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ABSTRACT

Visual compression is an application of data compression
to lower the storage and/or transmission requirements for
digital images and videos. Due to the rapid growth in vi-
sual data transmission demand, more efficient compression
algorithms are needed. Considering that deep learning tech-
niques have successfully revolutionized many visual tasks,
learning-based compression algorithms have been explored
over the years and have been shown to be able to outperform
many conventional compression methods. This survey pro-
vides a review of various visual compression algorithms, both
end-to-end learning-based image compression approaches
and hybrid image compression approaches. Some learning-
based video compression methods are also discussed. In
addition to describing a wide range of learning-based image
compression approaches that have been developed in recent
years, the survey describes widely used datasets, presents re-
cent standardization efforts, and discusses potential research
directions.
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Introduction

In recent years, the demand for visual media has been growing expo-
nentially. According to the 2019 CISCO Visual Network Index (VNI)
forecast update (Nowell, 2019), the global IP video traffic will be 82%
of all IP traffic in 2022, up from 73% in 2016 (CISCO, 2016). Among
the large amount of visual traffic over the Internet, high-resolution
visual content constitutes an increasingly large percentage. Despite the
increase in the average broadband speed, about 1.9-fold from 2016 to
2021, the growth rate of visual data, approximately 3-fold from 2016 to
2021, is much higher than the broadband growth rate (CISCO, 2016;
Nowell, 2019). With such a rapid growth of digital visual media traffic,
there is a growing need for image/video compression approaches that
can achieve much higher compression ratios than the ones obtained
using existing conventional image/video compression methods, while
maintaining a high visual quality.

Most conventional lossy image compression methods, e.g., JPEG
(Wallace, 1992), WebP (Google, 2015), JPEG2000 (Taubman and Mar-
cellin, 2002), BPG! (Bellard, 2018), HEVC-based intra coding (Sullivan

'This corresponds to a container for HEVC-based intra coding, Main 4:4:4 16
intra profile.



et al., 2012), and VVC-based intra coding (Ohm and Sullivan, 2018)
are built based on a transform coding based framework (Goyal, 2001),
where an invertible transform module is used to map image pixel in-
tensities or predicted pixel residuals into a latent representation at
the encoder. The latent representation is then quantized to produce
a compact representation. An entropy encoder is later employed for
coding the quantized latent representation. At the decoder, an inverse
transform module is applied to the entropy decoded quantized data to
recover a lossy image.

Although the conventional compression algorithms have been widely
used and achieved promising results, researchers are working on us-
ing learning-based approaches for image/video compression to help
further improve the compression performance. Such increased interest
in learning-based compression stems from the fact that, over the last
decade, deep-learning-based approaches have achieved huge success
in a variety of visual tasks including but not limited to classification,
segmentation, object detection, and super-resolution.
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Learning-based Visual Compression Methods

Both conventional compression algorithms and learning-based compres-
sion algorithms follow the transform-based framework (Goyal, 2001),
as shown in Figure 2.1, in which a transform, which is hand-designed
for conventional compression methods and trainable for learning-based
compression approaches, is employed to map the image pixel inten-
sities into a latent representation. For lossy image compression, the
latent representation is further quantized. The resulting (quantized)
latent representation is losslessly entropy-encoded in order to generate
a bitstream for transmission and/or storage. At the decoder side, the
entropy-encoded (quantized) latent representation is entropy-decoded
from the bitstream and fed into an inverse transform module to get the
(lossy) reconstructed image.

Several learning-based compression methods have been developed
over the years. These learning-based compression methods can be di-
vided into two groups based on whether or not a conventional codec is
leveraged. Methods in which a conventional codec with a hand-crafted
transform is leveraged are referred to as “hybrid learning-based com-
pression methods.” Methods in which both the transform and inverse
transform are learned are referred to as “end-to-end learning-based
compression methods.”
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Figure 2.1: Illustration of a transform-based compression framework. The quantiza-
tion module is not present for lossless compression.

Most end-to-end learning-based compression methods are
autoencoder-based approaches, in which a learning-based transform,
usually implemented through Convolutional Neural Networks (CNNs),
is used in lieu of the traditional hand-crafted transform (e.g., Discrete
Cosine Transform) in a transform coding framework. In addition to
autoencoder-based approaches, “generative compression” methods, in
which a GAN-based framework is used in conjunction with a CNN-based
compression system, have been explored in recent years (Rippel and
Bourdev, 2017; Agustsson et al., 2019; Kudo et al., 2019).

2.1 Hybrid Learning-based Compression Methods

Hybrid learning-based compression methods are methods in which a con-
ventional compression method is used in conjunction with learning-based
pre- and /or post-processing modules. Based on how the learning-based
methods are utilized in conventional compression methods, these hybrid
learning-based methods can be further divided into three categories:
a) decoder-side post-processing, b) encoder-side pre-processing, and c)
Deep Neural Network (DNN)-based modules used in lieu of some select
portions of the conventional compression method.

2.1.1 Decoder-Side Post-Processing

The decoder-side post-processing consists of adding a learning-based
module right after the decoder. As illustrated in Figure 2.2, the post-
processing module consists of Deep Neural Network (DNN) based quality
enhancement networks that are applied to the output image that re-
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Bitstream

Conventional Conventional Learning-based
Decoder Post-processing

Figure 2.2: Block diagram illustrating a conventional compression system with a
learning-based decoder-side post-processing.

sulted from the employed conventional lossy compression/decompression
system.

Lu et al. (2019b) proposed a learning-based image restoration net-
work as a decoder-side post-processing module to further improve the
visual quality of the reconstructed RGB image that is obtained using a
Versatile Video Coding (VCC) Intra Profile based image codec (VVC
Intra). Since VCC Intra only takes YUV instead of RGB as input, the au-
thors use FFmpeg to convert the RGB input image to a VCC-compliant
YUV image. A corresponding color conversion is then used to transform
the decoded YUV image back to RGB format. The proposed restoration
network is applied to the reconstructed RGB image and, by capturing
multi-scale spatial priors, the network is able to improve the visual
quality of the reconstructed RGB image. Based on a Super-Resolution
Convolutional Neural Network (SR-CNN) (Dong et al., 2014), which is
a deep CNN used to perform single-image super-resolution, Dong et al.
(2015) proposed the Artefacts Reduction (AR)-CNN, consisting of a
4-layer fully convolutional neural network, to reduce visible artefacts
that are generated by the lossy compression. In the work of Dong et al.
(2015), the post-processing module is trained for the standard JPEG
compression scheme.

Such decoder-side post-processing strategy can also be applied to
video compression methods. Wang et al. (2017) proposed the Deep
CNN-based Auto Decoder (DCAD), which is a 10-layer CNN, to au-
tomatically remove artefacts and enhance the visual quality of videos
that are compressed/decompressed using the High Efficiency Video
Codec (HEVC) (Sullivan et al., 2012). In DCAD, rather than directly
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predicting a higher quality reconstructed frame, the networks predict
the residual and this residual is later added to the input. Different from
DCAD in which the same CNN model is used to enhance both intra-
and inter-coding frames, Yang et al. (2019) proposed a novel Quality
Enhancement CNN (QE-CNN) for enhancing the decoded video of
HEVC more efficiently. QE-CNN uses different network architectures
for HEVC intra- and inter-coding, QE-CNN-I for HEVC I frames and
QE-CNN-P for HEVC P/B frames.

Other than enhancing the decompressed images through artefact
reduction, Generative Adversarial Networks (GANs) have been used
to improve the perceived visual quality of the decompressed images.
Fatima et al. (2021) proposed a framework in which a GAN-based image
colorization is employed to help improve the compression performance.
The raw RGB color image is converted to the YUV color space and
only the luminance channel (Y) is compressed and decompressed using
a conventional compression method (JPEG is used in this work). Mean-
while, a sparse color seed is transmitted from the encoder side to the
decoder side. This color seed, along with the decoded lossy luminance
channel, are fed to the GAN-based colorization network to generate the
colorized reconstructed image. The GAN-based colorization network
used in Fatima et al. (2021) is adopted from Zhang et al. (2017). Zhang
et al. (2017) proposed two approaches for colorization: user-guided col-
orization in which few pixels are chosen and assigned desired colors, and
data-driven automatic colorization in which the network is trained on a
large dataset and can perform the colorization automatically. In Fatima
et al. (2021) if no seeds are transmitted, the automatic colorization
mode of the GAN-based colorization system is used.

2.1.2 Encoder-Side Pre-Processing

The encoder-side pre-processing consists of adding a learning-based
module before the encoder. Such encoder-side pre-processing could be
paired with a decoder-side post-processing module. Figure 2.3 illustrates
a conventional compression system together with an encoder-side pre-
processing module.
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Bitstream

Learning-based Conventional Conventional
Pre-processing Encoder

Figure 2.3: Block diagram illustrating a conventional compression system with a
learning-based encoder-side pre-processing.

Many popular lossy image compression methods encode images
in YUV color format while the images are originally acquired in an
RGB format. Thus one pre-processing module is the learned color
space conversion from RGB to YUV, which is used in lieu of the
conventional RGB-to-YUV conversion that is performed by means of
a matrix multiplication operation. Instead of using a fixed conversion
matrix, Li (2019) proposed a learning-based color space conversion
(ABC) for H.266 (Versatile Video Coding Test Model, VIM 4.0). At
the encoder side, the ABC algorithm employs the Principal Component
Analysis (PCA) technique to generate an RGB-to-YUV conversion
matrix that is adapted for each image. Data samples for the PCA are
the pixels’ color in RGB minus corresponding averages. The averages
are computed by taking the average of each color (R, G, B) channel
over the whole image or in a locally adaptive manner by computing
each channel average over a 16 x 16 pixel grid (Li, 2019).

At the decoder-side, the least square method (LSM) is adopted to
estimate the inverse conversion matrix. Results show that the 16 x 16
grid’s average outperforms the average over the whole image and that
the LSM inverse conversion can help to further improve the visual qual-
ity (measured using the RGB-PSNR quality metric) of the reconstructed
image. Later, Li et al. (2019) proposed a framework called VimicroABC-
net which combines the ABC algorithm (Li, 2019) with a post enhancing
network that is added at the decoder side. In VimicroABCnet, the ABC
algorithm is implemented with a 64 x 64 convolutional filter kernel
instead of the original 16 x 16 grid’s average. At the decoder side, the
decoded YUV output is first transformed to RGB with the LSM-learned
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inverse conversion matrix. Then a CNN-based post-processing enhance-
ment network borrowed from Zhou et al. (2018) is used to further help
improve the reconstructed RGB image quality.

Based on VimicroABCnet, Sun et al. (2020) proposed a coding
framework named VIP-ICT codec to improve the compression rate of
the Versatile Video Coding Test Model (VTM) and the visual quality of
the reconstructed image. In the VIP-ICT codec, a PCA-like algorithm
similar to the ABC algorithm is used to convert the RGB input image
to YUV format. Different from VimicroABCnet, the learning-based
post-processing enhancement filter consisting of 11 convolutional layers,
is directly learned in the YUV space to learn the YUV residual. A linear
regression is used to map the learned YUV residual to the distortion
between the original YUV image and the VI'M reconstruction and
results in a mapped YUV reconstruction by adding this distortion to
the VTM reconstruction. The mapped YUV reconstruction is converted
to the RGB format using the LSM-learned inverse conversion matrix.

The aforementioned learning-based compression methods mainly
focus on the color format conversion. There are also several learning-
based compression methods in which a pair of pre- and post-processing
modules are used and the whole compression network is trained end-to-
end with the conventional image compression method working as a fixed
module. Tao et al. (2017) proposed a pair of pre-processing and post-
processing modules corresponding to a de-resolution module and a super-
resolution module, named as CrCNN and ReCNN, and working at the
encoder side and decoder side, respectively. The input image is subjected
to a de-resolution operation to obtain a compact representation through
the CrCNN module and is then encoded, transmitted and decoded using
conventional image codecs, such as JPEG, JPEG2000 and BPG. The
restored low-resolution image is later super-resolved using the ReCNN
to obtain the final reconstructed image.

Akbari et al. (2019) proposed a deep semantic segmentation-based
layered image compression (DSSLIC) framework. In the DSSLIC codec,
a pre-trained segmentation network, PSPNet (Zhao et al., 2017) is used
to generate the segmentation map of the input image which is encoded
as the base layer of the bitstream. The segmentation map along with
the input image are fed into a 5-layer convolutional neural network
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followed by a Hyperbolic Tangent function, referred to as Compact Net,
to obtain a low-dimensional compact representation which is encoded
as the first enhancement layer. Both the segmentation map and the
compact representation are used as input to a ResNet at the encoder side
to obtain the reconstructed image and a residual image. The residual
image is then encoded as another enhancement layer. All three layers
(segmentation map, compact image, and residual image) are encoded
and decoded using a lossless image codec, FLIF (Sneyers and Whuille,
2016). At the decoder side, the segmentation map and the compact
image are used to generate a reconstructed image using a ResNet and
later by adding the transmitted residual image, the final reconstructed
image is obtained.

2.1.3 DNN-based Modules as Part of Conventional Codecs

In some approaches, deep learning based modules with deep neural
networks (DNNs) are used as part of the conventional compression
methods.

Figure 2.4 shows the video coding scheme which is used in HEVC
(Sullivan et al., 2012) and VVC (Ohm and Sullivan, 2018). The input
video picture is first divided into Coding Tree Units (CTUs). Each CTU
will later be further partitioned into Coding Units (CUs) to be encoded.
Blockwise inter- and intra-prediction will be performed to generate the
prediction residual. The prediction residual is transformed, scaled and
quantized before being entropy encoded. The reconstructed signal after
inverse transform, scaling and inverse quantization is then filtered by a
deblocking filter, Sample Adaptive Offset (SAO) filter, Adaptive Loop
Filter (ALF) and Cross-Component Adaptive Loop Filter (CC-ALF),
to further improve the visual quality of the reconstructed video frames.
In HEVC and VVC, an all-intra mode can be used to perform image
compression. Almost all the functional modules in the video compression
framework can be replaced by a DNN-based module. In this section,
we will introduce some of the works for each of the functional modules.
Further information on training deep networks as tools in conventional
coding schemes can be found in Liu et al. (2020a) and Hoang and Zhou
(2021).
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Figure 2.4: Block diagram illustrating video coding scheme for HEVC and VVC.

CU Partitioning

Compared to HEVC, the Versatile Video Coding (VVC) standard ex-
hibits significant improvement in relation to compression performance
by using a coding unit (CU) partition structure called quad-tree plus
multi-type tree (QTMT) structure at the expense of a relatively large
encoding time due to the search as part of the recursive rate-distortion
(RD) optimization. Li et al. (2021) proposed DeepQTMT to predict
the QTMT-based CU partition for intra-mode VVC. Li et al. (2021)
proposed a MSE-CNN model to learn the QTMT-based CU partition.
Given an input video sequence, each frame is divided into basic pro-
cessing units named as Coding Tree Units (CTUs) which correspond
to macroblocks in previous video coding standards. Each CTU is then
partitioned into Coding Units (CUs) with different sizes before being
coded. The MSE-CNN model takes a 128 x 128 luminance Coding Tree



12 Learning-based Visual Compression Methods

Unit (CTU) as input, a convolutional layer is used to extract a group
of (16) 128 x 128 feature maps. The extracted feature maps are used to
make split decisions. Each split mode decision is fed into a conditional
convolution module, consisting of several residual units, to extract tex-
tural features, which are then fed into a sub-network to predict the
split mode for one CU. If the CU is decided to be non-split, the process
exits, otherwise the CU will go to the next stage for further splitting.
By repeating this stage several times, the CTU can have its final CU
partition decision. By using the proposed MSE-CNN; Li et al. (2021)
claim that their strategy can avoid spending significant time on checking
the RD cost for all possible CUs in each CTU in the QTMT-based CU
partition. Fan et al. (2020) and Amestoy et al. (2019) also explored
using a learning-based approach for QTMT CU partitioning in VVC.

