design	time	and	resources	to	implementing	
these	features.	This	is	clearly	shown	in	the	case	of	Meltdown	and	Spectre,	where	simple	security	fixes	could	
have	prevented	large-scale	security	flaws;	but	there	was	no	incentive	for	industry	to	find	and	implement	those	
fixes.	Government	agencies,	standards	organizations,	and	consumers	must	act	in	concert	to	demand	that	
security	be	integral	to	these	devices;	end-point/edge	devices	must	also	be	strengthened	to	make	them	harder	
to	compromise	by	deploying	at	least	parts	of	an	AI/ML	system	on	the	edge	devices	themselves.	

A	model	to	follow	could	be	the	1890	establishment	of	Underwriters	Laboratory	(UL)	to	develop	standards	for	
electrical	wiring	because	of	the	potential	to	create	fires.	The	National	Fire	Protection	Association	was	also	
founded	at	that	time	to	initiate	fire	codes	and	promote	laws	for	fire	safety.	Both	of	these	efforts	helped	to	
create	a	demand	for	certified	equipment.	Consumers	wanted	to	be	assured	that	the	devices	they	bought	
would	not	be	a	danger	to	their	houses	and	families.	All	they	had	to	do	was	look	for	the	“UL”	seal.	This,	in	
addition	to	product	safety	standards	legally	imposed	by	appropriate	regulatory	bodies,	forced	manufacturers	
to	add	safety	features	to	their	products	to	sell	them.	A	similar	UL-like	seal	for	security	is	needed.	
Unfortunately,	despite	having	been	discussed	for	years	and	some	recent	efforts	being	made,	the	idea	has	
never	been	implemented	at	scale.	We	need	to	treat	cyber	incidents	in	a	manner	similar	to	traditional	safety	
incidents.		

Effectively	using	AI/ML	to	defend	against	cyberattacks	requires	the	ability	to	monitor	network	security	health,	
assess	threats	to	the	network,	and	provide	solutions	to	cyber	analysts	to	defeat	the	attack.	Monitoring	the	
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network	and	assessing	threats	require	information	in	the	form	of	telemetry.	Networks	should	have	imbedded	
hardware	monitors	that	can	broadcast	the	status	of	different	devices	in	the	network	to	a	central	defense	
AI/ML	system	and	so	detect	and	defeat	threats	before	they	damage	the	network.	The	challenge	here	is	that,	to	
create	such	a	system,	the	computer	and	network	architecture	must	be	designed	with	security	in	mind.	It	is	not	
enough	to	simply	place	monitors	into	hardware;	thought	must	be	given	to	what	information	is	needed	and	
how	best	to	deploy	the	monitors	to	ensure	adequate	coverage	of	the	network	as	well	as	real-time	alerting	of	
attacks	as	they	occur—and,	of	course,	the	security	of	such	a	system.	The	National	Science	Foundation	and	
DARPA	have	begun	investigating	what	this	next-generation	network	would	be,	but	more	needs	to	be	done.	
Industry	and	academia	must	also	step	up	and	explore	what	this	system	would	look	like	and	how	it	would	
function.	This	research	will	help	us	enormously,	not	just	to	deploy	an	AI/ML	solution	but	to	deploy	the	right	
solution.		

Finally,	today’s	computer	architecture	was	designed	to	do	complex	calculations	on	relatively	small	amounts	of	
data.	This	architecture	is	not	suited	to	the	type	of	computations	performed	by	modern	AI/ML	systems.	AI/ML	
algorithms	find	clusters	of	data	or	associations	to	connect	observed	information	together	and	so	provide	
context	for	the	observations.	This	context	allows	the	machine	to	understand	the	perceived	world	and	make	
decisions	about	how	to	respond	to	what	the	system	is	observing.	To	accomplish	this,	AI/ML	algorithms	process	
a	large	amount	of	data	and	perform	relatively	simple	operations	(e.g.,	matrix	multiplications)	on	those	data.	
This	is	a	fundamentally	different	processing	paradigm	from	what	is	common	today.	Because	of	this	disconnect,	
AI	requires	a	large	amount	of	computing	hardware	to	do	the	training,	thereby	precluding	the	real-time	threat	
assessment	and	response	required	by	cybersecurity	for	new	threats.	To	solve	this	problem,	computer	
architects	need	to	fundamentally	change	their	approach	to	computing.	We	need	to	take	a	more	data-centric	
approach,	focusing	on	how	data	flow	through	a	processor,	and	a	less	processor-centric	approach,	which	
focuses	on	how	computations	are	done.	Academia,	funded	by	government	agencies	and	industry,	can	lead	the	
way	by	experimenting	with	new	and	novel	outside-the-box	architectures.	Innovative	approaches	are	the	only	
way	to	shake	up	a	field	that	hasn’t	effectively	changed	in	the	last	50	years.	Without	a	new	architecture,	AI/ML	
will	be	unable	to	solve	large-scale	problems	such	as	those	in	the	cybersecurity	application.		

