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Physical Layer Techniques

4.1 Introduction

Communication is the transmission of information from a source to one or more
destinations. To enable this, communications protocols or communications models
are required. The most widely used communications protocol is the transmission
control protocol/internet protocol (TCP/IP) model, which has four layers stacked from
the bottom to the top as the network interface layer, the internet layer, the transport
layer, and the application layer. Another frequently used model is the open systems
interconnection (OSI) model, which has seven layers stacked from the bottom to the
top as the physical layer, the link layer, the network layer, the transport layer, the session
layer, the presentation layer, and the application layer. These two models have certain
equivalence in terms of functions. In wireless communications, it is often the physical
layer and the link layer in the OSI model, equivalent to the network interface layer in
the TCP/IP model, that are of interest. The physical layer performs the transmission
and reception of the physical bits, while the link layer provides control functions
to enable the efficient operations of transmission and reception. Figure 4.1 shows
diagrams of these models. One sees that the physical layer lies at the bottom of the
whole system. Any issue in this layer will affect the whole system. Thus, this layer is the
most important layer in any communications systems. It will be studied first.

The main purpose of the physical layer is to provide reliable and efficient trans-
mission and reception of the information. Many communications techniques, such
as modulation, channel encoding, multiple-input-multiple-output (MIMO) and
orthogonal-frequency-division-multiplexing (OFDM), are designed to achieve this
purpose. At the core of all these techniques, no matter how the signals are modulated
or encoded and no matter which antennas or subcarriers the transmitter uses, the
received signals must be detected to recover the transmitted information. Therefore,
signal detection is the most important task of the physical layer.

There are many different types of signal detectors, such as coherent detectors,
non-coherent detectors, energy detectors, and differential detectors (Kay 1998). They
have different performances and can be used for different applications. In applications
where performance is of utmost importance, coherent detectors can be used. In these
detectors, in order to achieve the best performance, the system state information, such
as the channel parameters and the transmitter parameters, is often useful to facilitate
the signal detection. Such information can be provided by performing signal estimation
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Figure 4.1 Diagrams of (a) OSI and
(b) TCP/IP models.

or parameter estimation. Thus, signal estimation is another important part of the
physical layer (Kay 1993).

In addition to signal detection and signal estimation, which are mainly conducted at
the receiver or the destination, in some cases, the transmitter or the source can also
perform pre-distortion or pre-coding for best performance. For example, in conven-
tional communications systems with information only, the transmitter can perform
beamforming to achieve diversity gain or Nyquist pulse shaping to avoid inter-symbol
interference. Similarly, in energy harvesting communications systems with both
information and power, the transmitter can also adopt waveform designs to make the
power transfer most efficient.

Next, we will first evaluate the effect of energy harvesting on communications, and
then we will study signal detection, channel estimation and waveform design for energy
harvesting communications systems. After that, we will have a brief discussion on other
important issues and techniques in the physical layer of the energy harvesting commu-
nications systems.

4.2 Effect of Energy Harvesting

The main effect of energy harvesting on wireless communications is the dynamic power
supply. In this book, the radio frequency (RF) energy harvester will be used as an
example to examine this effect. Unlike other energy sources, such as solar/light and
mechanical energies, the RF signal can be used for both power transfer and information
delivery. It is also relatively easier to control. Thus, it provides a good example of
how the energy harvesting capability can be integrated with existing communications
techniques to implement energy harvesting communications. To do this, first, we will
derive the distribution of the random transmission power in some special cases. The
randomness comes from the random channel between the power transmitter and
the RF energy harvester in this case. Then, using this random power supply, we will
discuss a tradeoff between the transmission delay and the transmission probability,
when the harvested energy is accumulated for fixed-power transmission. After that, we
will use the random power supply to derive the bit error rate (BER) and the achievable
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rate of the wireless system, where BER measures the reliability of the system while the
achievable rate measures the capacity of the system, when the harvested energy is used
immediately after being harvested for variable-power transmission. Finally, we will
discuss some general information theoretic limits for all energy sources, including the
RF power.

4.2.1 Distribution of Transmission Power

Chapter 3 considered the general case when different harvesters are adopted to harvest
energy from signals over different antennas, frequency bands or time slots with indepen-
dent but non-identically distributed channels. This generality has led to the complicated
expressions for the probability density function of the harvested power. In this sub-
section, we will only consider the special case when the same harvester is employed
to harvest energy over different time slots or when the channels are independent and
identically distributed.

More specifically, consider an energy harvesting wireless system. In this system, the
base station or the access point are power sources that transfer a certain amount of
wireless power to the remote user devices for charging first. The remote devices then
use only the harvested energy to transmit their data back to the base station. This could
be a wireless sensor network where the access point collects data from sensors in the
field or could be a cellular network where mobile users receive power supply from a
power beacon. All devices are assumed half-duplex with a single antenna. Each power
transfer or data transmission is performed in a time slot of T seconds. In order to harvest
enough energy for transmission, the remote device has to harvest energy from K time
slots with a total of KT seconds.

Using the above assumptions, one can divide the whole communication process into
two stages. In the first stage, the RF power source (base station or access point) transfers
RF power to the remote device as

yk = hk
√

Pssk + nk (4.1)

where k = 1, 2, · · · ,K denote the K time slots over which the remote device harvests
energy, hk is the fading coefficient from the power source to the remote device and is
a complex Gaussian random variable with mean s and variance 2𝛼2, Ps is the transmis-
sion power for power transfer (different from the transmission power for information
delivery discussed later), sk is the energy signal with sk = 1 for simplicity, and nk is the
complex additive white Gaussian noise (AWGN) with mean zero and variance 2𝜎2. In
this case, s = 0 gives the Rayleigh fading channels, and s ≠ 0 gives the general Rician
fading channels. It is easy to derive that the mean of yk in (4.1) is

𝜇 = s
√

Ps (4.2)

as sk = 1 and the variance of yk in (4.1) is

2𝛽2 = 2𝛼2Ps + 2𝜎2. (4.3)

Using (4.1), the total amount of energy harvested over K time slots can be derived as

E = 𝜂

K∑
k=1
|yk|2T = 𝜂T

K∑
k=1
|hk
√

Ps + nk|2 (4.4)
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where 𝜂 is the conversion efficiency of the energy harvester and is the same for all K
signals, as the same harvester is used for K times.