Intra Prediction

In the HEVC video coding standard, for intra-prediction, 35 intra-
prediction modes, including one planar prediction mode for encoding
planar surface, one DC mode for encoding flat surfaces and 33 angular
direction modes corresponding to 33 different prediction angles, are
tested during encoding to select the prediction mode with the best
RD performance. Schiopu et al. (2019) proposed a block-wise CNN-
based prediction to replace the HEVC’s angular intra-prediction in
order to improve the HEVC’s lossless compression performance. Based
on the Angular Intra-Prediction Convolutional Neural Network (AP-
CNN) proposed in their previous work (Huang et al., 2019), the authors
specifically train a modified AP-CNN model as the prediction model
for each of the HEVC angular intra-prediction modes.

Compared with HEVC, the number of intra-prediction modes is
extended to 67 in the Versatile Video Coding (VVC) standard, in-
cluding one planar prediction mode, one DC mode and 65 angular
intra-prediction modes. Zhu et al. (2019) proposed a GAN-based in-
painting method for intra prediction for VVC based on the work of
lizuka et al. (2017). The proposed intra-prediction architecture con-
sists of two networks, a generator having 17 convolutional layers for
predicting a missing block from its neighboring top-left, left and top
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reconstructed blocks, and a discriminator with components operating
at local and global levels. This GAN-based intra prediction network is
incorporated into HEVC with 35 intra prediction modes and into VVC
with 67 intra prediction modes.

Inter Prediction

Different from intra-prediction in which the prediction of a current block
is performed using previous-decoded blocks within the same frame,
the inter-prediction is generated by motion-compensated prediction
in which the prediction is performed using previous-decoded frames.
Lotter et al. (2016) proposed a predictive neural network (PredNet)
that can predict a future frame in a video sequence based on previous
frames. Based on PredNet, Benjak et al. (2021) proposed an enhanced
learning-based inter coding algorithm for VVC. The recurrent neural
network architecture of PredNet is employed to predict the picture to
be coded from previous coded frames. Instead of the pixel-wise fidelity
of predicted signals used in Lotter et al. (2016), Benjak et al. (2021) use
the sum of absolute transformed differences (SATD) as a cost function
while training PredNet. SATD is the optimization criterion used in
VTM (reference software for VVC).

Video compression codecs, such as HEVC and VVC, rely on frac-
tional-pixel motion compensation to generate motion vectors and get
accurate inter-predictions. For implementation convenience, most video
compression standards use fixed interpolation filters as part of the
fractional-pixel motion compensation. Both HEVC and VVC use a
7-tap interpolation filter and an 8-tap interpolation filter for quarter-
pixel and half-pixel motion compensation, respectively. Yan et al. (2018)
proposed the Fractional-pixel Reference generation CNN (FRCNN) to
perform fractional-pixel motion compensation in HEVC. For half-pixel
interpolation, 3 FRCNN models are used, one model per pixel position,
and for quarter-pixel interpolation, 15 FRCNN models are used, one
model per pixel position. Each of the FRCNN models takes the reference
block as input and generates the motion vector for the corresponding
position. The FRCNN proposed in Yan et al. (2018) takes the form of an
architecture consisting of IV layers and where each layer, except 1 and
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N, contains k;,2 < i < N — 1, parallel convolutional layers followed by
a concatenation operation. Layers 1 and N contain only 1 convolutional
layer, to generate a residual signal for the input block.

In-loop Filter / SAO

In the HEVC video coding standard, in-loop deblocking and sample
adaptive offset (SAO) filters are used to reduce the artifacts that are
generated during compression. Dai et al. (2017) proposed a learning-
based CNN, referred to as Variable-filter-size Residue-learning CNN
(VRCNN), to be used as a post-processing module for HEVC in lieu of
the in-loop deblocking and SAO filters. VRCNN is designed based on
the 4-layer artefacts reduction network AR-CNN (Dong et al., 2015).
VRCNN makes use of variable-size filters since HEVC adopts variable
block size transforms. One main difference between VRCNN and AR-
CNN is that VRCNN is designed to learn a residue rather than the
enhanced output. In Park and Kim (2016), the authors proposed a
CNN-based in-loop filtering technique (IFCNN) to replace the in-loop
SAO filter in HEVC. The IFCNN, designed from SR-CNN (Dong et al.,
2014), takes the output of the deblocking filter as input and outputs the
predicted residue. This residue is then added to the deblocking filter
output to obtain the final reconstructed image (video frame). Park and
Kim (2016) also show that promising results can be obtained if IFCNN
is used to replace both the in-loop deblocking and SAO filters.

Frame Interpolation

Wu et al. (2018) proposed a conditional interpolation model to generate
frames between two key-frames. In their framework, every N-th frames
(key frame) is compressed using compression methods of Toderici et al.
(2017) and all frames in between are interpolated. Context features are
first extracted from the two key-frames respectively and then used to
interpolate the in-between frames using a motion compensated interpo-
lation network which capture the motion difference in the interpolation
frames. Furthermore, Wu et al. (2018) combined the motion compen-
sated interpolation with a compressed residual information which will
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capture the motion and appearance difference in the interpolated frames.
The encoder, context model and the interpolation network are jointly
trained.

Entropy Coding

Starting with the Advanced Video Coding (AVC) standard, also known
as H.264 and MPEG4 Part 10 (Wiegand et al., 2003), context-adaptive
binary arithmetic coding (CABAC) (Marpe et al., 2003) has been
adopted for entropy coding. CABAC contains three steps: binarization,
context modeling, and binary arithmetic coding. Although CABAC can
significantly improve the compression efficiency compared to the context-
adaptive variable length coding (CAVLC) (Marpe et al., 2003), CABAC
suffers from high computational complexity compared to CAVLC. In-
stead of manually designed binarization and context modeling, Ma et al.
(2018) proposed a convolutional neural network-based arithmetic coding
(CNNAC) scheme to estimate the probability distribution for encoding
the DC coefficients of the HEVC intra prediction residual. The neural
network is adopted from DenseNet (Huang et al., 2017), in which each
convolutional layer receives the feature maps from all preceding layers
as input, with only one dense block. The DC coefficients along with
the network-generated probability distribution is fed into a multi-level
arithmetic codec for encoding. Later, Ma et al. (2019a) proposed to fur-
ther expand CNNAC to code not only the DC coefficients, but also the
lowest frequency AC coefficients (AC1), the second, third, fourth and
fifth lowest AC coefficients (AC2, AC3, AC4, AC5), and the position of
the last non-zero coefficient (LastXY). Different DenseNet architectures
are designed for different coefficients, different transform unit (TU)
sizes, different QPs, different channels and different scanning orders.

Bitstream Re-compression

Using a JPEG2000 encoder, Ma et al. (2019b) proposed a bitstream
re-compression module and a CNN-based post-processing method to fur-
ther improve the compression efficiency. The bitstream re-compression
module, consisting of two PixelCNN-based networks (Van Oord et al.,
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2016; Van den Oord et al., 2016) and one RNN;, is employed to exploit
the correlation between wavelet coefficients within and across subbands.
The first Pixel CNN-based network takes the current subband as input to
exploit the correlation within the subband while the second Pixel CNN-
based network takes the output from the RNN as input. The RNN
takes the previous encoded subband as input to extract the long-term
context. By using shortcuts after each layer between the first and second
Pixel CNN-based networks, the proposed bitstream re-compression is
able to entropy code the wavelet coefficients of the current subband
based on not only the context in the current subband but also the
long-term context from previous subbands. In addition to improving the
entropy coding efficiency, a CNN-based post-processing enhancement
network is also employed at the decoder-side to further improve the
reconstructed image quality.

2.2 Novel End-to-End Learning-based Compression Methods

Novel end-to-end learning-based compression methods are methods in
which the transform and inverse transform are learned and no con-
ventional compression methods are leveraged. Most of the end-to-end
learning-based compression methods are autoencoder-based approaches,
in which a trainable learning-based invertible transform, usually imple-
mented by using CNN-based Deep Neural Networks, is employed in lieu
of traditional hand-crafted transforms in a transform coding framework.
The second group of end-to-end learning-based compression methods are
“generative compression methods” in which a GAN-based framework is
used in conjunction with a CNN-based compression system. Figure 2.5
shows the block diagram of an end-to-end learning-based compression
method.

2.2.1 Autoencoder-based Approaches

Autoencoder-based approaches are developed based on the Variational
Autoencoders (VAEs) (Kingma and Welling, 2013). Similar to the lossy
compression methods that are based on a transform coding framework,
this category of learning-based compression methods usually employ a
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Figure 2.5: Block diagram illustrating an end-to-end learning-based compression
method.

trainable neural network-based transform to map the values of the input
image or of the residual image, to a compact latent representation which
can be later quantized for coding. Then an entropy model incorporating
a prior probability model of the discrete quantized latent representation
is employed for entropy coding/decoding and is known to both the
encoder and decoder. Thus, the quantized latent representation can be
encoded and decoded losslessly using entropy coding algorithms such
as arithmetic coding (Rissanen and Langdon, 1981).

Toderici et al. (2015) proposed an image compression framework
that supports variable compression rates without the need for retraining
or for storing multiple encoding bitstreams for the image. Using differ-
ent neural network architectures, four different residual encoders are
proposed in Toderici et al. (2015), the fully-connected residual autoen-
coder, the fully-connected LSTM (Long Short Term Memory neural
network) residual autoencoder, the convolutional/deconvolutional resid-
ual autoencoder, and the convolutional/deconvolutional LSTM residual
autoencoder. All four encoders are implemented through an iterative
structure such that the autoencoder can assign a varying number of
bits per image patch by varying the number of iterations. For the fully-
connected residual autoencoder, in which both the encoder and decoder
are composed of staked fully-connected layers, the first iteration encodes
the original input and each subsequent iteration encodes the residual
from the previous reconstruction levels. The encoded representations
are later processed using a binarization technique, which results in a
bitstream that can be directly stored and transmitted. At the decoder
side, the outputs resulting from all the iterations are added to generate
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the final reconstructed image. The fully-connected residual autoencoder
is trained using two different approaches: weights are shared over all
iteration stages, or weights are independent for each iteration stage.

For the convolutional /deconvolutional residual autoencoder, the
fully-connected layers in the encoder are replaced with convolutional
layers and are followed by a 1 x 1 convolutional layer with three fil-
ters while the fully-connected layers in the decoder are replaced with
deconvolutional layers. For the fully-connected LSTM residual autoen-
coder, the encoder is composed of one fully-connected layer and two
LSTM layers while the decoder has the reverse structure. Similar to the
aforementioned residual autoencoders, for the LSTM residual encoder,
the first iteration takes the original input in and from the second iter-
ation onward, the network takes the residual from the previous stage
as input. But different from the residual autoencoders, all iterations
predict the input and output the residual between the prediction and
the original input. The final convolutional /deconvolutional LSTM archi-
tecture is formed by combining convolutional and deconvolutional oper-
ations with LSTM. The authors use the convolutional/deconvolutional
LSTM to replace the convolutional/deconvolutional layers in the con-
volutional/deconvolutional residual autoencoder. The authors later
improved on their initial work in Toderici et al. (2017), where they
proposed a recurrent neural network (RNN)-based encoder/decoder
along with a binarizer that is used after the encoder to obtain a compact
binary latent representation of the input. The output of the binarizer
can be stored and/or transmitted to the decoder side.

Similar to the fully-connected and convolutonal/deconvolutional
residual codecs of their previous work (Toderici et al., 2015), the encoder,
binarizer and decoder are implemented in an iterative manner, with
the first iteration encoding the original input image and the subsequent
ones encoding residuals. Toderici et al. (2017) also proposed an entropy
coder referred to as BinaryRNN, with an architecture that is similar to
the PixelRNN architecture (Van Oord et al., 2016), to further compress
the output of the encoder using binary codes. An improved recurrent
architecture was proposed in Johnston et al. (2018). The authors of
Johnston et al. (2018) made use of a Gated Recurrent Unit (GRU)
neural network and proposed a method called hidden-state priming
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which attempts to generate a better initial hidden-state for each GRU
layer. Furthermore, Johnston et al. (2018) used a spatially adaptive
bitrate (SABR) module to dynamically adjust the bitrate to the content
of the image in a locally adaptive manner in order to increase the coding
efficiency in terms of decreasing the bitrate for a desired visual quality
or increasing the visual quality for a target fixed bitrate.

Different from the aforementioned iterative coding methods which
encode an image into a layered representation and in which a portion
of the bitstream (portion corresponding to a layer) is produced at
each iteration, more recent popular end-to-end learning-based coding
methods formulate the compression problem as generating a low-entropy
discrete latent representation. Most of these methods follow the general
nonlinear transform coding framework (Ballé et al., 2016b) in which the
signal-domain image intensity is mapped to a transform-domain latent
presentation by means of an analysis transform at the encoder. This
latent representation is then quantized and entropy encoded for storage
and transmission. At the decoder, after entropy decoding, an inverse
transform, also known as synthesis transform, is used to reconstruct the
decoded image. This coding framework is used to learn a pair of analysis
and synthesis transforms while performing a constrained rate-distortion
optimization. In addition, a perceptual space transform can be applied
to both the original input image and the reconstructed image; the
perceptually transformed images can then be used in the computation
of the distortion.

Based on this general nonlinear transform coding framework, Ballé
et al. (2016b) proposed an end-to-end learning-based image compression
model as illustrated in Figure 2.6. In Figure 2.6, an input image «x is
transformed into a latent representation y = g,(x, ¢) using the analysis
transform g, with parameter ¢. The generated y is subjected to scalar
quantization, yielding an integer vector ¢, corresponding to the indices of
the employed scalar quantizer(s), and a quantized latent representation
9. At the decoder, the quantized latent representation ¢ is transformed
back into a reconstructed image in the signal domain & = g5(g, ) by
means of a synthesis transform g, with parameter 6. A chosen human
visual system-based perception metric b is used to transform both
the original and the decoded signal-domain images into a perceptual
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Figure 2.6: Learning-based transform coding framework proposed by Ballé et al.
(2016Db)

domain, z = h(z) and 2 = h(Z), respectively. In this framework, the
analysis and synthesis transforms, g, and gs, are learned by optimizing
a rate-distortion based cost function. In the work of Ballé et al. (2016a;
2016b), the generalized divisive normalization (GDN) transform which
consists of a linear decomposition followed by a nonlinearity and its
approximate inverse are used for g, and gs, respectively.

While in Ballé et al. (2016a; 2016b) the analysis transform takes the
form of a Generalized Divisive Normalization (GDN) transform, which
consists of a linear decomposition followed by a non-linear local gain
control, Theis et al. (2017) proposed a learning-based image compression
framework similar to the one of Ballé et al. (2016b), but where the
analysis transform is implemented using a CNN architecture. Wainwright
and Simoncelli (1999) showed that, for natural images, the linear filter
responses such as wavelet coefficients, can be modeled as Gaussian
Scale Mixtures (GSMs) (Andrews and Mallows, 1974). The GSMs were
used to model the distribution of the quantized latent representation
coefficients for entropy coding in the work of Theis et al. (2017). The
GSM-based entropy model in Theis et al. (2017) takes the form of a
fully-factorized prior whose parameters are estimated using the training
image set.