AI/ML	can	also	be	used	to	design	better	hardware.	It	is	difficult	to	create	hardware	that	functions	predictably	
and	securely	because	those	attributes	traditionally	depend	on	the	experience,	foresight,	and	knowledge	of	
human	designers.	AI	can	be	integrated	into	current	design	tools,	like	those	produced	by	Cadence	and	Mentor	
Graphics,	in	such	a	way	to	find	common	design	mistakes	or	errors	early	in	the	development	cycle.	This	would	
be	a	significant	aid	to	the	human	designers.	AI/ML	is	able	to	explore	more	possible	failure	modes	and	can	look	
for	complex	failure	mechanisms	buried	in	a	design	that	would	otherwise	be	missed.	Eliminating	hardware	
faults	can	go	a	long	way	toward	making	the	network	secure	because	hardware	faults	and	design	errors	are	
among	the	most	reliable	targets	for	exploits.	Based	on	a	2015	study	by	MITRE,	2,800	cyberattacks	could	be	
traced	back	to	seven	classes	of	hardware	bugs.	Eliminating	these	bugs	using	AI/ML	in	the	design	process	will	
close	several	attack	avenues	used	by	hackers.	The	electronic	design	automation	community	will	need	to	invest	
in	developing	these	tools,	and	their	users	will	have	to	provide	fault	information	so	that	an	AI/ML	system	can	
learn	from	those	mistakes.	This	effort	should	be	mostly	industry	focused,	with	the	government	playing	a	
supporting	role	in	encouraging	the	development	of	these	systems.		

We	make	the	following	recommendations	regarding	hardware.	

1. Investing	in	new	memories	and	interconnects	will	more	efficiently	process	large	data.	Currently,	anywhere	
between	40	and	96%	of	time/energy	is	spent	moving	data	around,	and	between	4	and	60%	is	spent	
processing	[24],	[25].	

2. Solving	important,	real-world	problems	will	require	many	more	graphics	processing	units	(GPUs),	central	
processing	units	(CPUs),	application-specific	integrated	circuits	(ASICs),	and	field-programmable	gate	
arrays	(FPGAs)	than	are	practical.	Improving	data	movement	(see	1,	above)	will	enable	new	AI	algorithms.		

3. The	IoT	needs	security	standards,	developed	by	a	standards	body	such	as	the	National	Institute	of	
Standards	and	Technology	or	the	IEEE.	Another	organization	(akin	to	the	UL)	and	regulators	should	
enforce	adoption.	

4. Educating	the	public	about	the	value	of	certification	and	creating	a	market	function	to	force	hardware	
manufacturers	to	incorporate	security,	including	in	accelerators	such	as	GPUs,	FPGAs,	and	tensor	
processing	units	(TPUs),	are	essential.		

5. Academia,	industry,	and	government	should	develop	a	methodology	for	building	a	secure	hardware	(we	
might	call	it	“design	for	security”).		
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6. Industry	should	establish	an	affordable	means	for	security	testing	and	certification.	Today,	such	
laboratories	are	so	expensive	that	most	companies	do	not	use	them.	

7. Security	middleware	to	monitor	a	system	and	issue	alerts	using	current	hardware	monitors	should	be	
developed	along	with	new	ones	to	determine	system	security.		

8. Experts	should	devise	certifications	enabling	manufacturers	to	regard	security	as	a	contributor	to	profits	
and	allowing	consumers	to	differentiate	in	their	purchasing	behavior	based	on	security	robustness.		

9. Universities	should	incorporate	security	into	the	hardware	development	curriculum	of	system	design	
courses	and	include	hardware	into	cyber	analysts’	and	programmers’	training.	

	

5.	 Software	And	Algorithms	for	AI/ML	and	Cybersecurity	
Countering	cybersecurity	attacks	in	a	completely	autonomous	way,	using	sophisticated	AI/ML	algorithms	and	
without	human	supervision,	is	both	appealing	and	controversial.	Security	AI/ML	software	observes	system	
usage,	estimating	in	real	time	whether	there	is	a	threat.	To	enable	ML	systems	to	construct	a	detailed	model	of	
a	scenario,	developers	are	challenged	to	quickly	understand	normal	and	threatening	scenarios	and	their	
associated	feature	space	at	a	high	level.	Five	basic	principles	have	guided	this	analysis	of	how	corporations,	
government	agencies,	and	other	institutions	should	best	deploy	AI/ML	software	and	algorithms	to	address	
growing	cybersecurity	threats.	