In the second stage, the harvested energy in (4.4) is used by the remote device to trans-
mit its data back to the access point. One has the received signal at the access point as

r = g
√

Pxx + n (4.5)

where g is the fading coefficient in this channel, Px is the transmission power for infor-
mation delivery and it may be different from Ps for power transfer, x is the transmitted
symbol, and n is the complex AWGN with mean zero and variance 2𝜎2

d . Assume that g
is complex Gaussian distributed with mean sd and variance 2𝛼2

d. Using (4.4), the signal
transmission power satisfies Px ≤ P, where P is the harvested power given by

P = E
T

= 𝜂𝛽2W (4.6)

with

W =
K∑

k=1

||||||
hk
√

Ps + nk

𝛽

||||||

2

. (4.7)

If the remote device has a limited battery capacity, such as a supercapacitor, the energy
needs to be used as soon as it is harvested. In this energy usage protocol, Px = P. Since W
is a random variable, both P and Px will randomly change, leading to a variable-power
transmission. If the remote device has a large battery capacity, such as a rechargeable
battery, the harvested energy can be stored and accumulated until it is needed. In this
case, Px can be a fixed value, leading to a fixed-power transmission. In this case, for con-
ventional communications, the system performance is only affected by the random fad-
ing g, while for energy harvesting communications, the system performance is affected
by both the random fading g and the random power P caused by the random fading
during power transfer.

In the general Rician fading channels, W is a sum of the squares of 2K (both real
and imaginary parts of yk) independent Gaussian random variables with non-zero mean
and unit variance. Thus, it can be derived as a non-central chi-square random variable
with 2K degrees of freedoms and non-centrality parameter 𝜆 = KPs

|s|2
𝛽2 (Proakis 2001).

Using this fact and the relationship of P = 𝜂𝛽2W , one has the probability density func-
tion (PDF) and the cumulative distribution function (CDF) of P as

fP(y) =
e−

y
2𝜂𝛽2 −

KPs |s|2
2𝜎2

2𝜂𝛽2(𝜂KPs|s|2) K−1
2

y
K−1

2 IK−1

⎛⎜⎜⎝

√
KPs|s|2y
𝜂𝛽4

⎞⎟⎟⎠
(4.8)

and

FP(y) = 1 − QK

⎛⎜⎜⎝

√
KPs|s|2
𝛽2 ,

√
y
𝜂𝛽2

⎞⎟⎟⎠
(4.9)

respectively, where IK−1(⋅) is the (K − 1)th order modified Bessel function of the first
kind Gradshteyn and Ryzhik (2000, eq. (8.406.1)) and QK (⋅, ⋅) is the Kth order Marcum
Q function Proakis (2001, eq. (2.1–122)).
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In the special case of Rayleigh fading channels, s = 0. Then, it can be derived that W
is a central chi-square random variable with 2K degrees of freedom, equivalent to a
Gamma random variable with shape parameter K and scale parameter 2. Again, since
P = 𝜂𝛽2W , the PDF and CDF of P are derived, respectively, as

fP(y) =
yK−1

(2𝜂𝛽2)KΓ(K)
e−

y
2𝜂𝛽2 (4.10)

and

FP(y) =
𝛾(K , y

2𝜂𝛽2 )

Γ(K)
(4.11)

where Γ(⋅) is the Gamma function Gradshteyn and Ryzhik (2000, eq. (8.310.1)) and 𝛾(⋅, ⋅)
is the incomplete Gamma function Gradshteyn and Ryzhik (2000, eq. (8.350.1)). These
distributions will be used in the following subsections to examine the effect of energy
harvesting on wireless performances. In contrast, for a conventional wireless commu-
nications system, P and Px are fixed.

4.2.2 Transmission Delay and Probability

Consider the fixed-power transmission using a rechargeable battery first. In this case,
the remote device harvests energy from K time slots until the harvested power P is
larger than or equal to the required fixed transmission power Px. Then, the remote device
uses the harvested energy to transmit its data to the base station in the next time slot
for T seconds. There is a tradeoff here. If the remote device harvests the energy for a
longer time, there will be a higher probability that it has enough energy for information
transmission or a larger transmission probability. On the other hand, a longer harvest-
ing time will cause a larger transmission delay and thus reduces the system throughput,
as this time could have been used for information transmission. An optimum value of
K exists, and will be studied next.

To study this tradeoff, define the transmission probability as

PT = Pr{P ≥ Px} = Pr{Λ ≥ Λx} (4.12)

where Λ = P
2𝜎2

d
and Λx =

Px

2𝜎2
d
. The first equation in (4.12) makes sure that the harvested

power is larger than or equal to the required power in order to transmit the information.
Such a fixed value of Px can be required to guarantee certain quality of service (QoS).
The second equation translates the power limitation into the signal-to-noise ratio (SNR)
limitation, where the transmission SNR must be larger than or equal to the required
SNR. Since the noise power 2𝜎2

d is a constant, these two limitations are equivalent.
On the other hand, the transmission delay is KT seconds, caused by energy harvesting.

Since the actual time for information transmission is T seconds, the effective through-
put is 1

K+1
. This effective throughput is only possible when the remote device actually

performs transmission. Thus, the average throughput can be defined as

C = 1
K + 1

PT . (4.13)

This value will be our performance measure used to consider the tradeoff between the
transmission delay and the transmission probability. Its calculation boils down to the
calculation of PT , which requires the CDF of P.
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Using (4.9), the average throughput in Rician fading channels can be calculated as

C = 1
K + 1

QK

⎛⎜⎜⎝

√
KPs|s|2
𝛽2 ,

√
2𝜎2

dΛx

𝜂𝛽2

⎞⎟⎟⎠
(4.14)

and using (4.11), the average throughput in Rayleigh fading channels becomes

C = 1
K + 1

⎡⎢⎢⎢⎣
1 −

𝛾

(
K , 2𝜎2

dΛx

2𝜂𝛽2

)

Γ(K)

⎤⎥⎥⎥⎦
. (4.15)

One notes that (4.15) can also be obtained from (4.14) by setting s = 0 and using the
relationship between the Marcum Q function and the Gamma function. One can see
from these equations that C decreases when K + 1 increases but increases when K in
the Gamma function or the Marcum Q function increases. Thus, an optimum K may
exist. Note again that this is the case when the remote device can use a large rechargeable
battery for storage so that fixed-power transmission is possible to guarantee the QoS.
This is not possible for supercapacitors that have very limited storage.