For some conventional compression methods, one way to improve
the entropy coding performance is to use additional bits to send side
information from the encoder to the decoder. At the decoder, the side
information is decoded first and used as a context while entropy decoding
the image, which can help adapt the entropy coding/decoding to the
local characteristics of the visual content and thus improve the coding
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efficiency. Following this approach, researchers attempted to design
a learning-based module that can learn information from the latent
representation in order to improve the entropy coding performance.
Ballé et al. (2018) proposed a hyperprior that is implemented by means
of an autoencoder (neural network based encoder/decoder pair) that
takes the latent representation as input and outputs a map with values
representing local data statistics which are then used as local context
information for the entropy coding.

Figure 2.7 shows the block diagram of the framework that is pro-
posed by Ballé et al. (2018). As shown in Figure 2.7, the hyperprior
autoencoder (represented by the encoder/decoder pair consisting of the
analysis transform network h, and the synthesis transform network
hs) outputs a spatial distribution map (&) representing local standard
deviations, which in turn can be used as local context information by
the lossless entropy coding (AE and AD in Figure 2.7, which stand
for Arithmetic entropy Encoding and Arithmetic entropy Decoding,
respectively). Instead of transmitting & as side information, the lower
bit-rate compressed output z of the hyperprior encoder h, is quantized,
losslessly compressed using entropy coding, and transmitted as side
information Z. At the decoder, the local standard deviations 6 can be
reconstructed from the side information Z using the hyperprior decoder
hs. Different from the aforementioned methods in which a fixed entropy
model is used, the hyperprior component is able to adapt the entropy
model based on the local characteristics of the spatial image content.
This hyperprior-augmented coding method has been shown to achieve
a better rate-distortion performance as compared to coding approaches
that employ a non-adaptive entropy coding model.

Subsequent to the variational autoencoder with a scale hyperprior
compression model of Ballé et al. (2018), lots of works have been done
for improving the efficiency of the entropy coding model by leveraging
learning-based techniques. Building on the work of Ballé et al. (2018),
Minnen et al. (2018) developed a compression architecture with im-
proved rate-distortion performance. Instead of learning the entropy
context model from the hyperprior autoencoder (hyperprior encoder h,
and hyper decoder hy), the system proposed by Minnen et al. (2018)
learns a GSM-based probabilistic entropy coding model using an autore-
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Figure 2.7: Block diagram illustrating the framework for autoencoder-based learning-
based compression methods with hyperprior as described in Ballé et al. (2018). Q, AE,
and AD stand for quantization, arithmetic entropy encoding, and arithmetic entropy
decoding, respectively. For more details about the neural network architectures of
the input-image autoencoder (g and gs), and hyperprior autoencoder (hq and hs),
please refer to Ballé et al. (2018).

gressive model over the quantized latent referred to as Context Model,
along with the hyper-network (hyper encoder and hyper decoder). Con-
sidering that the Context Model can only make use of information that
has already been compressed and transmitted, the Context Model is
implemented using a context prediction part consisting of one single
masked convolutional layer, which allows the model to use only the
latent data values that have already been decoded.

The output generated by the Context Model together with the
output of the hyperprior autoencoder are then used by the CNN-based
Entropy Parameter network to jointly generate the mean and scale pa-
rameters of the conditional GSM-based probabilistic entropy model. All
these CNN-based modules (Encoder/Decoder, Hyper Encoder/Decoder,
Context Model, and Entropy Parameter network) are jointly optimized
through an end-to-end training process. Lee et al. (2018) also proposed
a compression framework based on the work of Ballé et al. (2018), by
adapting the hyperprior autoencoder to predict the parameters of a



2.2. Novel End-to-End Learning-based Compression Methods 23

context-adaptive entropy model framework. In this latter framework,
two types of contexts are used to estimate the standard deviation and the
average parameters of a Gaussian model. Two extractors are employed
to extract the two contexts from the output of the hyperprior, and from
the known (previous encoded/decoded) quantized latent representation
values. Instead of modeling the quantized latent into a zero-mean Gaus-
sian in Ballé et al. (2018), both aforementioned networks relaxed the
zero-mean restriction and model the quantized latent into a Gaussian
with estimated local mean and variance.

Lin et al. (2020a) proposed a framework which is also based on the
autoencoder with hyperprior architecture of Ballé et al. (2018). Instead
of using one hyperprior autoencoder to estimate two parameters for
the Gaussian model (Minnen et al., 2018; Lee et al., 2018), in order to
further improve the compression performance, Lin et al. (2020a) modeled
the local characteristics of the latent representation as a Gaussian
distribution using two hyperprior autoencoder networks that estimate
the local mean and variance, respectively. Building on the work of Ballé
et al. (2018) and Minnen et al. (2018), Ladune et al. (2020) enhanced
the compression performance using context-adaptive binary entropy
coding employing a binary probability model instead of the commonly
used Gaussian or Laplacian probability distributions.

Based on the autoencoder with hyperprior system (Figure 2.7), Liu
et al. (2020b) proposed a learning-based image compression system called
Efficient Deep Image Compression (EDIC) with a channel attention
module which aims to capture the most salient features in the quantized
latent representation for both the encoder and hyper encoder. As shown
in Figure 2.8, the channel attention module uses a residual operation
and consists of a global average pooling, a fully-connected layer and a
Sigmoid layer. This channel attention module is added as part of both
the encoder and hyperprior encoder after the original network. EDIC
also employed a Gaussian Mixture Model (GMM), whose parameters are
estimated using a network consisting of three convolutional layers and
two LeakyReLU layers, referred as GMM Module, to further improve
the performance of entropy modeling. Liu et al. (2020b) also proposed
a DNN-based decoder-side enhancement module which can be used not
only with EDIC, but also with other lossy image and video compression
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Figure 2.8: Structure for channel attention module in EDIC (Liu et al., 2020b).

methods. Cheng et al. (2020) proposed to use discretized Gaussian
Mixture Likelihoods to estimate the parameters of the entropy coding
model for the quantized latent representation. A designed attention
module is also used to help improve the compression performance. In
both the encoder and decoder networks, two attention modules are
added in the middle and at the end of each network. These attention
modules can help the network to pay more attention to the important
parts and to use less bits for the less important parts.

Based on their previous work (Lee et al., 2018), Lee et al. (2019)
proposed an improved network named JointIQ-Net. Lee et al. (2019)
also proposed an improved entropy minimization method which uses
a GMM for prior probability modeling. Different from the parameter
estimator in Lee et al. (2018) which uses the reconstructed context from
the hyperprior and the decoded quantized latent representation values
that are adjacent to the location of the current latent representation
value to be decoded, the parameter estimator in JointIQ-Net also uses a
global context which is the information aggregated from both local and
non-local context regions. The local context is the neighborhood within
a chosen distance while the non-local context is the whole area except
the local neighborhood. Additionally, JointIQ-Net jointly trains the
compression model with a decoder-side post-processing enhancement
network.

Based on the autoencoder-based compression model with hyper-
prior (Figure 2.7), Liu et al. (2019) proposed a learning-based image
compression scheme in which a conditional context model is used in
conjunction with the hyperprior decoder to predict the conditional prob-
ability distribution for a better entropy estimation as part of the entropy
coding module. The authors also proposed an information compensation
network (ICN) to exploit the information contained in the hyperprior
latent for the final image reconstruction. This ICN takes the output of



2.2. Novel End-to-End Learning-based Compression Methods 25

the hyperprior decoder as input and generates a latent representation
containing significant information. This generated latent representation
is then fused with the entropy-decoded quantized latent representation
using a concatenation operation. The resulting concatenated latent
representation is input to the decoder to produce the reconstructed
image.

Although the aforementioned autoencoder-based compression meth-
ods with entropy modeling (Ballé et al., 2018; Minnen et al., 2018; Lee
et al., 2018) have been shown to result in a better R-D performance
than most of the popular conventional compression methods, there
still exit some drawbacks such as the slow decoding speed and the
large amount of computational power needed by the complex network
structure. Context-adaptive models (Mentzer et al., 2018; Minnen et al.,
2018; Lee et al., 2018) may further slow down the decoding process since
they are less amenable to parallelization. Several compression models
have been proposed to address this problem (Minnen and Singh, 2020;
Cai et al., 2019). Based on the hyperprior architecture introduced in
Ballé et al. (2018), Minnen and Singh (2020) proposed an improved
system with channel conditioning and latent residual prediction. The
quantized latent representation is split along the channel dimension
into several slices while the whole quantized latent representation is
also fed into a hyperprior autoencoder to generate the parameters of a
Gaussian entropy model.

The first slice is compressed using a Gaussian entropy model condi-
tioned only on the hyperprior while the remaining slices are compressed
using a Gaussian entropy model conditioned on the hyperprior and the
decoded latent representation of previous slices. Consider, for exam-
ple, a quantized latent of size W x H x C. Compared with a spatially
autoregressive model in which the decoding process need to be ran
W x H times sequentially where only C' values are computed at each
iteration by splitting the latent representation into N equal-size slices
along the channel, the W x H x % values contained in each channel
can be processed in parallel. Furthermore, while coding each slice, a
latent residual prediction (LRP) module is used. The LRP for the first
slice takes the mean parameter of the entropy model that is generated
from the hyperprior as input while the LRP for the subsequent slices
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takes the mean parameter as well as the decoded latent representation
of previous slices as input. The outputs of the LRP module are then
added to the entropy decoded latent representation to further reduce
the quantization error. This method was shown to outperform other
existing context-adaptive models (Minnen et al., 2018; Lee et al., 2018)
in terms of R-D performance.

Cai et al. (2019) provide a learning-based sub-pixel image com-
pression method, based on the variational autoencoder architecture
with hyperprior (Ballé et al., 2018), which can reduce the computa-
tional complexity. In the proposed algorithm, the input image with size
W x H x C' is first transformed to a low resolution feature map with size
W/r x H/r x r2C through a sub-pixel transform with scale parameter
r, where W, H, and C' correspond to the image width, height, and
number of channels, respectively. Then the low resolution feature map
is compressed using the compression model consisting of autoencoder
with hyperprior (Ballé et al., 2018). At the decoder, the reconstructed
image of size W/r x H/r x r>C will be utilized to get the full resolution
image through a proposed Sub-pixel Layer.

The aforementioned autoencoder with hyperprior architecture (Ballé
et al., 2018; Minnen et al., 2018; Lee et al., 2018) can also be used for
video compression. The image compression model can be implemented
on each frame separately, but this will set back the coding performance
since no correlation information between frames is used. Lu et al. (2019a)
proposed the first end-to-end Deep Video Compression (DVC) model
which jointly learns motion estimation, motion compression, and residual
compression using DNNs. Based on the current video compression
standards, such as H.264 (Wiegand et al., 2003) or H.265 (Sullivan
et al., 2012), DVC proposed a motion vector (MV) encoder-decoder
network to estimate the optical flow and a motion compensation network
to obtain the predicted frame based on the optical flow generated by the
MYV encoder-decoder network. The traditional linear transform / inverse
transform are also replaced by a non-linear residual encoder-decoder
network. A bitrate estimation net is employed in DVC for entropy
coding. All components are trained jointly.

Lin et al. (2020b) proposed Multiple frames prediction for Learned
Video Compression (M-LVC) in which not only one, but multiple previ-
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ous frames are used to generate a motion vector (MV) field, resulting
in a more accurate frame prediction. Based on the framework used
in DVC, M-LVC introduced four new DNN-based modules: motion
estimation network (ME-NET) for motion estimation and prediction,
motion vector difference (MVD) encoder-decoder network to encode
the difference between the original MV and predicted MV, a motion
compensation network (MMC-Net) to obtain the predicted frame from
the MVs of multiple previous reconstructed frames, a residual encoder-
decoder network for residual compression and a residual refinement
network (Residual Refine-Net) for residual refinement. Similarly, based
on DVC, Lu et al. (2020) proposed a content-adaptive method to solve
the problem of error propagation caused by the accumulation of the
reconstruction error in inter predictive coding.

Lu et al. (2020) proposed an error propagation aware (EPA) training
strategy that formulates the loss function based on a new proposed
objective function that incorporates not only the RD cost of the current
frame, but also the RD costs of the subsequent frames that rely on
the current frame. To make the method adaptive, Lu et al. (2020) also
proposed an online encoder updating scheme that updates the CNN
parameters of the encoder based on the input while keeping the decoder
unchanged. Different from the work of Lu et al. (2019a), the proposed
method by Hu et al. (2021), feature-space video coding network (FVC),
employs a feature extraction network to extract features from the origi-
nal current frame and the reconstructed previous frames. The extracted
features are later compressed, transformed, and decompressed through
a video compression algorithm in the feature space. A frame recon-
struction network is then employed to obtain the reconstructed frame
from the decoded features. The feature-space video compression method
has a structure similar to the one used for normal video compression
methods. FVC replaces key components, including motion estimation,
motion compression, motion compensation, and residual compression,
with autoencoder style networks and all modules are jointly trained.

Park and Kim (2021) proposed an end-to-end deep predictive video
compression network called DeepPVCnet. DeepPVCnet is designed to
work in two different modes, uni-directional prediction in which only the
two previous frames are used as reference frames to predict the current
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Figure 2.9: Block diagram illustrating a generative compression system.

frame, and bi-directional prediction in which two previous frames and
two subsequent frames are used as reference frames to predict the current
frame. Furthermore, a temporal-context-adaptive entropy coding model
is proposed where context information from reference frames is used to
estimate the parameters of the Gaussian entropy model.

2.2.2 Generative Compression Methods

Generative compression methods adopt a GAN-based framework into a
CNN-based compression system to achieve a low compression bitrate
and a high reconstruction visual quality. A generative compression
system consists of an encoder, a decoder/generator and a discriminator,
as shown in Figure 2.9.

Rippel and Bourdev (2017) proposed the first generative learning-
based lossy image compression system. In the proposed framework, a
pyramidal decomposition based encoder is employed as a feature ex-
tractor. The coefficients resulting from the decomposition are extracted
at each scale. The extracted coefficient maps are then aligned using an
interscale alignment procedure, to obtain a joint structure over all scales.
The number of scales can be customized by the user. The extracted
features (coefficients) are then quantized and entropy coded using an
adaptive arithmetic codec. By considering the encoder-decoder pipeline
as the generator, the authors design a discriminator that takes the target
(input image) and the reconstructed image as input. The discriminator
takes the form of a multiscale CNN architecture. The discriminator
loss along with the reconstruction loss are used for adversarial training.
Another GAN-based generative compression system was proposed in
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Agustsson et al. (2019). It consists of an encoder, decoder/generator and
a multi-scale discriminator that are jointly trained. Instead of directly
using the encoder output as the latent representation, the proposed
system forms the latent representation by concatenating to the encoder
output a noise drawn from a fixed prior on the encoder output. The
decoder/generator then tries to generate the reconstructed image from
the "noisy" latent representation. Similar work was also done in Kudo
et al. (2019). Different from the work of Rippel and Bourdev (2017) and
Agustsson et al. (2019), in which the methods focus more on whether
the reconstructed image is subjectively natural or not, the work of Kudo
et al. (2019) proposed a generative compression system with the aim to
maximize the mutual information between the coding features and the
reconstructed images while still preserving good subjective naturalness.
To achieve this, the authors introduce a mutual information maximizing
regularization which is employed during the training.