1. For	both	technological	and	policy	reasons,	a	completely	autonomous	system	for	detecting	and	responding	
to	threats	is	not	always	an	appropriate	option.	Balancing	the	benefit	of	human	versus	machine—given	
that	they	both	make	mistakes—should	be	used	to	decide	who	or	what	makes	the	decision.	

2. The	underlying	technologies	of	cybersecurity	and	AI/ML	are	evolving	rapidly;	therefore,	an	adaptable	
AI/ML	framework	must	be	developed.	Focusing	on	a	specific	methodology	or	algorithm,	such	as	deep	
learning,	would	be	unwise	because	developments	in	a	few	years	are	likely	to	supersede	it.	For	the	same	
reason,	the	search	for	a	single	“proven”	cybersecurity	model	is	a	chimera.	

3. AI/ML	approaches	to	cybersecurity	must	be	problem	specific.	A	successful	approach	will	feature	more	than	
one	model,	operating	in	sequence,	in	any	conceivable	circumstance.		

4. AI/ML	models	for	cybersecurity	will	be	applied	in	two	phases.	The	first	phase	will	involve	developing	an	
understanding	of	the	normal	historical	landscape	of	network	data	traffic,	extracting	actionable	insights	
about	threats,	and	learning	to	identify	anomalies	in	network	traffic.	The	second	phase	will	consist	of	
applying	an	understanding	of	“normal”	to	identify	anomalous	situations	requiring	human	interaction	and	
action	against	known	threat	profiles.		

5. AI/ML	for	cybersecurity	is	similar	in	nature	to	the	application	of	AI/ML	for	fraud:	both	are	adversarial	and	
ongoing.	In	either	case,	perpetrators	will	modify	their	behavior	when	their	actions	are	detected	and	
thwarted,	necessitating	constantly	evolving	countermeasures.	

	

Because	typical	cybersecurity	data	sets	are	extremely	large,	networks	for	data	delivery	and	the	processing	of	
ML	models	must	be	capable	of	efficiently	handling	staggering	amounts	of	diverse	data.	The	scarcity	of	such	
networks	today	is	a	major	hindrance	to	progress	in	the	field.	Achieving	such	networks	for	real-time	analytics	
requires	even	more	careful	software	design	and	algorithms.		

Additionally,	AI/ML	can	be	applied	to	cyber	networks	in	either	a	proactive	or	a	passive	(forensic)	way.	This	
distinction	merits	explicit	inclusion	in	planning	and	design.	Proactive	models	leverage	insights	gained	from	
historical	analysis	to	continually	monitor	network	activity	against	known	indicators	of	attack	patterns.	As	a	
new	input	arrives,	it	is	compared	to	all	known	patterns	of	attack.	As	knowledge	of	these	patterns	deepens	(a	
function	of	both	the	data	and	an	analysis	of	historical	information),	a	more	aggressive	approach	for	reacting	to	
suspicious	activity	can	be	employed.		

In	contrast,	passive	models	collect	sufficient	data	to	enable	the	post	hoc	analysis	of	attacks	that	were	
unanticipated	in	kind.	This	allows	an	organization	to	use	a	tip	from	another	domain	to	learn	about	how	an	
attack	was	carried	out	and	possibly	also	to	be	able	to	attribute	the	attack	to	a	specific	operator.	Collected	data	
should	include	those	that	provide	broad	visibility	into	enterprise	activities,	as	a	way	to	understand	how	
malicious	software	can	spread,	as	well	as	deep	visibility	into	specific	system	activities,	as	a	way	to	understand	
how	malicious	software	executed	its	attacks.	The	first	usually	requires	capturing	network	activity,	while	the	
second	usually	requires	capturing	system	activity	on	each	system.	
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Natural	language	processing	(NLP)	makes	it	possible	to	derive	actionable	insights	from	previously	inaccessible	
data.	Analyzing	unstructured	text	with	NLP	enables	the	extraction	of	key	actors	from	past	cyber	incidents,	
news	stories,	analysis	reports,	and	many	other	similar	text	sources.	Knowledge	Graph	technology	enables	the	
discovery	of	nonobvious	secondary	and	tertiary	relationships	by	connecting	individual	nodes	and	also	provides	
insights	into	sequences	of	events.	It	is	possible	to	deepen	our	understanding	of	the	cyber	landscape	to	identify	
precursors	to	threats	and	more	readily	determine	deviations	that	could	indicate	hazards.	