Next, some numerical examples will be given to show the effect of energy harvesting
on this tradeoff. In these examples, we examine the values of Λx from 0 to 20 dB with a
step size of 2 dB and the values of K from 1 to 20 with a step size of 1 for the average
throughput C. We set 𝜂 = 0.5, which corresponds to a 50% efficiency for the RF energy
harvester. We also define 𝜔 = ΩPs

2𝜎2 as the average SNR in the power transfer channel,
where Ω = |s|2 + 2𝛼2. This value indicates the quality of the random channel from the
power source to the remote device. Figures 4.2–4.4 show the relationship between C
and K under different conditions. For Rayleigh fading channels, s = 0.

From Figure 4.2, first, one can see that, for Λx = 2 dB, C monotonically decreases
with K , while for other values of Λx, C first increases then decreases with K . This

0 2 4 6 8 10 12 14 16 18 20

K

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C

Λx= 2 dB
Λx= 6 dB

Λx= 10 dB
Λx= 14 dB

Λx= 18 dB

Figure 4.2 C versus K in Rayleigh fading channels when 𝜔 = 10 dB.
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Figure 4.3 C versus K in Rayleigh fading channels when 𝜔 = 20 dB.
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Figure 4.4 C versus K in Rician fading channels when 𝜔 = 10 dB and |s|2
2𝛼2

= 1.

implies that the optimum value of K exists, as expected. Based on this observation, in
order to achieve a balance between transmission probability and transmission delay,
for Λx = 2 dB, one should choose K = 1, for Λx = 6 dB, one should choose K = 2,
and so on. Thus, these curves give very useful guidance on how the harvesting time
should be chosen. Secondly, the optimum value of C in general decreases with Λx,
implying that, if one requires a higher transmission power or data rate for information
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transmission, it will lead to an overall larger delay or smaller throughput. Thirdly, when
K is large, the values of C for different values of Λx tend to overlap with each other. This
can be explained using the results for Rayleigh fading channels. Using an equation in

Gradshteyn and Ryzhik (2000, eq. (8.352.1)), C = 1
K+1

e−
2𝜎2

dΛx
2𝜂𝛽2
∑K−1

m=0
(

2𝜎2
dΛx

2𝜂𝛽2 )m

m!
in (4.15).

When K → ∞,
∑K−1

m=0
(

2𝜎2
dΛx

2𝜂𝛽2 )m

m!
→ e

2𝜎2
dΛx

2𝜂𝛽2 according to the Taylor series expansion of
exponential functions. Thus, C → 1

K+1
, independent of Λx.

Also, comparing Figure 4.3 with Figure 4.2, one can see that, when𝜔 increases because
of either an increase in 2𝛼2 and Ps or a decrease in 2𝜎2, C increases in general. In this case,
the optimum value of K decreases, as expected, as less time slots will be required if less
power is lost in a better channel from the power source to the remote device. Finally,
comparing Figure 4.4 with Figure 4.2, one can see that, when the channel condition
changes from Rayleigh to Rician or when |s|2 increases, C increases slightly.

Figures 4.5 and 4.6 show C versus Λx to examine the effect of Λx on the system per-
formance more clearly.

From Figure 4.5, one sees that C does not change withΛx and then gradually decreases
to zero, when Λx increases, in most cases considered. This suggests that Λx cannot be
chosen too large in the design. Particularly, in Figure 4.5, Λx should be smaller than 8 dB
for K = 4, 12 dB for K = 6, and so on.

Beyond these threshold values, the transmission delay will be too large to be com-
pensated by the harvested energy in the average throughput. Note that C generally
increases when K decreases due to smaller delay but there is a range determined by
Λx. For example, when Λx is less than 12 dB, K = 4 has a larger C than K = 6, but when
Λx is larger than 12 dB, C for K = 4 decreases faster so that it is disadvantageous to use
a smaller K . These threshold values change with K . Finally, comparing Figure 4.6 with

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C

K = 2
K = 4
K = 6
K = 8
K = 10

0 2 4 6 8 10 12 14 16 18 20
Λx (dB)

Figure 4.5 C versus Λx in Rayleigh fading channels when 𝜔 = 10 dB.
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Figure 4.6 C versus Λx in Rayleigh fading channels when 𝜔 = 20 dB.

Figure 4.5, the range where C remains constant increases when 𝜔 increases, implying
that there will be more choices or more flexibility when the channel conditions are better.

From the above results, for energy harvesting communications, the choices of har-
vesting time and QoS are quite important. For the best tradeoff between transmission
probability and transmission delay, the optimum number of harvesting time slots should
be used within a certain range of QoS. For conventional communications, there is no
delay caused by energy harvesting so the value of C is always 1, which is larger than that
for energy harvesting communications. Thus, the randomness in power supply causes
performance degradation.

4.2.3 Bit Error Rate

In the previous subsection, the fixed-power transmission scheme was studied. In this
subsection and the next subsection, the variable-power transmission scheme is consid-
ered. In this scheme, the remote device uses a supercapacitor with a limited capacity
such that the harvested energy is used as soon as possible. One practical motivation for
this scheme is that most batteries suffer from leakage. The longer the energy is stored, the
more leakage it will incur. Also, to have fixed-power transmission, as in the previous sub-
section, power management will be required. This may complicate the energy harvester
design and thus may not be desirable or necessary in simple low-power applications.

The error rate or the probability of error measures the reliability of a wireless system. It
will be studied in this subsection. The achievable rate measures the capacity of a wireless
channel. It will be examined in the next subsection. Using (4.5), the overall SNR of the
received data signal can be derived as

𝜖 =
|g|2
2𝜎2

d

Px = 𝛾Px (4.16)
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where 𝛾 = |g|2
2𝜎2

d
is the SNR from fading. Since the energy is used as soon as it is harvested,

one has Px = P so that

𝜖 = 𝛾P. (4.17)

As mentioned before, for conventional communications, the only randomness in the
received SNR comes from the fading coefficient g, while for energy harvesting commu-
nications, the randomness in the received SNR comes from both the fading coefficient
g and the transmission power P. Next, we use binary signaling as an example to analyze
the BER.