Similar generative compression algorithms were proposed for video
compression. Santurkar et al. (2018) proposed a neural codec architec-
ture, referred to as NCode, which can compress both images and videos
using similar system structures. In their work, the decoder network
is first adversarially pre-trained using an adversarial loss with respect
to the auxiliary discriminator network. Then the encoder network is
trained to minimize the distortion loss. For video compression, instead
of compressing the video frame-by-frame, the NCode model takes the
interframe correlation into consideration. For the video compression,
inspired by the interpolation scheme in MPEG4 (H.264) standard (Wie-
gand et al., 2003) in which only every N-th frame is transmitted and
the missing in-between frames are generated by means of interpolation,
the author models the frames in a video sequence as uniformly-spaced
samples along a path which can be approximated by linear interpolation.
Thus, only the N-th frames in the manifold need to be compressed using
NCode and transmitted. This procedure can be further optimized by
compressing the difference between the latent of the current frame and
the latent of the previous frame.
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Survey of Datasets used for Visual Compression
Methods

Most learning-based visual compression methods are accomplished
through the use of deep neural networks or convolutional neural networks
which need to be trained before being deployed. Most of the learning-
based compression methods were trained on either the ImageNet2012
dataset or the CLIC dataset and tested on the Kodak dataset. This
section introduces datasets that were used for training and testing
learning-based visual compression methods. Some commonly used video
datasets for end-to-end learning-based video compression methods are
also introduced in this section.

3.1 Image Datasets

The datasets introduced in this section, not only include the commonly
used datasets for learning-based visual compression methods, such as
ImageNet2012, DIV2K, BSDS500 but also other less common datasets
that were used by some of the methods described in Section 2, such as
the LIVE dataset that was used in AR-CNN (Dong et al., 2015) and
the CSIQ dataset that was used in the GAN-based colorization network
(Fatima et al., 2021).

30
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3.1.1 ImageNet2012

The ImageNet2012 dataset' (Russakovsky et al., 2015) refers to the Ima-
geNet Large-Scale Visual Recognition Challenge (ILSVRC)-2012 dataset
which is a subset of ImageNet (Deng et al., 2009). The ImageNet2012
dataset contains a total of 1,000 different classes ranging from nature
creatures, like mammals, birds, insects, reptiles, amphibians, aquatic
organisms, plants, etc, to inanimate artifacts, like transport, furniture,
architectures, tableware, etc. The training set contains approximately
1.28 million images from the 1,000 classes; each class contains about
1,000 images. The validation dataset contains 50,000 images from the
1,000 classes; each class contains 50 images. In this dataset, one image
belongs to only one specific class.

All images in the ImageNet2012 dataset are 24-RGB images stored
in JPEG format. For the compression algorithms, the image used to
test the compression performance are usually required to be in a lossless
format. The ImageNet dataset, as constructed by its original authors
(Deng et al., 2009), is collected from the Internet and then each image
is saved as a high-quality (high bitrate) JPG image file. So, in our tests,
we consider the decoded RGB images of the ImageNet2012 dataset to
be lossless.

Due to the large number of natural images covered by the Ima-
geNet2012 dataset, learning-based compression methods trained on
ImageNet2012 can result in good compression performance on most
natural images. Figure 3.1 shows some example images from the Ima-
geNet2012 validation set.

TmageNet2012 dataset homepage: https://image-net.org/index.php
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Figure 3.1: Example images from the ImageNet2012 validation set.

3.1.2 CLIC2020

CLIC2020? (Toderici et al., 2020), the dataset of the CVPR workshop
CLIC, is also a widely used dataset for learning-based image compres-
sion methods. The CLIC dataset comes in two versions: Dataset P
(“professional”) and Dataset M (“mobile”). The dataset was collected
to be representative of images commonly used in the wild and includes
thousands of images. Usually a mix of the professional and mobile
datasets is used for training and testing. The CLIC 2020 dataset (a
mixture of professional and mobile datasets) contains a total of 2,163
images in which the training set contains 1,633 imaes, the validation set
contains 102 images and the testing set contains 428 images (Toderici
et al., 2020). The CLIC 2020 dataset contains both grayscale (1 channel,
8-bit) images and RGB (3 channels, 24-bit) images stored in PNG
format.

In most cases where the CLIC dataset is used for training, the
models are trained using the CLIC training and validation sets. The

2The CLIC2020 dataset can be used through TensorFlow: https://www.tensorflow.
org/datasets/catalog/clic
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Figure 3.2: Example images from the CLIC2020 dataset.

CLIC testing set is used to evaluate the performance of the trained
system. Figure 3.2 shows some example images from the CLIC 2020
dataset.

3.1.3 Kodak

The Kodak? dataset is one of the most commonly used dataset to test
the performance of image compression methods. It contains a total of
25 lossless, true color (24 bits per pixel, also known as “full color”)
images. All source images are stored in an uncompressed, lossless PNG
format and have a size of either 768 x 512 or 512 x 768. Figure 3.3 shows
example images from the Kodak dataset.

3The Kodak dataset homepage: http://rOk.us/graphics/kodalk/
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Figure 3.3: Example images from the Kodak dataset.

3.1.4 DIV2K

The DIV2K* (Agustsson and Timofte, 2017) is a commonly used dataset
for example-based single-image super-resolution (the NITRE 2017 SR
challenge). The DIV2K dataset contains 1,000 DIVerse 2K resolution
high-quality images collected from the Internet. Images in DIV2K have a
considerably higher resolution than many other popular image datasets.
The 2K resolution means all the images in the dataset have 2K pixels
on at least one of the image height and width. One common way to
split the dataset is to have 800, 100, and 100 images in the training,
validation and testing sets, respectively.

When used for training in learning-based compression, DIV2K is
usually combined with the CLIC dataset to form a new training set. This
is because the number of images in DIV2K is too small for training a
deep neural network. Figure 3.4 shows example images from the DIV2K
dataset.

“DIV2K dataset homepage: https://data.vision.ee.ethz.ch/cvl/DIV2K/
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Figure 3.4: Example images from the DIV2K dataset.

3.1.5 BSDS500

Berkeley Segmentation Data Set and Benchmarks 500 (BSDS500)°
(Arbeléez et al., 2011) is a new dataset constructed as an extension of
the original BSDS300 dataset. Each image in the dataset is segmented
by five different subjects on average and the performance is evaluated by
measuring Precision/Recall on detected boundaries and three additional
region-based metrics. The dataset consists of 500 natural images, ground-
truth human annotations and benchmarking code(Arbelaez et al., 2011).
The 500 images are separated into disjoint training set (200 image),
validation set (100 images), and testing set (200 images). Figure 3.5
shows example images from the BSDS500 dataset.

5The BSDS500 dataset homepage: https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/resources.html
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Figure 3.5: Example images from the BSDS500 dataset.

3.1.6 LIVE

The LIVE Subjective Image Quality Dataset® (Sheikh, 2005) was origi-
nally acquired for quality assessment (QA) research. The LIVE dataset
consists of 29 resized sources images and their distorted versions. The
source images in this dataset are derived from a set of source images
that reflect adequate diversity in image content. There are totally 29
high resolution and high quality color images collected from the Internet
and photographic CD-ROMs in this dataset (Sheikh et al., 2006). The
images were resized, using bicubic interpolation, to a size of 1024 x 768,
and stored as 24bit-RGB images in bmp format. Distortions, includ-
ing JPEG2000 compression, JPEG compression, white noise, Gaussian
blurring and Simulated Fast Fading Rayleigh (wireless) Channel, were
applied to the resized images. Figure 3.6 shows example images from
the LIVE dataset.

SLIVE dataset homepage: https://live.ece.utexas.edu/research/quality/
subjective.htm
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Figure 3.6: Example images from the LIVE dataset.

3.1.7 YFCC100m

The Yahoo Flickr Creative Commons 100 Million (YFCC100m) dataset”
(Thomee et al., 2016) is the largest public multimedia collection image
dataset which contains a total of 100 million media objects, and in
which there are approximately 99.2 million images and 0.8 million
videos. Figure 3.7 shows example images from the YFCC100m dataset.

3.1.8 Open Images

The Open Images dataset® (Krasin et al., 2017) is a dataset used for
image classification, object detection and visual relationship detection.
This dataset contains approximately 9 million images that are annotated
with image-level labels, object bounding boxes, object segmentation
masks, visual relationships, and localized narratives. The dataset is split
into a training set (9,011,219 images), a validation set (41,620 image)

"YFCC100m dataset Browser: http://projects.dfki.uni-kl.de/yfcc100m/
8Open Image dataset homepage: https://storage.googleapis.com/openimages/
web /factsfigures.html
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Figure 3.7: Example images from the YFCC100m dataset.

and a testing set (125,436 images). Figure 3.8 shows example images
from the Open Images dataset.

3.1.9 CelebA

The CelebFaces Attributes (CelebA) dataset? (Liu et al., 2015) is a large-
scale face attributes dataset with more than 200K celebrity images, each
with 40 attribute annotations. The CelebA dataset contains 202,599
face images of 10,177 identities. This dataset is commonly used for
visual tasks, such as fact attribute recognition, face recognition, face
detection and face landmark localization. Figure 3.9 shows example
images from the CelebA dataset.

3.1.10 RAISE-1k

RAw ImageS datasEt (RAISE) dataset'® (Dang-Nguyen et al., 2015) is
a collection of 8,156 raw images. Images in RAISE were all captured at
high resolutions (3008 x 2000, 4288 x 2848 and 4928 x 3264), and stored

9CelebA dataset homepage: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
RAISE dataset homepage: http://loki.disi.unitn.it/RAISE/download.html#
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Figure 3.8: Example images from the Open Images dataset.

in a compressed 12-bit format or a losslessly compressed 14-bit format.
The images in RAISE are stored in either an sSRGB (5950 images) or
Adobe RGB (2206 images) color format. The RAISE-1k is a subset of
the RAISE dataset which containing 1,000 images. Figure 3.10 shows
example images from the RAISE-1k dataset.

3.1.11 TESTIMAGES dataset

The Tecnick TESTIMAGES dataset'! (Asuni and Giachetti, 2014) is
a large collection of sample images designed for analysis and quality
assessment. The dataset contains more than 2 million images which are
devided into four categories: SAMPLING, SAMPLING__PATTERNS,
COLOR, and PATTERNS.

HUTESTIMAGES dataset homepage: https://testimages.org
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Figure 3.10: Example images from the RAISE-1k dataset.

The SAMPLING dataset mainly targets the testing resampling algo-
rithms. This dataset contains a base of 40 RGB 2400 x 2400 reference im-
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Figure 3.11: Example images from the TESTIMAGES-SAMPLING dataset.

ages with a bit-depth of 16 bpp and high dynamic range (HDR). As an ex-
tension of the SAMPLING dataset, the SAMPLING__ PATTERNS con-
tain 424 artificial grayscale reference images with a resolution of 1224 x
1224. The COLOR and the PATTERNS sets contain 8 bpp (maximum
intensity 255) and 16 bpp (maximum intensity 65535) 3-channel RGB
images at varying standard and non-standard resolutions. Figure 3.11
shows example images from the TESTIMAGES-SAMPLING dataset.

3.1.12 COCO

The Microsoft Common Objects in COntext (MS COCO) dataset'? (Lin
et al., 2014) is a dataset used for the object detection task. This dataset
contains 91 common object categories with 82 of them having more
than 5,000 labeled instances. The dataset contains totally 2,500,000
labeled instances in 328,000 images. The dataset is split into a training
set of 164,000 images, a validation set of 82,000 images, and a testing
set of 82,000 images. Figure 3.12 shows example images from the COCO
dataset.

12C0OCO dataset homepage: https://cocodataset.org/#home
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Figure 3.12: Example images from the COCO dataset.

3.1.13 cCSsIQ

The Categorical Subjective Image Quality (CSIQ) dataset'? (Larson
and Chandler, 2010) is a dataset consisting of 30 original images and
their distorted versions. Six different types of distortions, each at four
to five different distortion levels, are applied to the original images. The
dataset also contains 5000 subjective visual quality rating, reported

13CSIQ dataset homepage: https://s2.smu.edu/~eclarson/csiq.html.
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Figure 3.13: Example images from the CSIQ dataset.

in the form of DMOS, from 35 observers. Figure 3.13 shows example
image from the CSIQ dataset.

3.1.14 IVC

The IVC dataset' (Le Callet and Autrusseau, 2005) is provided by
the Images and Video-communications (IVC) team at the University
of Nantes. It contains 10 original images in BMP format and their
distorted versions. All original images are stored in PNG format and
235 distorted images were generated from 4 different processing: JPEG,
JPEG2000, LAR coding, and Blurring. This dataset also contains sub-
jective evaluations of the distorted images. Figure 3.14 shows example
images from the IVC dataset.

MIVC dataset homepage: https://web.archive.org/web/20200128110508 /http:
//ivc.univ-nantes.fr/en/databases/Subjective_ Database/
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Figure 3.14: Example images from the IVC dataset.

3.1.15 ADE20K

The ADE20K dataset!® (Zhou et al., 2017) is a semantic segmentation
dataset containing 20 thousands images annotated with 150 object
categories. There are 20,210 images in the training set, 2,000 images in
the validation set, and 3,000 images in the testing set. Each image in
ADE20K contains at least 5 objects, and at most 273 objects. Figure
3.15 shows example images from the ADE20K dataset.

3.1.16 KITTI

The KITTI dataset'S (Geiger et al., 2013) was collected from a platform
mounted on top of a car driving in and aroung Karlsruhe, Germany.
The dataset contains images captured by a video camera, laser scans
captured by a laserscanner, high-precision GPS measurements and IMU
accelerations captured by a combined GPS/IMU system. For images,
both color (24-bit RGB format) and grayscale (8-bit intensity) images

'SADE20K dataset homepage: https://groups.csail.mit.edu/vision/datasets/
ADE20K/
'SKITTI dataset homepage: http://www.cvlibs.net/datasets/kitti/
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Figure 3.16: Example images from the KITTI dataset.

are stored in a lossless PNG format. The original images captured by
the camera have a resolution of 1392 x 512. Figure 3.16 shows example
images from the KITTI dataset.
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3.1.17 UCID

The Uncompressed Colour Image Dataset (UCID)!" (Schaefer and Stich,
2003) is an image dataset proposed for content based image retrieval
(CBIR) research. The UCID dataset contains 1,338 images stored in an
uncompressed TIFF format.

Table 3.1 provides a summary of the aforementioned image datasets,
including the number of images in the dataset, resolution, bit depth for
each channel (e.g., color channel), color format and file format.

3.2 Video Datasets

The commonly used video datasets for training and testing learning-
based video compression methods are introduced in this section.

3.2.1 Vimeo-90k

The Vimeo-90k dataset'® (Xue et al., 2019) is a large-scale, high-quality
video dataset built for different video tasks such as temporal frame
interpolation, video denoising, video super-resolution, and video deblock-
ing. The Vimeo-90k contains 89,800 video clips covering large variaties
of scenes and actions. All frames are resized to a fixed resolution of

448 x 254.

3.2.2 UVG

The Ultra Video Group (UVG) dataset'® (Mercat et al., 2020) is a
dataset consisting of 16 versatile 4K test video sequences. All sequences
are captured at either 50 or 120 frames per second (fps) with a resolution
of 3840 x 2160 using a Sony F65 video camera. All video sequences are
stored in a 10-bit and 8-bit color format of 4:2:0 YUV. Details of video
contents, textures, descriptions and features can be found in Mercat
et al. (2020).

"UCID dataset homepage: https://qualinet.github.io/databases/image/
uncompressed__colour__image__database__ucid/

18Vimeo-90k dataset homepage: http://toflow.csail.mit.edu/

YUVG dataset homepage: http://ultravideo.fi/
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3.23 VTL

The Video Trace Library (VTL) dataset?® (VTL, 2022) contains video
sequences in a 4:2:0 YUV format. All video sequences are compressed
in the 7-zip format. The VTL dataset contains 20 video sequences of
approximately 40,000 frames in total with a resolution of 352 x 288.
Most of the existing works use the first 300 frames of each sequence for
testing.