Cybersecurity	is	highly	dynamic	because	the	underlying	technologies	are	evolving	rapidly,	and	the	offense	and	
defense	are	locked	in	a	threat–response–threat	coevolution.	This	dynamic	and	constantly	evolving	landscape	
requires	constant	vigilance	and	updates	to	threat	classification,	identification,	and	response.		

Finally,	the	adversarial	nature	of	the	cyber	domain	presents	a	modeling	challenge	that	is	also	an	opportunity.	
Cyber	competitions,	in	which	teams	act	and	react	to	others,	are	valuable	laboratories	to	explore	interactions.	
The	goal	of	these	experiments	is	to	imitate	processes	by	which	an	adversary	learns	of	defensive	measures	and	
then	preempts	evasive	measures.	Understanding	an	adversary’s	strategy,	then,	helps	refine	the	models.		

We	make	the	following	recommendations	regarding	software	and	algorithms.	

1. ML	should	be	used	as	a	tool	to	enhance	and	extend	human	cognition.	If	models	reduce	the	burdens	of	
routine	activity	and	identify	potentially	risky	activity,	the	probability	of	threat	avoidance	increases.	ML	
shows	significant	promise	in	support	of	forensics,	intrusion	detection,	and	attack	response.		

2. Academic,	industry,	and	government	partnerships	should	develop	game-theoretic	models	for	a	deeper	
understanding	of	the	motivations	and	behaviors	of	threat	actors.		

3. Every	appropriate	form	of	data	should	be	aggressively	leveraged.	NLP	techniques	can	be	used	to	extract	
artifacts	from	unstructured	data,	and	Knowledge	Graph	technology	can	be	leveraged	to	identify	
nonobvious	relationships	between	entities	while	recognizing	the	data	sampling	concerns	set	forth	in	the	
“Human	Factors”	section	of	this	trend	paper.	These	will	identify	precursors	to	threat	incidents	and	support	
automatic	detection	of	nefarious	activity.	

4. Systems	should	be	architected	around	the	uncertainty	of	cyber	defense.	Less	focus	should	be	given	to	
specific	threat	indicators	(often	unknowable)	and	more	to	understanding	what	is	different	or	anomalous.	
This	requires	a	deeper	understanding	of	what	“normal”	looks	like,	so	unusual	indications	can	be	detected	
more	rapidly	and	with	greater	fidelity.	

5. ML	models	are	not	static;	they	must	adapt	as	threats	develop.	To	keep	pace	with	developing	threats,	a	
system	requires	the	attention	of	ML	scientists.	ML	systems	need	a	ready-made	development	environment,	
with	easy	data	access,	to	facilitate	experiments	with	feature	sets	and	functional	forms.	It	must	be	simple	
to	push	models	into	production.	

6. Academic,	industry,	and	government	partnerships	must	foster	cooperation	on	modeling	advances	for	
particular	cyber	challenges.	Government	and	industry	organizations	should	fund	academic	research	and	
provide	sufficient	guidance	on	specific	problems	requiring	creative	technical	approaches.	Similarly,	
government	and	industry	should	encourage	data	sharing,	so	models	can	be	trained	with	the	most	
comprehensive	data	possible.		

7. ML	focuses	on	statistically	based	methodologies,	but	these	are	not	always	appropriate	for	understanding	
the	dynamics	of	an	adversarial	system,	as	in	cybersecurity,	where	threat	actors	modify	behavior	when	it	
becomes	ineffective.		

8. Models	must	adapt	quickly	to	dynamic	threats.	Complex	models	that	take	weeks	to	modify,	train,	and	
push	to	production	will	be	too	brittle	to	provide	adequate	protection.	Hybrid	techniques	that	enable	quick	
changes	that	protect	against	rising	threats	could	augment	robust,	carefully	trained	systems.	

9. The	effective	implementation	of	an	ML-based	cyber	strategy	requires	close	integration	of	diverse	
expertise.	Cyber	and	ML	experts	must	collaborate	to	understand	the	nature	of	threats,	so	implicit	
uncertainties	can	be	explicitly	modeled.	Field	leaders	must	find	ways	to	increase	professional	
collaboration.	
	

6.	 Operationalization:	Putting	It	All	Together	
The	world	has	finite	resources	to	dedicate	to	improving	cybersecurity,	a	fact	that	will	inevitably	lead	to	issues	
of	resource	allocation.	Imagine	a	future	meeting	to	create	an	industry	or	government	road	map	for	research	
and	the	development	of	security	AI/ML.	We	believe	the	participants	would	agree	that	properly	developed	and	
deployed	AI/ML	would	be	highly	desirable	to	give	the	good	guys	at	the	meeting	an	advantage	over	bad	actors.	
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But	there	would	be	disagreement	over	which	good	guy’s	business	model	needs	protection	first—or	which	
nation’s	laws	should	provide	the	template	for	cybersecurity	law	and	policy.	