From (4.5), it can be shown using results in Simon and Alouini (2005) that binary
signals with coherent detection have BERs of

Pe(𝜖) = Q(
√

2u𝜖) (4.18)

where u = 1 for binary phase shift keying (BPSK), u = 1
2

for binary frequency shift key-
ing (BFSK), Q(⋅) is the Gaussian Q function Proakis (2001, eq. (2.1–97)), and 𝜖 is given
in (4.17). Also, from Simon and Alouini (2005), for binary signals with non-coherent
detection, their BERs are given by

Pe(𝜖) =
1
2

e−u𝜖 (4.19)

where u = 1 for differential phase shift keying (DPSK) and u = 1
2

for BFSK. These expres-
sions are conditional BERs, conditioned on the SNR 𝜖. Next, we need to find the distri-
bution of 𝜖 to calculate the unconditional BERs.

Consider the simpler Rayleigh fading channels first. In this case, it can be shown that
the PDF of 𝛾 is given by

f𝛾 (x) =
1
𝛾̄

e−
x
𝛾̄ (4.20)

where 𝛾̄ = 2𝛼2
d

2𝜎2
d

is the average SNR of the channel. Using (4.20) and (4.10), the PDF of 𝜖 is
calculated as

f𝜖(z) =
2z

K−1
2

(2𝜂𝛽2𝛾̄)
K+1

2 Γ(K)
KK−1

(√
2z
𝜂𝛽2𝛾̄

)
(4.21)

where KK−1(⋅) is the (K − 1)th order modified Bessel function of the second kind
Gradshteyn and Ryzhik (2000, eq. (8.407.1)). Similarly, the CDF of 𝜖 can be calculated as

F𝜖(z) = 1 − z
K
2

(2𝜂𝛽2𝛾̄)
K
2 Γ(K)

KK

(√
2z
𝜂𝛽2𝛾̄

)
. (4.22)

Using (4.19) and (4.21), the average BER for binary signaling with non-coherent detec-
tion is obtained as

P̄e =
e

1
4u𝜂𝛽2 𝛾̄

2(2u𝜂𝛽2𝛾̄)
K
2

W− K
2
,

K−1
2

(
1

2u𝜂𝛽2𝛾̄

)
(4.23)

where an equation in Gradshteyn and Ryzhik (2000, eq. (6.631.3)) has been used and
W (⋅, ⋅) is the Whittaker function Gradshteyn and Ryzhik (2000, eq. (9.220.4)). Also,
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using (4.18) and (4.22), the average BER of binary signaling with coherent detection is
derived as

P̄e =
1
2
−
√

u𝜂𝛽2𝛾̄∕2Γ(K + 0.5)

2(2u𝜂𝛽2𝛾̄)
K
2 Γ(K)

e
1

4u𝜂𝛽2 𝛾̄ W− K
2
,

K
2

(
1

2u𝜂𝛽2𝛾̄

)
. (4.24)

These expressions can be used to examine the choice of the number of time slots. Next,
we study the more complicated Rician fading channels.

In Rician fading channels, the PDF of 𝛾 can be derived as

f𝛾 (x) =
1
𝛾̄

e
− |sd |2

2𝛼2
d
− x
𝛾̄ I0

(√
2x|sd|2
𝛾̄𝛼2

d

)
. (4.25)

Then, using (4.25) and (4.8), the PDF of 𝜖 is

f𝜖(z) =
e
− KPs |s|2

2𝛽2 − |sd |2
2𝛼2

d

2𝜂𝛽2𝛾̄(𝜂KPs|s|2) K−1
2

∫

∞

0
x

K−3
2 e−

x2

2𝜂𝛽2 −
z

x𝛾̄

IK−1

⎛⎜⎜⎝

√
KPs|s|2x
𝜂𝛽4

⎞⎟⎟⎠
I0

(√
2z|sd|2
𝛾̄𝛼2

dx

)
dx. (4.26)

The CDF of 𝜖 can be derived similarly as

F𝜖(z) = 1 − e−
KPs |s|2

2𝛽2

2𝜂𝛽2(𝜂KPs|s|2) K−1
2

∫

∞

0
x

K−1
2 e−

x
2𝜂𝛽2

IK−1

⎛⎜⎜⎝

√
KPs|s|2x
𝜂𝛽4

⎞⎟⎟⎠
Q1

(|sd|
𝛼d
,

√
2z
𝛾̄x

)
dx. (4.27)

Thus, (4.26) can be used to calculate the average BER for non-coherent detection as

P̄e =
e
− KPs |s|2

2𝛽2 − |sd |2
2𝛼2

d

4𝜂𝛽2(𝜂KPs|s|2) K−1
2

∫

∞

0

x
K−1

2√
|sd|2
2𝛼2

d
(1 + 𝛾̄ux)

e−
x

2𝜂𝛽2 +
|sd |2∕(2𝛼2

d )

2(1+𝛾̄ux)

IK−1

⎛⎜⎜⎝

√
KPs|s|2x
𝜂𝛽4

⎞⎟⎟⎠
M− 1

2
,0

(|sd|2∕(2𝛼2
d)

1 + 𝛾̄ux

)
dx (4.28)

where an equation in Gradshteyn and Ryzhik (2000, eq. (6.614.3)) has been used and
M(⋅, ⋅) is another type of Whittaker function defined by Gradshteyn and Ryzhik (2000,
eq. (9.220.2)). Also, (4.27) can be used with integration by parts to give the average BER
for coherent detection as

P̄e =
e
− KPs |s|2

2𝛽2 − |sd |2
2𝛼2

d

4𝜂𝛽2(𝜂KPs|s|2) K−1
2

∫

∞

0
x

K−1
2 e−

x
2𝜂𝛽2

√
𝛾̄ux

𝛾̄ux + 1
IK−1

⎛⎜⎜⎝

√
KPs|s|2x
𝜂𝛽4

⎞⎟⎟⎠[
Φ1

(
0.5, 1, 1; 1

𝛾̄ux + 1
;
|sd|2∕(2𝛼2

d)
𝛾̄ux + 1

)
−1F1

(
0.5; 1;

|sd|2∕(2𝛼2
d)

𝛾̄ux + 1

)]
dx. (4.29)
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Figure 4.7 Average BER versus K in Rayleigh fading channels.

where an elegant result in Sofotasios et al. (2015) has been used, Φ1(⋅, ⋅, ⋅; ⋅; ⋅) and
1F1(⋅; ⋅; ⋅) are the hypergeometric functions (Sofotasios et al. 2015).