3.2.4 MCL-JVC

The compressed video quality assessment dataset based on the just
noticeable difference model, MCL-JCV?! (Wang et al., 2016) is a widely
used video quality evaluation dataset. It consists of 24 source videos
with a resolution of 1920 x 1080 and 51 H.264/AVC encoded clips for
each source sequences, with a QP ranging from 1 to 51.

3.2.5 HEVC Common Testing Sequences

The HEVC Common Testing Sequences dataset?? (Sullivan et al., 2012)
was used for the development of HEVC standard and is still in use
for video compression standard development. There are six classes in
the HEVC Common Testing Sequences: Class A (4K x 2K), Class B
(1080p), Class C (WVGA), Class D (WQVGA), Class E (720p), and
Class F (screen content with different resolutions). All sequences are
in 4:2:0 YUV format. Most of the learning-based video compression
methods use Class B, C, D, and E for testing.

3.2.6 JVET Test Sequences

The JVET Test Sequences dataset?? (Boyce et al., 2018) contains 28 test
sequences that were used for the development of the reference software
of the Joint Video Experts Team (JVET) for Versatile Video Coding
(VVC), known as VVC Test model (VIM). The JVET test sequences

20V TL dataset homepage: http://trace.cas.asu.edu/yuv/index.html

2IMCL-JCV dataset homepage: http://mcl.usc.edu/mcl-jcv-dataset,/

22Both HEVC and JVET testing sequences are only available for qualified partici-
pants.
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contain seven classes: Class Al (4K), Class A2 (4K), Class B (1080p),
Class C (WVGA), Class D (WQVGA), Class E (720p), and Class F
(screen content with different resolutions). All sequences are in 4:2:0
YUV format. Most of the learning-based video compression methods
use Class B, C, D, and E for testing.

3.2.7 BVI-DVC

The BVI-DVC dataset®® (Ma et al., 2021) contains 800 progressive-
scanned video sequences covers different textures, natural scenes, and
objects. The authors first progressive scanned 200 sequences at a resolu-
tion of 3840 x 2160 with frame rates between 24 fps to 120 fps from other
video datasets. All sequences are stored in YCbCr 4:2:0 format with a
bit depth of 10. Then these 200 sequences are spatially down-sampled to
1920 x 1080, 960 x 540, and 480 x 270 using Lanczos to further enlarge
the dataset.

3.2.8 UGC

The UGC dataset?! (UGC, 2022) is a large scale dataset containing
YouTube User Generated Content intended for video compression and
quality assessment research. The UGC dataset contains approximately
1,500 video clips with a duration of 20 seconds each. The dataset is
divided into 12 categories: Animation, Cover Song, Gaming, HDR, How-
To, Lecture, Live Music, Lyric Video, Music Video, News Clip, Sports,
Television Clip, Vertical Video, Vlog, and VR. There are video clips
with resolutions of 360P, 480P, and 1080P for all categories except HDR
and VR. There are 4K video clips for HDR, Gaming, Sports, Vertical
Video, Vlog, and VR genres.

3.2.9 Kinetics

The Kinetics Human Action Video dataset®® (Kay et al., 2017; Carreira
and Zisserman, 2017) is a video dataset that focuses on human actions.

BBVI-DVC dataset homepage: https://research-information.bris.ac.uk/en/
datasets/bvi-dve

24UGC dataset homepage: https://media.withyoutube.com/

?Kinetics dataset homepage: https://www.deepmind.com/open-source/kinetics
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The Kinetics dataset contains 400 human action classes, each with 400
to 1,150 video clips. Each clip was generated from a unique video and
lasts around 10s. The Kinetics dataset is divided into a training set,
validation set, and testing set. The testing set contains 100 video clips
from each class, the validation set contains 50 video clips from each
class, and the remaining video clips, about 250 to 1,000 video clips per
class, are classified as part of the training set. The Kinetics dataset
contains action classes including: Person Actions (singular) such as
drinking, drawing; Person-Person Actions such as hugging, kissing;
Person-Object Actions such as washing dishes, opening presents. All
video clips in the Kinetics dataset are obtained from YouTube.

Table 3.2 provides a summary of the aforementioned video datasets,
including number of video sequences, resolution, bit depth and color
format.



4

Performance Analysis and Comparison

In this section, the performance of the aforementioned learning-based
compression algorithms will be discussed. As described in Section 2,
these learning-based compression algorithms can be grouped based on
how the learning-based approach is applied. The performance analysis
in here is done based on this grouping. Almost all the learning-based
compression methods are trained and tested on one of the datasets that
were presented in Section 3.

4.1 Performance Metrics

One main goal of image compression is to store and/or transmit an
image using a significantly lower bitrate as compared to its original un-
compressed version while maintaining a desired level of perceived visual
quality. Performance measures are used for assessing the effectiveness
of a compression algorithm.

4.1.1 Bitrate and Compression Ratio

To measure the achieved bitrate reduction, one popular measure is
the compression ratio. The compression ratio is used to indicate the

52
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achieved bitrate reduction and is computed by dividing the bitrate of
the uncompressed image by the bitrate of the compressed image.
The per-image average bitrate (bits per pixel or bpp) is computed as:

S12€pit
HxW’

bitrate = (4.1)

where H and W indicate, respectively, the height and width of the
image and sizep; indicates the size of the compressed image in bits.
The average bit rate over a set of images (i.e., a set of testing images or
an image dataset) is calculated by averaging the bit rate over all images
in the considered set.

4.1.2 Evaluation Metrics for Reconstructed Image Quality

To evaluate the perceived visual quality of a reconstructed (i.e., decom-
pressed) image, popular visual quality assessment measures include Peak
Signal-to-Noise (PSNR), Structure Similarity Index Measure (SSIM)
(Wang et al., 2004), and Multiscale Structure Similarity Index Measure
(MS-SSIM) (Wang et al., 2003). These measures are all single-channel
metrics and need typically to be applied on each color channel sepa-
rately. To produce a single value over all channels, the measured values
over all channels can be combined (e.g., through averaging or weighted
averaging).

PSNR

As a well-known quality measure for lossy compression, PSNR calculates
the ratio between the maximum image value squared and the mean
square error:

2

PSNR (4.2)

= 10log;y VSE’

in which L is the maximum value of pixel intensity (L = 255 for
common 8-bit per pixel image format) and the mean square error M SFE
is calculated as:

1
MSE =

HxW

SV Ty — 1), (4.3)
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where W and H are the width and height of the image, respectively,
and I; ; and I{J represents the intensity of the pixel at location (i, j)
in the original image and the lossy decompressed image, respectively.
For PSNR, a higher score means higher reconstruction quality. At very
low bitrates, the PSNR has been shown not to correlate well with the
perceived visual quality. Variants incorporating aspects of human visual
perception such as contrast sensitivity and contrast masking include
PSNR-HVS (Egiazarian et al., 2006) and PSNR-HVS-M (Ponomarenko
et al., 2007).

For an RGB color image, the RGB-PSNR can be calculated over the
whole image for the R, G and B channel separately and the final PSNR
score for the image is taken as the average over the three channels.

SSIM

SSIM is an alternative and complementary approach to evaluate image
quality through measuring the structural similarity between the two
images. Let  and y be two discrete non-negative signals with the same
size; in the image compression case, the signals are 2D matrices with
pixel intensity value of non-negative integers. Let i, and o, be the mean
intensity and standard deviation of x, u, and o, be the mean intensity
and standard deviation of y, and o, be the covariance between x and
y. The luminance, contrast and structure comparison measures are
defined in Wang et al. (2004) as:

2uapy + C1

(x,y) = —0—F——, 4.4
@) = e (1.4

20,0y + Co
= 4.5
(wy)= (45)

Ozy + Cs
=% -0 4.6
(o) = 2 (46)
where C1, Cy and Cj5 are small constants given by

C) = (K1L)?, Cy= (KL)% C3=0Cy/2, (4.7)

where L is the dynamic range of the pixel values (L = 255 for 8-bit
images) and K; < 1 and Ky < 1 are two small scalar constants. K3
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and K> are set as 0.01 and 0.03, respectively in Wang et al. (2004). The
SSIM between x and y is defined as:

SSIM(.’D,y) = [l(way)]a ’ [c(wvy)]ﬁ ’ [S(way)]’y? (48)

where a > 0, > 0 and v > 0 are parameters to adjust how much the
three components have an effect on the score. In Wang et al. (2004),
the parameters are chosen as a = f = v = 1. With C3 = Cy/2, SSIM
can be expressed as:

(2,U,$Ny + Cl)(Qny + CQ)
(u2 + ,u% +C) (o2 + 012, +Cs)’

SSIM(z,y) = (4.9)
For SSIM, a higher value indicates a higher reconstruction quality.
In practice,  and y corresponds to a local region (e.g., block) in the
original image and its corresponding collocated region in the compressed
image, respectively. The overall SSIM score is obtained by averaging
the SSIM values over all considered local image regions.

MS-SSIM

Considering that SSIM only measures the structure similarity over one
scale, Wang et al. (2003) proposed multiscale SSIM (MS-SSIM) which is
computed by calculating the SSIM over different scales. The two input
signals @ and y are fed into the system and a multi-scale decomposition
is computed for each as described in Wang et al. (2003) by iteratively
applying filtering operations followed by downsampling (factor of 2).
This decomposition is used to get the SSIM score for different scales,
resulting in MS-SSIM. Consider the original image as scale 1, the system
will have M scales after M — 1 filtering and downsampling iterations.
At each scale, the contrast comparison c; and structure comparison s;
are calculated according to Equations (4.5) and (4.6), respectively. The
luminance comparison only needs to be calculated for the last scale [s
(4.4). The resulting MS-SSIM will be:

M

MS — SSIM(z,y) = [ly(x, y)]*™M - 1:[ [Cj(wyy)]ﬁj ~[sj(x,y)]",

(4.10)
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where ayr, 85, and vy, are parameters used to adjust the contribution
of each of the components to the final SM-SSIM value. In Wang et
al. (2003), to simplify parameter selection, the parameters are chosen
as aj = f3; = ~; and Ej]\/ilaj = 1 and a 5-level MS-SSIM is used
with weights (0.0448,0.2856,0.3001, 0.2363,0.1333). Similar to SSIM, a
higher MS-SSIM value indicates a higher perceived visual quality of the
reconstructed image.

PSNR-B

In block transform coding, the input image is divided into non-
overlapping blocks of size Bx B (e.g., 8x8 block as in JPEG compression)
and each block is transformed and compressed independently. The block-
based operation typically results in blocking artifacts occurring along
the horizontal and vertical orientations. To measure the visual quality
of such compressed image with blocking artifacts, Yim and Bovik (2010)
proposed a new peak signal-to-noise ratio including blocking effects
(PSNR-B). In PSNR-B, a blocking effect factor (BEF) is calculated to
measure the blockiness of images.

Consider an image I with dimensions Ny x Ny, let H and V be the
set of horizontal neighboring pixel pairs and vertical neighboring pixel
pairs in I, respectively. Let Hp C H be the set of horizontal neighboring
pixel pairs that lie across a block boundary and let 4 = H —Hp be the
set of horizontal neighboring pixel pairs that do not lie across a boundary.
Similarly, let Vp and Vg be the set of vertical neighboring pixel pairs
that lie across a block boundary and the set of vertical neighboring
pixel pairs that do not lie across a block boundary, respectively.

For a block size B, the number of pixel pairs in Hp, 'H%, Vg, and
Vg are calculated as:

N

Ny, = Ny (BH> ~ 1, (4.11)

Ny = Ny (N = 1) = N, (4.12)
N

Ny, = Ny (BV> —1, (4.13)

Nye = Nu(Ny = 1) = Ny, (4.14)



4.1. Performance Metrics 57

For a test image y, the mean boundary pixel square difference (Dp)
and the mean nonboundary pixel square difference (D%) is defined as:

Siyewners Wi = ¥5)? + Sy )evs Wi — ¥5)?

Dp(y) = : 415
5() o (4.15)
Croy _ Z(yi,yg’)eﬂg (yi — yj)2 + E(yuyj)GVg (4 — yj)2
Dp(y) = (4.16)
The blocking effect factor (BEF) is defined as:
BEF(y) =1+ [D(y) - D5 (y)] (4.17)
where
log, B . C

n = | BEEmvAyy 1 D) > Dply) (4.18)

0, otherwise

For some type of compression methods (e.g., H.264), there are
multiple block sizes in the decoded image which all contribute to the
blocking effect. For block size By, the BDR is given by:

BEF)(y) = - | D, (y) — DS, ()] (4.19)
The BEF over all K block sizes is defined as:
BEF 1o (y) = S BEF(y). (4.20)

The MSE-B for reference image « and the test image y is defined
as the sum of the MSE(x, y) and BEF 14 (y):

MSE-B(z,y) = MSE(z,y) + BEF 1ot (y). (4.21)

Then, the PSNR-B is:

2552

PSNTGEKw,y)Z:lokgﬂ3iﬁﬁifﬁ;7§5'

(4.22)

BD-Rate

Bjontegaard Delta-Rate! (Bjgntegaard, 2001) is an objective measure-
ment used in video compression to compare rate-distortion performance

!The Excel Visual Basic for Applications (VBA) code for calculating RD-Rate is
available at: https://github.com/tbr/bjontegaard_ etro.
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of two video codecs or different settings of the same video codec. BD-
Rate measures the bitrate reduction offered by a codec or codec feature
while maintaining the same perceived visual quality in terms of some
objective measures (e.g., PSNR). The rate change is computed by
averaging the rate difference in percentage over a range of quality.

4.2 Decoder-Side Post-Processing

Table 4.1 provides a summary of the experimental setup and perfor-
mance results that were obtained using the decoder-side post-processing
learning-based approaches described in Section 2.1.1.

The reconstructed RGB image enhancement network proposed in
Lu et al. (2019b) is trained on the training set of DIV2K (Agustsson
and Timofte, 2017) with all images compressed/decompressed by the
intra coding filters of VVC and evaluated on the Test Dataset P/M
with 330 images released by the Computer Vision Lab of ETC Zurich.
PSNR performance on the Test Dataset with YUV 4:4:4 format achieves
a 0.3 dB gain at each bitrate point and an average of 6.5% BD-Rate
reduction over VVC Intra. On the Test Dataset with YUV 4:2:0 format,
the network achieves a 0.5 dB gain at each bitrate point and an average
of 12.2% BD-Rate reduction ober VVC Intra. The AR-CNN model
proposed in Dong et al. (2015) is trained on a training set consisting of
the training (200 images) and testing (200 images) sets of the BSDS500
dataset (Arbeldez et al., 2011) and validated on the validation set of
BSDS500. The LIVE dataset (Sheikh, 2005) (29 images) is used as a
testing set to evaluate the quantitative and qualitative performance.
Different AR-CNN models are trained for each JPEG qualities at ¢ =
40, 30, 20, 10. Results show that the AR-CNN outperforms the JPEG
and SR-CNN (implemented by retraining SR-CNN for JPEG) in terms
of PSNR, SSIM and PSNR-B (Yim and Bovik, 2010).