The	counterpoint	to	the	growing	size	of	the	cyber	physical	attack	surface	is	that	its	growth	represents	
enormous	opportunities.	Through	hardware	improvements	and	proliferation,	over	the	coming	decade,	
organizations	will	be	able	to	integrate	AI/ML	into	cyberspace	operations	in	ways	they	would	not	have	
anticipated	even	five	years	ago.	AI/ML	will	help	create	integrated	meaning	from	hundreds	and	thousands	of	
disparate	data	streams;	support	automated,	real-time	prevention	platforms;	and	augment	humans’	decision-
making	ability.		

Substantial	opportunities	exist	for	determining	how	humans	learn	to	trust	AI/ML	systems	and	the	entities	that	
use	AI/ML.	The	logical	extension	of	such	research	is	to	examine	how	humans	(once	they	have	learned	to	trust	
the	outputs	of	the	AI/ML	systems	they	interact	with)	cope	with	violations	of	that	trust—such	as	incorrect	
outputs,	lost	data,	data	aggregation	across	systems	that	violate	privacy	expectations,	and	adversarial	
manipulation	of	learning	strategies	to	poison	“trusted”	systems.	This	knowledge	will	ultimately	become	the	
rules	of	the	road	for	a	long-term	cyber-enabled	society.	There	is	a	call	for	collaboration	among	researchers	in	
fields	of	personal	and	organizational	trust	and	the	designers,	developers,	and	trainers	of	AI/ML	systems.	

As	discussed	in	the	section	“Human	Factors,”	trust	in	the	technology	may	require	substantial	financial	support	
and	attention	by	key	decision	makers.	As	it	evolves,	AI/ML	is	more	likely	to	reach	conclusions	or	perform	
actions	that	humans	do	not	fully	understand	or	that	differ	from	the	results	of	typical	human	judgment.	
Handled	poorly,	recommendations	or	actions	by	AI/ML	increase	the	probability	that	the	AI/ML	industry	will	
recreate,	rather	than	learn	from,	experiences	such	as	the	nuclear	power	industry’s	handling	of	nuclear	plant	
accidents.		

Security	fatigue	is	likely	to	be	a	challenge	unique	to	each	industry	segment.	Probabilistic	AI/ML	systems	will	
need	to	learn	while	avoiding	misclassification	in	terms	of	frequency	or	severity	(in	the	eyes	of	the	user,	not	the	
security	specialist)	that	could	lead	to	distrust	and	disbelief—electronic	versions	of	the	boy	who	cried	wolf,	in	a	
sense.	The	punishment	in	the	story	was	that	the	boy	was	eaten;	the	outcome	in	this	discussion	could	be	
reduced	business	growth	due	to	general	distrust	of	computer	technology.	

It	is	easy	to	forget	the	consuming	public	while	industry	sectors	vie	for	leadership	in	cybersecurity	or	other	
aspects	of	computing.	There	will	be	new	and	traditional	challenges	to	the	integration	of	AI	and	ML	into	
cybersecurity.	Repairing	or	mitigating	vulnerabilities	will	remain	a	challenge.	Most	users	either	do	not	know	or	
do	not	have	a	way	to	report	discovered	vulnerabilities.	In	other	instances,	involvement	in	and	additional	
automation	of	repairing	might	be	rejected	by	organizations	unable	to	accept	much	deviation	in	compatibility	
and	performance.	

While	the	solid	political	support	of	small	businesses	suggests	they	will	have	a	place	at	the	security	AI/ML	table,	
small	businesses	may	be	disadvantaged	by	a	lack	of	data	sets	or	resources	to	collect	such	sets.	This	presents	
opportunities	for	larger	organizations	to	productize	larger	AI/ML	solutions	or	for	new	organizations	to	step	
into	the	marketplace	with	meaningful	and	useful	data	sets.		

Current	use	cases,	such	as	fraud	detection	in	the	banking	industry	and	diagnosis	in	the	health-care	industry,	
serve	as	enablers	for	the	future	operationalization	of	AI/ML	in	the	cybersecurity	domain.	Although	not	all	use	
cases	and	current	AI/ML	algorithms	are	designed	to	be	employed	in	real-time	environments,	they	serve	as	
foundations	for	real-time	detect–defend	or	defend–attack	situations	in	cybersecurity.	For	certain	domains,	the	
ability	to	consciously	disable	AI/ML	actions	or	disregard	recommendations	is	an	enabler	of	AI/ML	
operationalization	for	cybersecurity.	In	such	cases,	it	is	important	to	have	the	ability	to	disable	or	alter	specific	
system	aspects	without	necessarily	turning	everything	off	while,	at	the	same	time,	comprehending	any	
repercussions.		