Figures 4.7 and 4.8 give the average BER. For simplicity, we only consider coherent
detection of BFSK in the Rayleigh fading channels and assume that sd = s = 0, 𝛼2

d = 𝛼2,
and 𝜎2

d = 𝜎2. Thus, 𝜔 = 𝛾̄ in this case. From Figure 4.7, one can see that the average
BER first decreases quickly with K but then is only marginally reduced when K keeps
increasing. Since a larger value of K requires a larger capacity of the supercapacitor and
also possibly causes more leakage, it is desirable to use a small value of K , less than K = 3
in most cases considered. This is also confirmed by Figure 4.8, where the average BER
also decreases with K but the performance gain at small values of K is larger than that
at large values of K . The BER performance reaches a lower limit as K keeps increasing.

Figure 4.9 compares the BER performances of coherent BFSK in conventional com-
munications and energy harvesting communications when K = 1. For the conventional
communications in the figure, the SNR is given by 𝜖 = 2K𝜂𝛽2𝛾 , where 2K𝜂𝛽2 is the aver-
age of P in energy harvesting communications so that both cases have the same average
overall SNR for a fair comparison. One can see that the BER performance is degraded
by energy harvesting, due to the random variation in power supply, as expected.

One sees from these figures that, in general, the effect of energy harvesting on the BER
diminishes quickly when the harvesting time increases. Taking this observation and the
practical limitation on the supercapacitor into account, the number of time slots for
energy harvesting should be chosen as small as possible. Note also that the above results
effectively evaluate the average BER averaged over 𝜖, which is a product of 𝛾 and P.
Similar results have also been obtained in conventional communications without energy
harvesting. For example, in dual-hop wireless relaying, the BER can be averaged over the
cascaded channel power, which is a product of the channel power in the first hop and the
channel power in the second hop (Chen et al. 2012). In back-scatter communications,
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Figure 4.8 Average BER versus 𝛾̄ in Rayleigh fading channels.
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the BER is averaged over the product of the forward link gain and the reverse link gain
(Gao et al. 2016a). These results can be adapted to the BER analysis for energy harvesting
communications.

4.2.4 Achievable Rate

For variable-power transmission, using the same SNR as in (4.17), it is easy to give the
achievable rate as

R = log2(1 + 𝛾P) = log2(1 + 𝜖). (4.30)

Again, for conventional communications, the achievable rate only needs to be averaged
over 𝛾 with P being a fixed value, while for energy harvesting communications, it needs
to be averaged over both 𝛾 and P. We only need the distribution of 𝜖, which has been
derived in the previous subsection.

Thus, for Rayleigh fading channels, using (4.21) and (4.30), the average achievable rate
is calculated as

R̄ =
∫

∞

0
log2(1 + z)f𝜖(z)dz = 2

(2𝜂𝛽2𝛾̄)
K+1

2 Γ(K)

∫

∞

0
z

K−1
2 log2(1 + z)KK−1

(
2
√

z
2𝜂𝛽2𝛾̄

)
dz. (4.31)

For Rician fading channels, using (4.26) and (4.30), similarly, the average achievable
rate is

R̄ = e
− KPs |s|2

2𝛽2 − |sd |2
2𝛼2

d

2𝜂𝛽2𝛾̄(𝜂KPs|s|2) K−1
2

∫

∞

0 ∫

∞

0
x

K−3
2 e−

x2

2𝜂𝛽2 −
z

x𝛾̄ (4.32)

IK−1

⎛⎜⎜⎝

√
KPs|s|2x
𝜂𝛽4

⎞⎟⎟⎠
I0

(√
2z|sd|2
𝛾̄𝛼2

dx

)
log2(1 + z)dxdz.

This integration could be simplified by using the series expansion of I0(⋅) but this will
not be discussed here. Next, we use (4.31) to show the effect of energy harvesting on
the achievable rate. The settings are similar to those in Figures 4.7–4.9 except that the
average achievable rate is examined.

Figures 4.10 and 4.11 show the average achievable rate of energy harvesting communi-
cations. Similar to BER, the achievable rate increases with K but the increase is marginal
when K is large. This can also be seen from Figure 4.11, where the rate increase from
K = 10 to K = 12 is much smaller than that from K = 2 to K = 4. This suggests that the
harvesting time should not be chosen too long from the capacity’s point of view either.
The effect of energy harvesting diminishes with the increase of K . Finally, comparing the
conventional and energy harvesting communications in Figure 4.12, one sees that energy
harvesting reduces the average achievable rate, which agrees with what is observed in
Figure 4.9.

Note that both the BER analysis and the rate analysis show that energy harvesting
can cause performance degradation but its effect diminishes with the harvesting time.
This conclusion is based on the assumption that the average 𝜖 is the same for both
conventional communications and energy harvesting communications, or the average
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Figure 4.10 Average achievable rate (bits/s/Hz) versus K in Rayleigh fading channels.
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Figure 4.11 Average achievable rate (bits/s/Hz) versus 𝛾̄ in Rayleigh fading channels.

harvested power is the same as the fixed transmission power in conventional communi-
cations. In this case, the variation of power supply in energy harvesting communications
is shown to degrade the system reliability or capacity. If the average harvested power is
always larger than the fixed transmission power in conventional communications, these
conclusions may not be valid.
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Figure 4.12 Comparison of average achievable rates (bits/s/Hz) for conventional and energy
harvesting communications in Rayleigh fading channels when K = 1.