For decoder-side post-processing learning-based methods for video
compression, similar to Dong et al. (2015), the DCAD model proposed
in Wang et al. (2017) is trained on the training (with 200 images)
and testing (with 200 images) sets of the BSDS500 dataset (Arbeldez
et al., 2011) and validated on its validation set with 100 images. The
common test condition test sequences of HEVC are used as the testing
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set. Different DCAD models are trained on four different Quantization
Parameter (QP) setting (i.e., 22, 27, 32, and 37). Compared with HEVC,
under four different coding configurations (all intra, low-delay, low-delay
B and random access), the proposed DCAD can achieve significant
improvement in terms of enhancing the reconstructed image quality
and in terms of BD-rate reduction. For the QE-CNN proposed in (Yang
et al., 2019), QE-CNN-I for I frames is trained and validated on the same
dataset as ARCNN, and QE-CNN-P for P-frames is trained on a video
dataset containing 89 sequences that are provided by the authors. The
two models, along with three methods are tested on 17 sequences from
the JPCT-VC database (Bossen et al., 2013). The proposed QE-CNN-I
model outperforms the existing AR-CNN (Dong et al., 2015), VRCNN
(Dai et al., 2017) and DCAD (Wang et al., 2017) methods on I frames
over all testing sequences for all six QP values chosen by the authors
(22, 27, 32, 37, 42, 47). The proposed QE-CNN-P model yields better
performance on P frames as compared not only to the aforementioned
three methods, but also to the QE-CNN-I model.

The GAN-based colorization network proposed in Fatima et al.
(2021) is evaluated on the Kodak, IVC, and Computational and Sub-
jective Image Quality (CSIQ) datasets in terms of bit rate and image
quality. Results show that the GAN-based colorization network can
outperform JPEG at very low data rates.

Overall, for a given bit-rate, the decoder-side post-processing ap-
proaches can achieve a higher visual quality for the reconstructed images.
Such improvement can also be seen on video compression methods with
decoder-side post processing.

The advantage of decoder-side post-processing approaches is that
the learning-base enhancement module can be added in conjunction
to any conventional compression method. With proper training, the
post-processing module can help in improving the reconstruction quality.

One problem with decoder-side post-processing approaches is that
the performance of the learning-based post-processing module relies
on how good the trained model is. Thus, different models need to
be trained for different conventional compression methods, even for
different quality levels of the same conventional compression methods.



62 Performance Analysis and Comparison

4.3 Encoder-Side Pre-Processing

Table 4.2 provides a summary of the experimental setup and performance
results that were obtained using the encoder-side pre-processing learning-
based approaches described in Section 2.1.2.

As discussed before, most encoder-side pre-processing approaches
are paired with decoder-side post-processing. The most popular pre-
and post-processing pair is the color space conversion. The ABC model
(Li, 2019) implemented on H.266 (VIM 4.0) is tested on the CLIC2019
validation dataset at high QP 34 ~ 38 and low QP 20 ~ 24. Results
show that the proposed method, with the PCA on encoder-side and
LSM on decoder-side, gives significant improvement in terms of an
RGB-PSNR boost of 0.26 dB gain at 0.145 bpp as compared to the
baseline, which is obtained by using the traditional BT.601 color space
conversion and H.266 (VITM 4.0) with all tools enabled on input images
(YCbCr 4:2:0 format). It also results in a 1.2 dB gain at 1.0 bpp as
compared to H.266 (VITM 4.0). The later proposed VimicroABCnet (Li
et al., 2019) is also tested on the CLIC2019 validation set. Similar to
ABC net in Li (2019), the VimicroABC net is compared with H.266 with
BT.601 conversion. Results show that the proposed enhancing network
in VimicroABC net can achieve a boost of 0.3 dB gain in RGB-PSNR at
10.15 bpp. Combined with ABC net, the VimicroABC net can achieve
even better performance achieving a RGB-PSNR gain of 0.56 dB gain
at 0.15 bpp as compared to H.266. Overall, VimicroABCnet can achieve
a smaller compressed file with a higher reconstructed quality in terms
of RGB-PSNR.

The VIP-ICT codec (Sun et al., 2020) is built based on VimicroABC-
net and is trained on the CLIC 2020 training set and DIV2K (Agustsson
and Timofte, 2017) dataset with a patch size of 64 x 64. It is tested
on the CLIC 2020 testing set. Compared with the anchor generated by
VTM 7.1 without built-in filters, the trained model gives about 1.0 to
1.5 dB improvement as compared to the anchor in terms of PSNR at
all the considered bitrates.

The three aforementioned learning-based color format conversion
pre-/post-processing pair can all get improved reconstruction quality
in terms of PSNR as compared to the basic conventional compression
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methods they are built on. One problem with the reported results is
that all results are reported in terms of PSNR while recent research
shows that compared with SSIM and MS-SSIM, PSNR is less correlated
with the human visual system, especially at low bitrate.

Similar to the super-resolution methods that are used in decoder-
side post-processing, the de-resolution (CrCNN) and super-resolution
(ReCNN) pair in Tao et al. (2017) showed better compression perfor-
mance in terms of both PSNR and SSIM over JPEG and JPEG2000
on standard test images including “Butterfly”, “Cameraman”, “House”,
“Lena”, “Peppers”, “Leaves” and “Parrots”. The DSSLIC (Akbari et al.,
2019) framework, due to its property in using segmentation to improve
compression performance, uses a segmentation dataset, ADE20K (Zhou
et al., 2017) with 150 semantic labels, for training. The trained model is
then tested on the ADE20K test set (averaged over 50 random test im-
ages not included in training) and the Kodak set. Compared with JPEG,
JPEG2000, WebP, and BPG, the proposed framework can achieve a
higher visual quality in terms of PSNR and MS-SSIM in the RGB
domain.

Compared with color space conversion methods, the de-
resolution/super-resolution pair based pre-processing/post-processing
pair can give not only improvement in PSNR, but also in SSIM and
MS-SSIM.

The encoder-side pre-processing methods have similar advantages
as the post-processing ones since they can be applied on different
conventional compression methods with proper training. They also
share a similar disadvantage is that different models need to be trained
for different compression methods.

4.4 DNN-based Modules as part of Conventional Codecs

Table 4.3 provides a summary of the experimental setup and performance
results that were obtained using the aforementioned learning-based
approaches in which DNN-based modules are used to replace parts of a
conventional codec as described in Section 2.1.3.

The VRCNN (Dai et al., 2017), built based on the 4-layer artifact
reduction network AR-CNN (Dong et al., 2015), is used to replace the in-
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loop deblocking filter and SAO in HEVC. The VRCNN model is trained
on a collection of 400 natural images (BSDS500 training and testing sets
(Arbeldez et al., 2011) each contains 200 images), which are the same
images as in Dong et al. (2015), and is tested on the HEVC standard
test sequences, which contains 20 sequences of 5 classes. Four separate
networks are trained on images compressed by HEVC intra coding
(without deblocking and SAO) with different QP values (i.e., 22, 27, 32,
and 37). VRCNN can achieve an average of 4.6% DB-rate reduction
on the test sequences, which outperforms both HEVC and AR-CNN.
But since the VRCNN architecture is more complex than AR-CNN, its
decoding procedure takes more time. IFCNN proposed by Park and
Kim (2016) replaces only SAO in HEVC, and uses 8 sequences from the
HEVC standard test sequences for training and testing. Results show
that, compared with the original HEVC, the proposed IFCNN yields
an average 4.8% BD rate reduction and achieves better performance in
terms of PSNR.

In Ma et al. (2019b), the DIV2K (Agustsson and Timofte, 2017)
dataset compressed with the JPEG2000 (Jpaser, Adams, 2006) was used
for training while the Kodak dataset was used for testing. Experiments
are performed to compare the proposed method with JPEG2000 at
bitrates of 0.25 bpp, 0.5 bpp, 0.75 bpp, and 1.0 bpp. The average BD-
rate reduction is 23.68%, and it can be as high as 36.34% on the image
Kodak05.

Schiopu et al. (2019) trained the modified AP-CNN model for each
of the 33 angular intra-prediction modes in HEVC. The training set
used for each model is the corresponding set containing input patches
generated based on HEVC’s optimal mode segmentation of frames
extracted from the ADE20K dataset. Using the Losselss HEVC Intra
as baseline, the proposed method can achieve a bitrate reduction of
4.798% on average for the HEVC test sequences dataset and of 5.822%
on average for the UVG dataset. Schiopu et al. (2019) also proposed a
hybrid method in which the optimal block segmentation is generated
based on the competition between the HEVC-based prediction and the
CNN-based prediction. By combining the HEVC-based prediction and
the CNN-based prediction, the performance can be further improved to
result in a bitrate reduction of 5.146% for the HEVC dataset and of
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5.998% for the UVG dataset. Zhu et al. (2019) trained the proposed GAN
model on the UCID dataset (Schaefer and Stich, 2003). The proposed
method applied to the HEVC test model (HM 16.17) outperforms the
HEVC baseline as well as the method of Li et al. (2018a) for all the
Y, U, V channels on average. Compared with the HEVC baseline, the
GAN-based intra prediction model can achieve a bitrate reduction of
6.6%, and 7.5% on average for the luma and two chroma components,
respectively. The authors also integrated the proposed method with
the VVC Test Model (VTM 1.1). Experimental results show a bitrate
reduction of 3.10%, 6.75%, and 6.83% for the luma component for small,
normal, and large QP values, respectively, as compared to the VVC
baseline.

The enhanced learning-based inter coding algorithm proposed by
Benjak et al. (2021) was trained on a dataset that contains 487,020 pic-
tures, which are generated by downsampling 13 YouTube HD sequences
of train and subway drives filmed with a front-viewing camera. The
trained model was then evaluated on the KITTI dataset (Geiger et al.,
2013). The proposed model when integrated with VVC can achieve
an average BD-rate reduction of 0.94% over the VITM 7.0 baseline.
But due to the computational complexity of the neural network, the
encoding time increases by 5% while the decoding time increases by
300%. FRCNN (Yan et al., 2018) was trained on a training dataset gen-
erated by the authors from BlowingBubbles (one test sequence from the
HEVC testing sequences dataset, Sullivan et al., 2012) using the HEVC
encoder-HM 16.7. Compared with the HEVC anchor, the proposed
FRCNN can achieve significant bitrate savings in terms of BD-rate
reductions of 3.9%, 2.7%, and 1.3% for the luma component using
the Lowdelay-P (LDP), Lowdelay-B (LDB), and Random Access (RA)
modes, respectively. FRCNN also resulted in a BD-rate reduction of
around 1% for the chroma components for the LDP, LDB, and RA
modes.

Wu et al. (2018) trained the proposed model on selected videos
with width and height larger than 720px from the Kinetics dataset
(Carreira and Zisserman, 2017) and tested on the Kinetics (Carreira and
Zisserman, 2017), VTL (VTL, 2022), and UVG (Mercat et al., 2020)
datasets. Wu et al. (2018) compared their model with HEVC, H.264,
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MPEG-4 Part 2, and H.261. The proposed model outperforms H.261
and MPEG-4 Part 2, and achieves comparable results with H.264 and
HEVC. For high resolution videos in the UVG dataset, the proposed
model outperforms H.264 and gives a comparable performance with
HEVC in terms of PSNR.

Ma et al. (2018) trained their proposed CNNAC model on the UCID
(Schaefer and Stich, 2003) and DIV2K (Agustsson and Timofte, 2017)
datasets. The training dataset is prepared using the HEVC HM 12.0
codec with all-intra mode. Tested on the HEVC testing dataset, using
the HEVC HM 12.0 intra codec as anchor, the proposed CNNAC for
DC coefficients can achieve an average bitrate saving of 22.47% for DC
coefficients. In terms of BD-rate, the proposed model can achieve a 1.8%
reduction on average. The extended CNNAC model for HEVC intra-
predicted residuals (Ma et al., 2019a) was also trained on the UCID
(Schaefer and Stich, 2003) and DIV2K (Agustsson and Timofte, 2017)
datasets. The proposed model achieves a BD-rate reduction for the Y,
U, and V channels of 4.7%, 4.2%, and 4.0% on average, respectively,
with HM 12.0 used as anchor.

These results show that through using learning-based modules in
lieu of parts of the conventional compression methods, the resulting
compression methods can achieve a better compression performance
in terms of BD-rate. Different from the two previous pre- and post-
processing learning-based compression methods, the DNN-based module
used in lieu of parts of a conventional codec, is less transportable.

4.5 Autoencoder-based Approaches

4.5.1 Autoencoder-based Codecs with Fixed Entropy Model

Table 4.4 provides a summary of the experimental setup and performance
results that were obtained using the autoencoder-based approaches with
the basic autoencoder structure as described in Section 2.2.1.
Toderici et al. (2015) used a dataset containing 216 million color
images that were collected from the public internet, downsampled to
a size of 32 x 32, and stored in a lossless format, for training and
testing. A subset of 100k randomly selected images from this dataset is
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used for evaluating the proposed codecs. The (de)convolution LSTM
model exhibits perceptual quality levels that are equal to or better
than both JPEG and WebP at a 4% to 12% lower bitrate on average.
The authors later improved their work and proposed an RNN-based
encoder/decoder with binarizer in Toderici et al. (2017). This improved
framework uses the same “32 x 32” dataset as their previous work
(Toderici et al., 2015) for training and also makes use of a second
dataset containing 6 million 1280 x 720 images from the web, referred
to as “High Entropy” (HE) dataset for training. The second dataset
is decomposed into non-overlapping 32 x 32 tiles before being used.
Separate models are trained on each dataset and all trained models
are tested on the Kodak Photo CD dataset and compared with JPEG
(4:2:0). The obtained experimental results show that, in terms of both
PSNR-HVS and MS-SSIM, models trained on both datasets have a
better RD-curve as compared to JPEG (4:2:0). Since the second “High
Entropy (HE)” training dataset is designed to be “hard-to-compress”,
results show that models trained on the “32 x 32” dataset outperforms
the models trained on the “HE” dataset in terms of PSNR-HVS and
MS-SSIM.

The learning-based compression methods proposed in Johnston et al.
(2018) also used the 6 million 1280 x 720 “HE” dataset but with 128 x 128
patches randomly sampled from the images. The trained model was then
tested on the Kodak dataset and the Tecnick (Asuni and Giachetti, 2014)
SAMPLING dataset and compared with BPG (4:2:0), JPEG2000, WebP,
JPEG and the work of Theis et al. (2017) and Toderici et al. (2015). The
Tecnick SAMPLING dataset which contains 100 200 x 200 images was
used since its results can be more representative of contemporary, high
resolution content. Compared with the aforementioned conventional
compression methods, the proposed framework gave better performance
in terms of MS-SSIM for the tested bitrate levels. Compared with the
two autoencoder-based methods from Theis et al. (2017) and Toderici
et al. (2015), the proposed framework outperforms these for all bitrates.
By further adding the proposed spatially adaptive bit rate (SABR)
post-processing, the models of Johnston et al. (2018) can achieve better
compression performance even when the models are not retrained to han-
dle SABR. This shows that a better performance can be expected if the
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models are further improved by performing some retraining for SABR.

Although these methods can achieve better performance than most
of the conventional compression methods, the methods focusing on
how to generate high-quality reconstructed images from a given fixed
number of representations did not lead to further improvement in later
years. More recent methods were able to achieve an increase in the R-D
performance by learning a pair of analysis and synthesis transforms
while performing a rate-distortion optimization.