While	understanding	and	trust	may	grow	on	a	societal	level	to	eventually	allow	AI/ML	to	make	response	
decisions,	humans	must	always	have	a	way	to	veto	those	decisions,	particularly	when	preplanned	fail-safes	fail.	
However,	in	many	other	situations,	having	AI/ML	run	closed	loop	will	be	fine	(perhaps	even	preferable)—but	
not	always.	Clear	categorization	is	required	to	determine	when	a	human	should	be	in	the	loop	versus	when	
not.	For	example,	safety	favors	a	human	in	the	loop,	while	limitations	in	scaling	humans’	ability	to	arbitrate	
favors	automation.	

Dueling	security	AI	systems	is	an	area	ripe	for	long-term	research,	as	society	will	eventually	need	to	confront	
the	full	potential	of	AI.	Google	recently	announced	that	AlphaGo	Zero	learned	how	to	beat	AlphaGo	without	
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human	training.	Although	clearly	constrained	to	a	well-structured	(though	exceedingly	large)	universe,	the	
trend	line	from	computers	beating	humans	to	computers	beating	other	computers	will	steepen,	not	flatten.	As	
AI/ML	systems	gain	expertise	in	conducting,	or	helping	conduct,	cyberspace	operations,	there	will	come	a	time	
when	AI/ML	will	face	AI/ML.	Learning	how	to	recognize	the	situation,	establishing	how	to	off-ramp	or	escape	
the	situation,	and	determining	how	and	when	(or	even	if)	to	invoke	human	expertise	are	all	fields	of	research	
that	must	be	explored—if	for	no	other	reason	than	knowing	bad	actors	will	be	using	AI/ML	to	help	them	
achieve	their	own	objectives.	

All	industry	sectors	together	have	a	common	interest	in	managing	the	cybersecurity	workforce	as	it	grows	and	
changes	its	skill	mix,	driven	by	the	ever-increasing	presence	of	AI/ML.	There	is	historical	precedent	for	
workforce	evolution	in	the	automotive	industry.	At	the	industry’s	beginning,	little	effort	was	required	to	learn	
how	to	maintain	and	operate	an	automobile.	AI/ML	usage	and	developing	trust	will	not	require	extensive	
grounding	in	the	theory	and	fundamentals	of	AI;	driving	a	modern	car	does	not	require	the	operator	to	know	
the	intricacies	of	the	ignition	system.	However,	the	AI/ML	industry	must	become	better	at	maintaining	and	
retaining	skilled	labor	to	design,	build,	operate,	maintain,	and	defend	AI/ML	systems.		

The	supporting	partners	for	the	operationalization	of	AI/ML	in	cybersecurity	are	governments,	industry,	
academia,	and	the	consuming	public.	At	the	core,	industry	partnerships	with	academia	will	be	the	strongest	
way	to	bring	the	research-driven	AI/ML	capabilities	to	operational	use	in	cybersecurity.	At	the	government	
level,	research	funding	for	academia	and	incentives	for	industry	to	participate	with	academia	are	required.	
Industry,	in	the	form	of	consortia,	can	facilitate	workshops	and	the	creation	of	standards,	as	cross-company	
bodies	playing	a	specific	role	in	terms	of	articulating	problems	can	help	illuminate	the	risk	and	share	best	
practices.	Standards	organizations	and	consortiums	like	the	IEEE	have	a	role	in	establishing	common	business	
practices.	Such	standardization	must	rise	above	the	tendency	to	seek	a	seal	of	approval	or	a	checklist	of	
minimal	behaviors	that	are	assessed	once	and	then	forgotten.		

We	make	the	following	recommendations	on	operationalization.	

1. Demonstrate	the	compelling	case	that	AI/ML	systems	embedded	within	cyberspace	operations	make	
operations	better	along	multiple	dimensions,	e.g.,	speed	to	patch,	remediating	a	malicious	event	(or	
events),	increasing	up-time	in	systems	of	interest,	decreasing	the	number	of	incidents	and	the	number	of	
false	positives,	increasing	action–reaction–counteraction	time	cycles,	and	decreasing	unintended	
consequences	of	cybersecurity	operations	decisions	and	actions.	

2. Retain	human	and	organizational	responsibility	for	decisions	made	by	the	organization’s	humans	and	
systems.	Disclaiming	responsibility	for	organizational	actions	(or	inactions)	because	the	AI/ML	influenced	
or	made	a	decision	is	unwise	and	will	contribute	to	public	and	regulatory	backlash.	