4.2.5 General Information Theoretic Limits

The above results have assumed energy harvesting from the RF signals. Consequently,
the randomness of the power supply comes mainly from the random channel between
the power source and the energy harvester. This allows us to obtain an accurate per-
formance analysis in terms of BER and achievable rate. In a more general setting, the
harvested energy can be modeled as any random process, and the randomness could
come from various factors, such as the solar activity for solar power and the wind speed
for wind power. In this subsection, we will give a brief discussion on how the general
randomness of the power supply will affect the system capacity.

Consider a scalar AWGN channel with input X, output Y , and noise N that has
zero-mean and unit-variance for simplicity. The transmission power is supplied by
a battery with infinite size. The energy is harvested as a random process. In the ith
channel use, an amount of Ei units will be harvested with E{Ei} = Ē as the average
harvested power for all channel uses. Also, Ei ≥ 0 and they are independent and
identically distributed.

While energy is harvested, it is also used by the transmitter for data transmission.
Assume that, in the ith channel use, X2

i units of energy are used. This gives the energy
constraint as

k∑
i=1

X2
i ≤

k∑
i=1

Ei, k = 1, 2, · · · , n (4.33)

which states that the consumed energy must be smaller than the harvested energy in any
channel use. Thus, the first channel use is constrained as X2

1 < E1, the second channel
use is constrained as X2

1 + X2
2 < E1 + E2, and so on. One sees that this energy constraint

introduces memory into the channel inputs X by correlating them with each other. Thus,
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in energy harvesting communications, both the dynamic power supply and the random
channel introduce memory and randomness into the system, unlike conventional com-
munications where the memory and randomness mainly come from the channel.

Define the codebook as (n, 2nRn , 𝜖n), where n is the code length, Rn is the coding
rate, 2nRn is the code size, and 𝜖n is the probability of error. The messages in the set
{1, 2, · · · , 2nRn} are equally likely. Note that an error will occur when there is a decoding
error at the receiver, similar to conventional systems. However, for energy harvesting
systems, an extra type of error will occur when there is an energy shortage at the
transmitter due to the randomness of power supply. This can be considered as an error
caused by outage. Thus, 𝜖n accounts for the probability of both errors in this case. It can
be shown that the capacity of this system is upper bounded as

C ≤
1
2

log2(1 + Ē) (4.34)

where Ē is the average of energy arrival defined before. This upper bound can be achieved
via two schemes outlined below.

In the variable-power transmission scheme discussed before, or sometimes called the
“harvest-use” or “best-effort-transmit” schemes in references, the transmitter can save
for h(n) symbols (harvests energy only or transmits zero) first, and then it can transmit
the remaining n − h(n) symbols by choosing them as independent samples from a Gaus-
sian distribution with mean zero and variance Pa𝑣g . It can be proved that this scheme can
achieve the upper bound in (4.34) while satisfying the input constraints in (4.33) with
probability arbitrarily close to one, if Pa𝑣g < Ē, when n → ∞. When n is finite, 𝜖 > 0 but
the capacity is still close to the upper bound. The value of h(n) should be from a class
of functions that scale slower than n so that both h(n) → ∞ and n − h(n) → ∞ when
n → ∞, such as h(n) = log(n). In this scheme, the transmitter does not know how much
energy is harvested or available. It uses a fixed codeword.

On the other hand, in the fixed-power transmission scheme discussed before, or
sometimes called the “harvest-save-use” and “save-transmit” schemes in references,
the transmitter transmits if the energy at the beginning of the ith channel use is larger
than the fixed transmission power X2

i , and otherwise, it transmits a zero or keeps
harvesting energy. When it transmits, it transmits a random codeword as independent
samples from a Gaussian distribution with mean zero and variance Pa𝑣g . In this scheme,
the transmitter does know how much energy is available before it decides what to
transmit. This is different from the other scheme where the transmitter transmits a
fixed codeword.

In both schemes, an infinite battery is assumed and circuit power consumption is
ignored. More details on these schemes can be found in Ozel and Ulukus (2012). In
Zenaidi et al. (2017) and other similar studies, the scheduling problem considering
energy arrival has been considered. Essentially, the transmitter needs to use the
harvested energy wisely based on its arrival process to avoid any energy outage. In these
studies, the energy causality or the energy neutrality constraint is the key.

4.3 Energy Harvesting Detection

The physical layer lies at the bottom of a wireless system and therefore it is the most
important layer in the system. The main function of the physical layer is to ensure
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the reliable transmission and reception of data bits over the physical channel. Thus,
an important task of the physical layer is to detect the transmitted data bits at the
receiver for information decoding. Classical detectors for conventional communica-
tions systems are well studied. For example, for coherent detection of BPSK and BFSK
signals, a correlator structure can be used. For non-coherent detection of BPSK signals,
a differential structure can be used, and for non-coherent detection of BFSK signals, an
energy detector can be used. All these detectors stem from the statistical theories based
on different assumptions of channel knowledge and randomness. In energy harvesting
communications, as discussed before, there is extra randomness from the power supply.
Taking this extra randomness into account, new detectors are required for energy har-
vesting communications. In this section, we aim to derive new detectors by accounting
for the characteristics of energy harvesting. Similar to the previous section, we will
use RF energy harvesting as an example but the results can be easily extended to other
energy sources, as long as the distributions of their transmission power are available.

Consider a simple point-to-point communications system. The received signal can be
written as

r = g
√

Pxx + n (4.35)

where g is the channel gain, Px is the transmission power, x is the transmitted symbol,
and n is the complex AWGN with mean zero and variance 2𝜎2

d . For fixed-power
transmission, Px is a fixed value. However, in order to accumulate a fixed amount of
energy, the harvesting time becomes random, which leads to a random transmission
delay and then a random transmission time. For variable-power transmission, Px = P is
a random value. However, there is no transmission delay with fixed transmission time.
Thus, either the transmission power or the transmission time are random in energy
harvesting communications. In the following, we only consider the variable-power
transmission where Px = P. This gives

r = g
√

Px + n. (4.36)

If both g and P are known via channel estimation at the receiver, for BPSK with x = ±1,
the likelihood function can be derived as

f (r|x = ±1) = 1
2𝜋𝜎2

d

e
− |r∓

√
Pg|2

2𝜎2
d . (4.37)

Using the likelihood ratio test and assuming equal probabilities for x = +1 and x = −1,
one has

+1
f (r|x = +1)
f (r|x = −1)

≷ 1

−1

(4.38)

and the coherent detector for BPSK is derived as
+1

ℜ{r ⋅ g∗} ≷ 0
−1

(4.39)

where ℜ{⋅} takes the real part of a complex number. This detector is the same as the
coherent detector for BPSK in conventional communications (Proakis 2001). If BFSK
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is used, one has x = 0 or x =
√

2 with equal probabilities. The reason for using x =
√

2
instead of x = 1 is to ensure the same average power for both BFSK and BPSK in the
comparison. In this case, the likelihood functions can be derived as

f (r|x = 0) = 1
2𝜋𝜎2

d

e
− |r|2

2𝜎2
d (4.40)

f (r|x =
√

2) = 1
2𝜋𝜎2

d

e
− |r−

√
2Pg|2

2𝜎2
d . (4.41)

Using them in the likelihood ratio test, one has√
2

ℜ{r ⋅ g∗} ≷

√
P
2
|g|2.