The proposed end-to-end image compression network based on
nonlinear transform coding in Ballé et al. (2016a) was trained on the
ImageNet dataset (Deng et al., 2009) and tested on the Kodak dataset.
Evaluated with respect to bitrate and reconstruction quality in terms of
luma MS-SSIM and luma PSNR, the trained model outperformed both
JPEG and JPEG2000 for a range of compression bitrates. A similar
framework was proposed in Theis et al. (2017) and was trained on a
dataset consisting of 434 high quality images from the Flickr website
(Flickr, 2022). It was then tested on the Kodak dataset. The proposed
autoencoder outperformed not only the conventional JPEG compression
method, but also the end-to-end learning-based compression method of
Toderici et al. (2017) in terms of PSNR and SSIM. In terms of MS-SSIM,
the proposed autoencoder produced a very similar score as the other
compared methods (i.e., JPEG, JPEG2000, and method of Toderici
et al., 2017).

The aforementioned end-to-end learning-based autoencoder methods
with rate-distortion performance optimization yield improvement as
compared to conventional compression methods such as JPEG and
JPEG2000. But such methods are limited by the fact that the parameters
of the entropy model is fixed for different inputs. Intuitively, an adaptive
entropy model with different parameters for different inputs could
achieve better compression performance.

4.5.2 Autoencoder-based Codecs with Hyperprior

Table 4.5 gives a summary of the experimental setup and the obtained
performance results for the autoencoder-based approaches with hyper-
prior as described in Section 2.2.1.
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The autoencoder-based codec with hyperprior framework in Ballé
et al. (2018) was trained on a dataset which contains approximately
1 million color JPEG images with height/width between 3,000 and
5,000 pixels randomly sampled from the Internet. Similar to other
autoencoder-based methods, the trained models were tested on the
Kodak dataset. The authors trained 32 different models, with/without
hyperprior, optimized for MSE or MS-SSIM as distortion metric. For
each combination, 8 models were trained for 8 different bitrate levels (i.e.,
one model for each desired bitrate level). The obtained results showed
that models with hyperprior outperform models without hyperprior for
both optimization metrics over all bitrate levels. The trained models
were compared with JPEG (4:2:0), BPG (4:4:4), the methods from
Rippel and Bourdev (2017), Ballé et al. (2016a) and Theis et al. (2017).

Models with hyperprior optimized for MSE gave the best perfor-
mance when PSNR was used to evaluate the reconstructed image quality
as compared to most of the selected existing codecs and gave compa-
rable results to BPG. Models with hyperprior optimized for MS-SSIM
gave the best performance when MS-SSIM was used to evaluate the
reconstructed image quality as compared to the selected existing codecs.
The variational autoencoder with hyperprior compression framework
became one of the most popular baseline framework for developing end-
to-end learning-based compression approaches. Many improvements
were proposed based on this architecture. Figure 4.1 shows the visual
examples of compressed images that were obtained using the model
of Ballé et al. (2018) with the model optimized using MS-SSIM. For
comparison, Figure 4.1 also shows compressed images that were ob-
tained using conventional compression methods including JPEG2000
(Kakadu), JPEG (libjpeg), and HEVC Intra (HM 16.25) for different
bitrates.

The compression model proposed in Minnen et al. (2018) was trained
and then evaluated on the Kodak dataset in terms of rate-distortion
performance using PSNR/MS-SSIM as the reconstruction quality metric.
In terms of PSNR, the proposed method which combines a Context
Model and hyperprior (optimized for MSE) outperformed not only
the conventional compression methods, such as JPEG, JPEG 2000
and BPG (4:4:4), but also the learning-based compression method
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Ballé et al. (2018)

(0.098-27.082-0.908) (0.290-29.118-0.964)

(0.298-31.707-0.942)

(0.099-29.285-0.882) (0.197-30.727-0.922)

(0.121-22.007-0.617) (0.219-27.714-0.824) (0.323-29.404-0.887)

(0.099-30.424-0.902) (0.207-32.017-0.931) (0.298-32.992-0.945)

Figure 4.1: Visual compression results for the 768 x 512 “kodim02” image from the
Kodak dataset: Original image (row 1), compressed using Ballé et al. (2018) (row 2),
JPEG2000 (row 3), JPEG (row 4), HEVC Intra (implemented using HM 16.25) (row
5) for different target bit rates of 0.1 bpp (left column), 0.2 bpp (middle column),
and 0.3 bpp (right column). The performance measures are shown under each image
as (bitrate in bpp - PSNR in dB - MS-SSIM).
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in Ballé et al. (2018). When optimized for MS-SSIM, the proposed
method gave the best performance in terms of MS-SSIM as compared
to the MS-SSIM optimized model of Ballé et al. (2018) and Rippel
and Bourdev (2017). Another improved framework was proposed by
Lee et al. (2018), and which was based on the architecture of Ballé
et al. (2018). This latter framework used a dataset containing 256 x 256
patches extracted from 32,410 images that were randomly selected from
the YFCC100m (Thomee et al., 2016) dataset for training and the
Kodak dataset for evaluation. Similar to Ballé et al. (2018), different
models with hyperpriors optimized for MSE and MS-SSIM, were trained
and compared with both conventional compression methods (BPG and
JPEG 2000), and learning-based compression methods (work of Ballé
et al., 2018 and Theis et al., 2017). The obtained performance results
were similar to the ones obtained using the method of Ballé et al. (2018)
in terms of PSNR, with the model optimized for MSE yielding an
improved performance as compared to the existing codecs except for
BPG which yielded a comparable performance. In terms of MS-SSIM,
the proposed model optimized for MS-SSIM gave the best performance
as compared to all the mentioned existing codecs.

Lin et al. (2020a) used a set of 20,000 images that were chosen from
the DIV2K (Agustsson and Timofte, 2017) and ILSVRC2012 datasets
for training their proposed BRNN model. The Kodak dataset was used
for testing. The proposed BRNN model outperformed BPG and other
learning-based methods, including the methods of Minnen et al. (2018),
Ballé et al. (2018), Lee et al. (2018) and Choi et al. (2019), in terms
of both PSNR and MS-SSIM. When using PSNR as the visual quality
metric, the improvement was not very significant while, when using
MS-SSIM as the visual quality metric, the learning-based compression
methods resulted in a significantly higher MS-SSIM score than BPG.
The compression model proposed in Ladune et al. (2020) was trained on
the DIV2K and CLIC datasets and tested on the CLIC 2019 validation
and test sets, which contain 102 and 330 images of various resolutions,
respectively. The proposed method incorporated a binary probability
model for the latent variables, and it resulted in significant bitrate
savings of up to 18.3% as compared to a Gaussian probability model
for a lightweight system (in which the inside convolutional layers have
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64 kernels). Experimental results also showed that the proposed binary
probability model yields up to 9.1% in bitrate savings as compared to
the Gaussian probability model for a standard system (in which the
inside convolutional layers have 192 kernels), while achieving competitive
results with BPG.

From the results that were obtained using the aforementioned meth-
ods, it can be observed that all aforementioned autoencoder-style com-
pression methods with/without hyperprior outperform conventional
compression methods in most cases. The second observation is that
the autoencoder-style compression framework with hyperprior (Ballé
et al., 2018; Lee et al., 2018) can give a better compression perfor-
mance than an autoencoder-style compression framework with no hy-
perprior (Theis et al., 2017) in terms of both PSNR and MS-SSIM.
The hyper-encoder/decoder network will however lead to an increase in
computational complexity and encoding/decoding time. But with the
improvement in computational power in recent years, the autoencoder-
style compression framework with hyperprior is a competitive framework
and was adopted in the exploration studies of the JPEG Al standard
(Ascenso et al., 2019).

4.5.3 Autoencoder-based Codecs with Hyperprior and with
Additional Enhancement Modules

Table 4.6 provides a summary of the experimental setup and obtained
performance results using the autoencoder-based approaches with hy-
perprior and some extra modules as described in Section 2.2.1.

The EDIC model that was proposed by Liu et al. (2020b) was
trained using a set of 256 x 256 patches randomly cropped from 20,745
high-quality images from Flickr (Flickr, 2022). The Kodak dataset was
used for testing. Using the PSNR as image quality metric, EDIC gave
comparable results to the ones obtained using the methods of Minnen
et al. (2018) and Lee et al. (2018) at low bitrates, and better results
at high bitrates. Using the MS-SSIM quality metric, EDIC exhibited a
better compression performance than BPG, JPEG, JPEG2000 and the
method of Ballé et al. (2018). At low bitrates, EDIC was comparable
with the method of Minnen et al. (2018) and worse than the method of
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Lee et al. (2018) while at high bitrates, EDIC outperformed all these
codecs. The EDIC framework was also trained and tested for video
compression. The network in Cheng et al. (2020) was trained on a subset
of the ImageNet dataset and tested on the Kodak dataset and the CLIC
professional validation dataset. For the Kodak dataset, the proposed
framework optimized for MSE yields competitive results as compared to
VVC-intra (VTM 5.2) and achieves a better performance as compared to
other compression methods, including JPEG, JPEG2000, HEVC-intra,
and the learning-based compression methods from Minnen et al. (2018),
Lee et al. (2018), Ballé et al. (2018), and Li et al. (2018b), in terms of
PSNR. The framework optimized for MS-SSIM outperformed all the
aforementioned compression algorithms in terms of MS-SSIM. For the
CLIC professional validation dataset, the proposed networks (optimized
on MSE and MS-SSIM) were only compared with the conventional
compression methods and the learning-based method of Lee et al. (2018).
In terms of PSNR, the proposed model optimized for MSE outperformed
all other codecs except VVC, while in terms of MS-SSIM, the proposed
model optimized for MS-SSIM outperformed all these other codecs.

JointIQ-Net (Lee et al., 2019) was trained on a set of 51,140 256 x 256
patches extracted from the CLIC training set and was tested on the
Kodak dataset. Compared with VVC Intra (VTM 7.1), BPG, JPEG2000,
and the learning-based compression frameworks of Minnen et al. (2018),
Lee et al. (2018), and Ballé et al. (2018) JointlQ-Net gave a better
visual quality in terms of both PSNR and MS-SSIM over all different
bitrates. The compression gains expressed in terms of reduction in BD-
rate and using PSNR (MS-SSIM) were 1.65%(48.40%), 16.96%(14.83%),
26.58%(26.65%), 22.57%(57.35%), and 45.48%(73.65%) as compared
to VVC Intra (VITM 7.1), method of Lee et al. (2018), method of
Ballé et al. (2018), BPG and JPEG2000, respectively. The model of
of Liu et al. (2019) was trained using the COCO (Lin et al., 2014)
and CLIC training datasets and was tested on the Kodak dataset. The
obtained experimental results showed that the proposed framework
exhibits a better compression efficiency as compared to conventional
compression methods, like BPG, JPEG and JPEG2000, as well as some
other learning-based compression methods (Ballé et al., 2018; Mentzer
et al., 2018; Rippel and Bourdev, 2017) in terms of MS-SSIM.
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The full model (10 channel-conditioning (CC) slices + latent resid-
ual prediction (LRP) + round-based training (training with rounded
latent values)) proposed in Minnen and Singh (2020) outperformed
conventional compression methods, such as BPG, JPEG2000, WebP
and JPEG, and learning-based methods, including the work of Minnen
et al. (2018) and Lee et al. (2018), when tested on the Kodak dataset
in terms of PSNR. Experiments also showed that the RD performance
increases with more CC slices. The model proposed in Cai et al. (2019),
which was trained on the CLIC dataset and evaluated on the CLIC
validation dataset, was able to achieve fast encoding/decoding time
while still preserving a high reconstruction visual quality in terms of
MS-SSIM.

Figures 4.2 and 4.3 show the rate-distortion (RD)-curve of the
aforementioned autoencoder-based compression methods tested on the
Kodak dataset?. The rate in Figures 4.2 and 4.3 is measured using bitrate
per pixel (bpp) while the distortion is measured using PSNR and MS-
SSIM, respectively. In both figures, the conventional codecs are shown
in dashdot lines, the autoencoder-based compression (with/without
hyperprior) methods are shown in solid lines, and the learning-based
methods that were further developed by adding extra modules are
shown in dashed lines. From both figures, we can see that, overall, the
learning-based compression methods with hyperprior (Ballé et al., 2018;
Minnen et al., 2018; Lee et al., 2018; Lin et al., 2020a; Ladune et al.,
2020) outperform the conventional ones (JPEG, BPG, and JPEG2000)
and by incorporating a channel attention module and a decoder-side
enhancement network (Liu et al., 2020b), two attention modules added
in the middle and at the end of the encoder and decoder network (Cheng
et al., 2020), model parameter estimator (Lee et al., 2019), conditional
context module (Liu et al., 2019), channel conditioning and latent
residual prediction (Minnen and Singh, 2020) and sub-pixel layer (Cai
et al., 2019), the autoencoder-based compression methods can achieve
even further improved RD-curve performance.

2Data points in the figures are extracted from curves in the original papers.
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Figure 4.2: PSNR results for different autoencoder-based compression methods on
the Kodak dataset.
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Figure 4.3: MS-SSIM results for different autoencoder-based compression methods
on the Kodak dataset.

4.5.4 Autoencoder-based Video Compression Methods

Table 4.7 provides a summary of the experimental setup and obtained
performance results of the autoencoder-based video compression meth-
ods as described in Section 2.2.1.
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The DVC (Lu et al., 2019a) video compression framework is trained
on the Vimeo-90k (Xue et al., 2019) dataset and tested on the UVG
dataset (Mercat et al., 2020) and the HEVC Common Testing Sequences
(Sullivan et al., 2012) (Class B, Class C, Class D, and Class E). The
proposed DVC framework outperforms H.264 (Wiegand et al., 2003) on
both the HEVC dataset and the UVG dataset in terms of both PSNR
and MS-SSIM and achieves similar performance with H.265 (Sullivan
et al., 2012) in terms of MS-SSIM. M-LVC proposed by Lin et al. (2020b)
is also trained on the Vimeo-90 dataset and tested on the UVG and
HEVC dataset. By using multiple previous frames to generate motion
vectors, M-LVC outperforms DVC on both datasets by a large margin
in terms of PSNR. M-LCV also shows better compression performance
compared to H.265 in terms of both PSNR and MS-SSIM. The video
compression framework proposed in Lu et al. (2020) is also trained on
the Vimeo-90k dataset. Different from previous works, Lu et al. (2020)
test their proposed methods on 4 different datasets: HEVC (Calss B,
C, and D), VTL, UVG, and MCL-JVC. This framework can achieve
a better compression performance as compared to H.264, H.265, and
DVC on all datasets in terms of both PSNR and MS-SSIM. The authors
also compared their work to two state-of-the-art frame interpolation
methods (Wu et al., 2018; Djelouah et al., 2019). Experiments show
that the proposed methods can achieve competitive, and sometimes
even better, results than existing methods.

FVC (Hu et al., 2021) is trained on the Vimeo-90k (Xue et al.,
2019) and tested on the HEVC (Calss B, C, D and E), VTL, UVG, and
MCL-JVC datasets. Compared to H.265 (Sullivan et al., 2012), FVC
can result in up to 18% reduction in bitrate on average over all test
datasets. Experiments also show that FVC outperforms DVC (Lu et al.,
2019a), and the methods of Lu et al. (2020), Djelouah et al. (2019),
and Agustsson et al. (2020). DeepPVCnet (Park and Kim, 2021) is
trained on the YouTube UGC dataset (UGC, 2022) and tested on the
HEVC Common Testing Sequences (Sullivan et al., 2012) (Class B, C,
D and E) and UVG dataset (Mercat et al., 2020). Results show that
the proposed DeepPVCnet outperforms all the anchor methods over
most of the bitrate range in terms of MS-SSIM. Park and Kim (2021)
also give BD-rate values with the anchor of H.264 for each sequence in
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HEVC Common Testing Sequences. DeepPVCnet can achieve better
compression performance over H.264 and H.265 over most of the test
sequences.