3. To	gain	the	trust	of	those	humans	responsible	for	cybersecurity	operations,	AI/ML	systems	and	their	
makers	must	prepare	to	be	transparent	about	the	processes	by	which	their	systems	are	trained	and	tested,	
evolve	(at	both	the	operating	system/application	levels	and	the	data	processing/recommendation	levels),	
make	decisions,	receive	and	process	feedback	for	improvement,	and	provide	indicators	and	warnings	of	
being	under	attack	(fast	and	overt	as	well	as	slow	and	subtle	data	poisoning).		

4. Rigorous	academic	and	industry	review	of	thought	leadership	on	AI/ML	topics	in	cybersecurity	is	needed	to	
address	the	lack	of	vetting	and	openness	of	practitioner	influence.	Interdisciplinary	review	may	be	applied	
prior	to	publication,	getting	the	correct	information	out.	First,	publications	may	result	in	inaccuracies.	
Industry	should	be	asked	to	fund	interdisciplinary	policy	chairs	at	leading	universities	to	connect	research	
from	industry	and	academia.	We	are	at	the	dawn	of	publications	in	this	field,	and	a	serious	shortage	of	
interdisciplinary	AI	policy	scholars	exists.	

5. The	evolution	of	the	workforce	must	be	supported	by	encouraging	university	curricula	in	AI/ML,	with	
specific	coverage	of	security,	such	that	future	designers	and	operators	gain	a	mutual	understanding	of	the	
limitations	and	risks.	

Summary	

AI/ML	will	become	one	of	the	key	components	of	next-generation	security,	enabling	elevated	degrees	of	
cybersecurity.	At	the	same	time,	AI/ML	can	become	a	threat	used	by	attackers.	In	this	trend	paper,	we	
addressed	six	different	dimensions	related	to	the	intersection	of	AI/ML	with	cybersecurity:	legal	and	policy	
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issues;	human	factors;	data;	hardware;	software	and	algorithms;	and	operationalization.	As	noted	earlier,	
these	recommendations	are	intended	for	industry	(I),	academia	(A),	government	(G),	and	standardization	
bodies	(S).	In	addition	to	specific	recommendations	within	each	of	these	six	dimensions,	we	make	the	
following	five	cross-cutting	recommendations,	indexed	by	dimensions	(1–5)	and	to	whom	they	are	targeted	(I,	
A,	G,	or	S):	
• The	future	needs	of	cybersecurity	will	require	an	interplay	of	advances	in	technology	(hardware,	

software,	data),	legal	and	human	factors,	and	mathematically	verified	trust	(1,	2,	3,	4,	and	5)	(I,	A,	and	G).	
• It	will	require	concerted	business	efforts	to	establish	market-accepted	products,	certified	by	established	

regulatory	authorities	(1,	2,	4,	and	5)	(I	and	G).	
• AI/ML-fueled	cybersecurity	must	be	based	on	standardized	and	audited	operations	if	humans	are	to	trust	

AI/ML	(1	and	5)	(I	and	S).	
• Regulators	will	need	to	protect	research	and	operations	and	establish	internationally	recognized	

cooperative	organizations	(1	and	2)	(S	and	G).	
• Data,	models,	and	fault	warehouses	will	be	essential	for	tracking	progress	and	documenting	threats,	

defenses,	and	solutions	(3,	4,	and	5)	(S,	I,	and	A).	

Our	recommendations	can	be	applied	at	different	time	horizons.	Operationalization	takes	the	least	time	and	
could	be	accomplished	in	under	two	years.	This	is	similarly	true	for	data	and	software.	Legal	and	policy	issues	
take	longer,	up	to	five	years.	Hardware,	e.g.,	new	processor	architectures,	typically	takes	more	than	five	years	
to	materialize.	It	will	be	essential	to	continue	evaluating	and	advancing	contributions	of	AI/ML	to	cybersecurity	
through	focused	efforts	of	governments,	industry,	and	academia.	