0

(4.42)

The above detector is again the same as that in conventional communications without
energy harvesting.

Next, we discuss several special cases when the detectors for energy harvesting are
different. In the first special case, if g is known via channel estimation at the receiver
but the transmission power P is unknown, the likelihood function in this case can be
derived as

f (r|x = ±1) = 1
2𝜋𝜎2

d
∫

∞

0
e
− |r∓

√
yg|2

2𝜎2
d fP(y)dy.

= e
− |r|2

2𝜎2
d

2𝜋𝜎2
d
∫

∞

0
e
− |g|

2

2𝜎2
d

y± ℜ{rg∗}
𝜎2

d

√
y
fP(y)dy. (4.43)

When the channel from the power source to the energy harvester suffers from Rayleigh
fading, the PDF of P is given by (4.10). Using (4.10) in (4.43), solving the integral using an
equation in Gradshteyn and Ryzhik (2000, eq. (3.462.1)), and finally applying the solved
integral in the likelihood ratio test (4.38), one has the new coherent detector for BPSK
with unknown transmission power as

+1

D−2K

⎛⎜⎜⎜⎜⎝
−

ℜ{r ⋅ g∗}

𝜎d

√
|g|2 + 𝜎2

d∕(𝜂𝛽2)

⎞⎟⎟⎟⎟⎠

D−2K

⎛⎜⎜⎜⎜⎝

ℜ{r ⋅ g∗}

𝜎d

√
|g|2 + 𝜎2

d∕(𝜂𝛽2)

⎞⎟⎟⎟⎟⎠

≷ 1

−1

(4.44)

where D(⋅) is the parabolic cylinder function Gradshteyn and Ryzhik (2000, eq. (9.240))
by solving the integration in (4.43) and all the other symbols are defined as before.
Further, if one uses the expression of the parabolic cylinder function in Gradshteyn
and Ryzhik (2000, eq. (9.240)), it can be shown that (4.44) is equivalent to (4.39). This is
expected, as for phase modulation, the amplitude does not affect the performance and
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hence it does not matter whether P is known or unknown. One can use a similar method
to derive the new detector for Rician fading channels. The derivation is omitted here.
For BFSK, the likelihood function for x =

√
2 in a Rayleigh fading channel is derived as

f (r|x =
√

2) = 1
2𝜋𝜎2

d
∫

∞

0
e
− |r−

√
2yg|2

2𝜎2
d fP(y)dy (4.45)

= e
− |r|

2

2𝜎2
d

2𝜋𝜎2
d
∫

∞

0
e
− |g|

2

𝜎2
d

y+
√

2yℜ{rg∗}
𝜎2

d fP(y)dy

= 2e
− |r|

2

2𝜎2
d Γ(2K)e

ℜ2{rg∗}
4|g|2𝜎2

d+2𝜎4
d∕(𝜂𝛽

2 )

2𝜋𝜎2
d(2𝜂𝛽2)KΓ(K)

(
2|g|2
𝜎2

d
+ 1

𝜂𝛽2

)K D−2K

⎛⎜⎜⎜⎝
−

ℜ{rg∗}√
|g|2𝜎2

d + 𝜎
4
d∕(2𝜂𝛽2)

⎞⎟⎟⎟⎠
where we have used the equation in Gradshteyn and Ryzhik (2000, eq. (3.462.1)) again.
Then, the new coherent detector for BFSK in energy harvesting communications with
unknown transmission power can be derived as √

2

2Γ(2K)e
ℜ2{rg∗}

4|g|2𝜎2
d+2𝜎4

d∕(𝜂𝛽
2 )

(2𝜂𝛽2)KΓ(K)
(

2|g|2
𝜎2

d
+ 1

𝜂𝛽2

)K D−2K

⎛⎜⎜⎜⎝
−

ℜ{rg∗}√
|g|2𝜎2

d + 𝜎
4
d∕(2𝜂𝛽2)

⎞⎟⎟⎟⎠
≷ 1.

0

(4.46)

In another special case, if g is unknown but P is known, using the likelihood ratio test
and assuming that the channel gain is complex Gaussian with mean zero and variance
2𝛼2

d, one has the non-coherent detector for BFSK as√
2

|r|2 ≷
(𝜎2

d + 2P𝛼2
d)𝜎

2
d

P𝛼2
d

ln

[
𝜎2

d + 2P𝛼2
d

𝜎2
d

]

0

(4.47)

which is the traditional energy detector.
When both g and P are unknown, for energy harvesting communications, the new

non-coherent detector for BFSK can be derived as √
2

𝜎2
de

|r|2
2𝜎2

d

(2𝜂𝛽2)KΓ(K) ∫

∞

0

xK−1

𝜎2
d + 2𝛼2

dx
e
− x

2𝜂𝛽2 −
|r|2

2(𝜎2
d+2𝛼2

d x) dx ≷ 1.

0

(4.48)

The integration does not have a closed-form expression but simplification is possible
when the average SNR 𝛼2

d

𝜎2
d

is very large. For BPSK, the non-coherent detector requires
differential encoding at the transmitter. The derivation is similar to the above, albeit
more complicated. It is not presented here.