4.6 Generative Compression Methods

Table 4.8 provides a summary of the experimental setup and perfor-
mance results that are obtained when using the generative compression
frameworks as described in Section 2.2.2.

The generative compression framework of Rippel and Bourdev (2017)
was trained on 128 x 128 patches sampled randomly from the Yahoo
Flickr Creative Common 1000 Million dataset (Thomee et al., 2016)
and was tested on the Kodak as well as the RAISE-1k dataset. For
both testing sets, the proposed algorithm is performed in the RGB
as well as the YCbCr color space. The trained model’s performance
was compared with conventional compression methods, such as JPEG,
JPEG2000, WebP, as well as more recent learning-based compression
methods (such as Toderici et al., 2017; Theis et al., 2017; Ballé et al.,
2016a; Johnston et al., 2018, in terms of 1) bitrate (bpp), 2) MS-SSIM
and 3) computation time for encoding and decoding. The results show
that for both datasets, in both color spaces, the proposed algorithm
achieves the highest MS-SSIM over all bitrates. The GC models, for
compression of diverse natural images of Agustsson et al. (2019), were
trained using 188,000 images from the Open Images dataset (Krasin
et al., 2017) and evaluated on the Kodak dataset as well as 20 randomly
selected images from the RAISE1K dataset. The GC models produce
images with much finer details than BPG while BPG uses 95% and
124% more bits than the proposed models for Kodak and RAISE1K,
respectively.

In Kudo et al. (2019), the proposed network aims to maximize
mutual information between the coding features and the reconstructed
images while still preserving a good perceived naturalness. The dataset
used is the human face data set CelebA (Liu et al., 2015). The dataset
is divided into 200,000 training data elements and 25 test data elements.
Results show that compared with BPG and the method of Agustsson
et al. (2019), the proposed network gives a better performance in terms
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of subjective evaluation scores for naturalness and similarity to the
original uncompressed images. “Naturalness” represents the naturalness
of the image when viewed independently and “similarity” represents
the similarity when compared with the original reference images. Both
evaluation scores were averaged over 10 image experts.

The NCode model proposed in (Santurkar et al., 2018) uses the
CelebA (Liu et al., 2015), UT Zappos50K (Yu and Grauman, 2014)
and MIT Places (outdoor scenes) (Zhou et al., 2014) datasets for com-
pression benchmarks. Results show that the NCode model yields higher
reconstruction quality, in terms of SSIM and subjective visual qual-
ity assessment, as compared to JPEG, JPEG2000, and the thumbnail
compression approach of Toderici et al. (2015).

For end-to-end learning-based compression approaches, including
autoencoder-based and generative compression, the advantage is that
most of these methods outperform the conventional compression algo-
rithms. Furthermore, by training on specific datasets, the framework can
be further optimized for specific image types and visual applications.

But there are still some drawbacks for these methods. Due to the
complexity of deep neural networks, the encoding/decoding procedures
can be very time consuming. Most of these methods require a GPU.
Compared with conventional compression methods, the hardware re-
quirement is one main reason that is preventing such methods to be
deployed for real-time image compression on power-constrained mobile
devices. Another disadvantage is that separate compression models need
to be trained and saved for different compression bitrates, which will
further enlarge the memory requirements of learning-based compression
methods.



5

Recent Learning-Based Visual Compression
Standardization Efforts

As discussed in Sections 2 and 4, learning-based visual compression meth-
ods have been shown to achieve competitive, or even better, compression
efficiency, in terms of both objective quality metrics and subjective vi-
sual quality assessment as compared to the conventional compression
methods. Given the fact that most learning-based visual compression
methods suffer from relatively high computational power and long encod-
ing/decoding time, adopting learning-based methods as part of image
compression standardization activities is still an ongoing and challenging
work. So far, the presented learning-based compression methods mainly
aim at maximizing the visual image quality as perceived by a human
for a range of bitrates. With the significant increase of applications
incorporating automated visual tasks such as image classification and
segmentation, many images are captured, stored and/or transmitted
not only to be viewed by a human but also to be used for image process-
ing and machine vision tasks. To this end, compression methods and
standards are currently being developed targeting effective performance
for both human visualization and for automated image processing and
computer vision tasks. As such there is a growing interest in developing
compression algorithms that can achieve high compression efficiency
while benefiting visual tasks.

89
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5.1 Task-Driven Compression Algorithms

In many cases images are captured for certain visual tasks, e.g., im-
ages captured by autonomous-driving cars for segmentation and object
detection. This led researchers to explore learning-based compression
methods that not only can improve the compression efficiency but can
also improve the performance of the visual task. Such task-driven com-
pression algorithms aim to improve the compression performance by
making the compression algorithm target certain visual tasks. He et al.
(2019) proposed a learning-based Semantically Structured Coding (SSC)
framework to generate a Semantically Structured Bit-stream (SSB).
The generated Semantically Structured Bit-stream (SSB) has each of
its parts corresponding to a certain object and can thus be directly used
for detection. In Krishnaraj et al. (2020), the authors are concerned
with real-time compression in the context of Internet of Underwater
Things (IoUT). They proposed a DWT-CNN architecture comprised
of two CNNs, C-CNN and R-CNN. The C-CNN compacts the original
image of IoUT objects into a compact representation while the R-CNN
reconstructs the decoded compact image into the original size. The
compact representation is transformed, compressed, and decoded with
a DWT-based image codec.

Li and Ji (2020) proposed a novel end-to-end Neural Image Compres-
sion and Explanation (NICE) framework that can produce a classifier
prediction, a sparse mask of the input image which indicates the salient
regions for the classifier, and a mixed-resolution image which can be
compressed efficiently. The purpose of this model is to compress the
input image to minimal size while preserving the classification accuracy.
To achieve this goal, the authors proposed to use a mask generator on
the input image to generate a sparse mask that indicates the salient
regions in the image. Then the input image is transformed into a
mixed-resolution image in which the salient regions are represented at
a relatively high resolution as compared to the non-salient background
region which is represented at a lower resolution. Compression of the
mixed-resolution image can achieve a higher compression rate as com-
pared to compressing the original input image while retaining similar
classification accuracy.
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5.2 JPEG-AI

From the task-driven compression algorithms introduced in Section 5.1,
it can be seen that most of these algorithms have a framework in which
the visual tasks are performed on the fully/partially decoded images.
Almost all the learning-based compression methods are implemented
through DNNs or CNNs, and to achieve better compression performance,
deeper and more complicated networks are being used in such compres-
sion methods. One problem with such compression methods is that they
may require high computing power as well as long encoding/decoding
time. As mentioned before, one reason for task-driven compression
research is that many images are captured for visual task purposes.
Based on the ability of neural networks to keep important information
of the original image in the generated feature map, researchers proposed
the idea of performing visual tasks directly on the quantized feature
map. Through this approach, the transmitted bitstream need only to
be entropy decoded without having to fully decode the image, which
can result in significant computational savings.

The JPEG-AI group, as part of Working Group 1 (WG1/JPEG)
of ISO/IEC JTC 1/SC29 (Coding of audio, picture, multimedia and
hypermedia information standardization committee), is working to
create a new learning-based image coding standard which not only
can achieve a significant compression efficiency improvement while
optimizing the perceived visual quality for humans, but also offers a
single-stream compact compressed-domain representation which can
be used directly for visual tasks. The JPEG Al project is a joint
standardization effort between ISO/IEC JTC1/SC29/WG1 and ITU-T
SG16. Different from conventional compression methods where a full
decoding process is needed, this new standardization effort calls for
a learning-based compression method that can provide a compressed-
domain representation (also called latent representation) which can
be directly used for image processing and visual tasks. The latent
representation can take the form of quantized feature maps that are
produced by a deep neural network.

Figure 5.1 illustrates the framework for the JPEG Al framework
(Ascenso and Upenik, 2021; WG1, 2022). As shown in Figure 5.1, the



92 Recent Learning-Based Visual Compression Standardization Efforts

Dz:cild}; 4 Image Processing
Visual Tasks
Image

Image Processing
and Computer
Vision Tasks

Bitstream

:

Figure 5.1: JPEG Al learning-based image compression framework.

input image is transformed and quantized to generate a latent repre-
sentation, also known as compressed-domain representation, which will
later be entropy encoded and transmitted from the encoder side to the
decoder side. At the decoder side, the bitstream will be entropy decoded
and used to reconstruct the output image using an inverse transform.
Instead of performing a pixel-domain visual task on the reconstructed
images, visual tasks can be performed directly on the entropy-decoded
latent representation since the latent representation contains the nec-
essary information not only for standard reconstruction, but also for
different image processing algorithms, such as super-resolution, denois-
ing, color correction, and inpainting, and for different computer vision
tasks, such as image classification, object detection, segmentation, and
action recognition.

5.3 JPEG Pleno Point Cloud

A point cloud is a set of data points in a space. Different from images
or video frames which are spatial 2D data, point cloud data is always
used to represent a 3D shape or 3D object. Each point has one set
of Cartesian coordinates to show its spatial position while it can still
has values to represent its property like RGB color intensity, gray-scale
intensity, etc. Due to the special structure and large amount of data,
the compression for point cloud data is a research area different from
conventional image/video compression. Researchers have been working
on seeking efficient compression standards for point cloud.
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Most point cloud data are gathered through 3D scanning equipments
like radar (2D/3D), stereo camera, and time-of-light camera while they
are widely used in multiple ways such as autonomous driving, virtual
reality, augmented reality, 3D printing, manufacturing, etc. Similar to
the JPEG-AI group, the JPEG Pleno Point Cloud group aims to create
a learning-based coding standard for point clouds which can offer a
single-stream, compact compressed-domain representation and support
flexible data access functionalities (Perry, 2021). The expected new
learning-based compression method should be able to satisfy not only
the need for human visualization and interaction, but also the need for
machines to perform both 3D processing and computer vision tasks in
the compressed-domain.

One main goal of 3D point cloud compression methods is to reduce
the redundancy while preserving necessary information (Cao et al.,
2019). Based on the dimension among which the redundancy is reduced,
Cao et al. (2019) classified the methods into 3 categories: 1D traversal,
2D projection, and 3D decorrelation. 1D traversal compression methods
employ a construction of tree-based connectivity to exploit the neigh-
borhood relations between data points, thus converting the geometry
data into a 1D signal (Gumbhold et al., 2005; Merry et al., 2006). One
main drawback of 1D traversal compression methods is that it does
not sufficiently take into consideration the 3D spatial correlation. 2D
projection methods are seeking projection/mapping algorithms to con-
vert 3D cloud point data into a 2D image/video and then compress the
resulting 2D image/video using existing 2D image/video compression
methods (Ochotta and Saupe, 2004; Pauly and Gross, 2001). 3D decor-
relation methods are the most exploited methods and usually achieve
better compression performance than the previous two. Frameworks of
3D decorrelation methods use tree-based representations (Huang et al.,
2006; Garcia and Queiroz, 2018; Kathariya et al., 2018), including octree,
binary tree and kd-tree, LOD (Level Of Detail) - based methods (Fan
et al., 2013; Kitago and Gopi, 2006), clustering-based methods (Zhang
et al., 2018), and transform-based methods, including Region-Adaptive
Hierarchical Transforms (De Queiroz and Chou, 2016), Graph Fourier
Transforms (Thanou et al., 2016), and Gaussian Process Transforms

(De Queiroz and Chou, 2017).



94 Recent Learning-Based Visual Compression Standardization Efforts
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Figure 5.2: Illustration for video coding for machine scope.

5.4 Video Coding for Machine (VCM)

The Moving Picture Experts Group (MPEG) is also working on de-
veloping learning-based video coding for machine through leveraging
learning-based methods. Different from traditional video coding meth-
ods which are optimized for visual quality from a human perspective,
video coding for machine focuses on optimization for multiple machine
vision tasks such as object detection, object segmentation and object
tracking.

The targeted Video Coding for Machine compression methods aim
to generate a bitstream through compressing either extracted features
or a video stream (MPEG, 2020).

MPEG launched a standardization effort to standardize a video
coding scheme which can generate a compressed bitstream with suffi-
ciently smaller size than the state-of-art video compression methods
(e.g., HEVC and VVC) such that the decompressed bitstream can result
in decoded data optimized for machine vision tasks (e.g., classification,
segmentation, object detection and tracking). Since machines “see” the
data in a different way than a human, in order to support the generation
of video data for human consumption, an additional bitstream can be
sent as part of the MPEG VCM framework (Figure 5.2). As shown
in Figure 5.2, two bitstreams are generated by the VCM encoder, a
basic bitstream and an additional bitstream. The basic bitstream is
transmitted to the decoder to generate decoded data for machine vision.
The additional bitstream will only be transmitted when a video for
human is needed at the decoder end.
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Duan et al. (2020) presented a review of state-of-the-art video
compression and feature compression methods and proposed a VCM
architecture that shows the advantage of collaborative compression
in enhancing the performance in terms of video and feature coding
efficiency and improved performance of both human and machine visual
tasks. In Duan et al. (2020), three potential VCM architectures are
tested: Deep Intermediate Feature Compression, Predictive Coding with
Collaborative Feedback, and Enhancing Predictive Coding with Scalable
Feedback. Based on the work of Chen et al. (2019), the Deep Intermediate
Feature Compression approach takes the intermediate layer features
from a deep framework, compressed and transmitted for human/machine
visual tasks. Adopting the pipeline for joint feature/video compression
approach of Xia et al. (2020) and Hu et al. (2020), the Predictive Coding
With Collaborative Feedback approach first compresses the selected key
frames with conventional compression methods, and then transmits
these as side information to the decoder for the decompression and
reconstruction of other non-key frames.

To help with the reconstruction of non-key frames, a sparse point
prediction network is employed to extract the key frames, which will be
later compressed through a feature compression methods and transmit-
ted to the decoder to help with non-key frame reconstruction and video
analysis. Based on the previous framework, the Enhancing Predictive
Coding with Scalable Feedback approach uses an enhanced architecture
by adding a scalable feedback, which allows the network to adaptively
launch the feedback to help further improve the compression perfor-
mance. Fischer et al. (2020) proposed the feature-based rate-distortion
optimization (FRDO) which aims to improve the coding performance
while the decoded frame is used for DNN-based visual tasks. To ac-
complish this, the authors replace the pixel-domain distortion metric
in VITM-8.0 with a distortion metric calculated from the feature map
that is generated by the first layer (i.e., the first convolution, ReLU,
and pooling layers) of an employed trained classification or detection
network. Based on the block partitioning in VVC, the proposed network
also takes Coding Units (CUs) as input instead of the whole frame.
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Conclusion and Future Directions

Learning-based visual compression is a growing area of research and has
been the focus of recent ISO/IEC and ITU-T standardization activities.
Recent learning based compression frameworks have demonstrated a
higher compression efficiency in terms of their ability to achieve a lower
bitrate and/or a higher visual quality of the decompressed visual media
as compared to popular conventional compression methods. This work
summarizes developments in this area over the past decade and presents
a comprehensive review of noteworthy learning-based compression mod-
els. These models span a range of models from the earliest attempts in
trying to embed learning-based modules into conventional compression
methods to more recent end-to-end learning-based approaches. This
work also presents common datasets that are used for training and
testing the learning-based compression models as well as measures for
compression performance assessment. Recent standardization efforts
with a focus on learning-based image and video coding are described
along with the adoption of learning-based approaches to enable more
effective task-driven compression schemes.

Future directions for enabling the adoption of learning-based codecs
for real-time image and video compression and transmission applications

96



97

include devising low-complexity and low-delay learning-based methods
coupled with the capability for online incremental learning and fast
adaptation.
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