Afterword:	Background,	Motivation,	and	Overview		

The	IEEE	has	a	rich	and	distinguished	heritage	dating	back	to	the	American	Institute	of	Electrical	Engineers,	
founded	in	1884,	and	the	Institute	of	Radio	Engineers,	founded	in	1912.	Notable	early	presidents	of	the	IEEE	
and	its	founding	organizations	were	engineers	and	practitioners,	including	Alexander	Graham	Bell,	Charles	
Proteus	Steinmetz,	Robert	H.	Marriott,	William	R.	Hewlett,	and	Ivan	Getting.	Over	the	decades,	IEEE	
membership	has	fundamentally	changed,	with	those	working	in	industry	increasingly	outnumbered	by	
academics.	And	this	trend	continues,	with	the	number	of	IEEE	Members	who	identify	industry	as	their	
employer	continuing	to	decline.	Since	2000,	the	percentage	of	IEEE	Members	from	industry	has	fallen	from	
roughly	60%	to	39%.	Our	content	has	diminishing	relevance	to	industry	because	it	is	progressively	more	
academic	in	nature.	Our	career	development	efforts	are	not	optimally	aligned	with	emerging	industry	needs.	

Over	the	past	several	years,	the	IEEE	leadership	has	taken	great	strides	to	engage	with	industry	and	
mounted	a	concerted	effort	to	provide	technical	professionals	with	the	tools	and	information	they	need	to	
excel.	We	have	aggressively	engaged	with	industry	to	understand	its	needs	along	with	those	of	Members	
who	work	in	industry	and	so	bring	forth	products	and	services	of	value	and	importance.	In	2015,	we	met	
with	over	175	industry	leaders	from	45	companies	in	China,	Germany,	Japan,	and	Silicon	Valley	in	the	United	
States.	In	2016,	we	met	with	over	270	leaders	from	70	companies	in	Canada,	China,	India,	Israel,	Japan,	
Singapore,	South	Africa,	South	Korea,	Taiwan,	the	United	Kingdom,	the	United	States,	and	Uruguay.	These	
discussions	provided	important	insights	into	industry	needs.	One	recurring	theme	heard	from	a	wide	variety	
of	different	industries	was	the	importance	of	technology	trend	papers	and	road	maps.	As	a	result	of	this	
input,	we	responded	by	chartering	two	trend	papers	in	2016,	one	on	5G	and	a	second	on	smart	cities.	These	
two	trend	papers	were	delivered	in	the	third	and	fourth	quarters	of	2017,	respectively.	While	the	content	of	
these	trend	papers	was	valuable,	the	more	than	12-month	delivery	time	was	contrary	to	industry’s	need	for	
rapid	and	relevant	information.	To	more	quickly	deliver	contemporary	and	relevant	trend	papers,	we	
considered	an	alternative	model.	

In	partnership	with	Syntegrity,	a	group	having	a	long-standing	relationship	with	the	IEEE,	we	conceived	the	
idea	of	bringing	together	a	group	of	experts	in	a	technology	vertical	and	using	the	Syntegration	process	to	
rapidly	develop	a	technology	trend	paper.	After	careful	consideration	of	the	technology	landscape	and	those	
areas	with	the	greatest	interest	and	impact,	we	chose	the	intersection	of	AI	and	ML	as	applied	to	the	broad	
field	of	cybersecurity.	In	this	context,	cybersecurity	encompasses	the	financial	services,	critical	infrastructure	
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(e.g.,	smart	grid	and	SCADA	[supervisory	control	and	data	acquisition]),	and	defense	sectors.	Syntegrity	
combined	insights	from	geometry,	neurology,	and	cybernetics	with	advanced	mathematical	models	and	social	
technologies	in	the	Syntegration	process,	which	enables	group	interaction	to	consolidate	thinking	and	
ultimately	formulate	solutions	in	dramatically	compressed	time	frames.	

On	 6–8	October	 2017,	we	 convened	 19	 experts	 from	 the	AI,	ML,	 and	 cybersecurity	 sectors	 in	 Philadelphia,	
Pennsylvania,	United	States,	for	a	two-and-a-half-day	collaborative	session	focused	on	the	following	complex	
question:	

Given	 the	 rapid	 evolution	of	AI/ML	 technologies	 and	 the	 enormous	 challenges	we	all	 face	with	
respect	to	cybersecurity,	what	is	needed	from	AI/ML,	where	can	it	be	best	applied,	and	what	must	
be	done	over	the	next	ten	years?	

During	the	first	day,	the	group,	as	a	whole,	identified	challenges	associated	with	the	question,	proposed	
multiple	topics	for	discussion	that	could	potentially	address	the	question,	and	then	collectively	prioritized	six	
specific	topics	the	group	believes	must	be	addressed	to	answer	the	question.	Over	the	remaining	two	days,	
the	group	conducted	iterative	and	focused	discussions	regarding	each	of	the	six	topics	to	reach	a	more	
refined	understanding	of	the	challenges	and	identify	the	most	viable	solutions.	By	the	end	of	the	confluence,	
the	group	produced	a	draft	of	this	trend	paper	that	will	be	shared	with	the	greater	community	to	address	
the	challenges	associated	with	the	question.	
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