The above results are only applicable to binary signaling. However, one can eas-
ily extend them to M-ary signaling by calculating the likelihood function for each
transmitted symbol. Also, we have only considered RF energy harvesting, where the
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distribution of the harvested power or the power supply is derived in Section 4.2.1
as either a central chi-square distribution or a non-central chi-square distribution.
For other harvesting techniques, as long as the distribution of the harvested power is
available, similar detectors can be obtained. Next, we show the performances of the
newly derived detectors for RF energy harvesting communications using BFSK and
𝜂 = 0.5. Figure 4.13 compares the coherent detector for conventional communications
in (4.42) with that for energy harvesting communications in (4.46), where K is the
number of time slots used for harvesting. Figure 4.14 compares the non-coherent
detector for conventional communications in (4.47) with that for energy harvesting
communications in (4.48).

One sees from these two figures that the detector in conventional communications
always outperforms that in energy harvesting communications, due to the extra
variation in power supply for energy harvesting communications. This agrees with
our observations before. However, the performance difference is very small for the
non-coherent detectors. Also, the difference decreases when K increases. Statistically,
when the shape parameter K increases, the Gamma distribution of the harvested power
in Rayleigh fading channels becomes more impulsive so that less variation will occur.

The above discussion has presented some very simple results on how new detectors
can be designed for energy harvesting communications. Recall that for conventional
communications the randomness mainly comes from the communications channel,
while for energy harvesting communications the randomness comes from both
the communications channel and the power supply. Thus, in most cases, the extra
randomness from the power supply needs to be considered for efficient detection of
signals in energy harvesting communications.

Bearing this main difference in mind, one can easily obtain results for energy har-
vesting communications in other cases. For example, if imperfect channel knowledge
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Figure 4.13 Comparison of conventional and energy harvesting communications using coherent
detectors.
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Figure 4.14 Comparison of conventional and energy harvesting communications using non-coherent
detectors.

is considered due to channel estimation errors, one may introduce extra errors in
the estimation of the transmission power too for a similar discussion. Also, there will
be four cases, known channel and known transmission power, known channel and
unknown transmission power, unknown channel and known transmission power, and
unknown channel and unknown transmission power, for energy harvesting communi-
cations. Finally, detectors for the fixed-power transmission schemes can be derived too.
These schemes have a fixed transmission power but a random transmission time. Both
fixed-power transmission and variable-power transmission depend on the random
energy arrival process.

Note that, in the general case, the random channel should be independent of the
random power source. For example, if solar-powered devices are used for radio com-
munications, the randomness of the power supply comes from the solar activities, while
the randomness of the channel comes from fading and noise. However, in some cases,
the random channel and the random power source may be correlated. For example, if
both power transfer and information transmission share the same radio channel, the
fading hk in yk in (4.1) may be correlated with the fading g in r in (4.35) so that P might
be correlated with g in the detection. This is the case in wireless powered communi-
cations. Assume that the fading channel remains the same during power transfer and
information transmission such that hk = g for k = 1, 2, · · · ,K . In this case,

yk = g
√

Pssk + nk . (4.49)
Thus, conditioned on g, the PDF of the harvested power P will become a non-central
chi-square distribution with PDF

fP(y) =
e−

y
2𝜂𝜎2 −

KPs |g|2 |s|2
2𝜎2

2𝜂𝜎2(𝜂KPs|g|2|s|2) K−1
2

y
K−1

2 IK−1

⎛⎜⎜⎝

√
KPs|g|2|s|2y

𝜂𝜎4

⎞⎟⎟⎠
(4.50)
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for any fading channels. This PDF can then be used to calculate the likelihood function
when P is unknown but g is known in (4.44) and (4.46), etc. These likelihood functions
will lead to different detectors. Details of these derivations are omitted here. The method
is the same as before. Some similar studies have also been conducted in Liu et al. (2015a)
for wireless relaying systems with two hops.

In summary, two important issues in energy harvesting detection are the extra ran-
domness from the power supply and the relationship between this extra randomness
and the usual channel randomness. They lead to new and different detector designs.
Indeed, these two issues also affect the performances of other physical layer techniques,
such as channel estimation, which will be discussed in the next section.

4.4 Energy Harvesting Estimation

In this section, we discuss another important physical layer technique, channel estima-
tion. Most modern communications systems acquire channel knowledge via channel
estimation in order to provide satisfactory QoS for users. There are many different types
of channel estimators, depending on the channel conditions and system requirements.
The most reliable channel estimators are pilot-based estimators, where the transmitter
sends a number of known pilot symbols embedded as part of the header in the data
frame and the receiver uses the received signals of the known pilot symbols for channel
estimation to detect the received data symbols in the same or different frames (Chen
and Beaulieu 2007). Several important issues arise in energy harvesting estimation.

First, channel estimator designs often depend on the statistics of the received pilot
symbols. If the transmitter has used the dynamic harvested power in energy harvesting
communications to transmit the pilot symbols, in the received pilot symbols, in addi-
tion to the channel randomness, one also has the extra randomness from the power
supply. Consequently, the statistics of the received pilot symbols will change so that
channel estimators for conventional communications cannot be used. Take r in (4.46)
as an example. Assume that the received pilot symbols are given by

ri = g
√

Pxi + ni (4.51)

where xi = 1 is the pilot value and i = 1, 2, · · · , I index the pilot symbols. In the conven-
tional communications, the only randomness comes from ni. The moment-based (MB)
estimator for g can be easily derived as

ĝ = 1
I
√

P

I∑
i=1

ri. (4.52)

In energy harvesting communications,
√

P is random too so that (4.52) cannot be used
directly. Instead,

√
P should be replaced by its average E{

√
P} in (4.52) to give

ĝ = 1
IE{
√

P}

I∑
i=1

ri (4.53)

where E{⋅} denotes the expectation operation. Similarly, for maximum likelihood (ML)
estimators, minimum mean squared error (MSE) estimators and other estimation
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methods, the extra randomness from P needs to be considered for energy harvesting
communications. This process is very similar to that in the previous section for signal
detection. This will not be discussed further here.

Secondly, if the random power source and the random channel are independent but
channel estimation and energy harvesting are performed by the same remote device,
the addition of the energy harvesting capability may reduce the system resources for
other tasks. For example, in the conventional communications, for a data frame with
fixed length, one has to allocate the number of symbols between channel estimation
and data transmission. In energy harvesting communications, if the data frame still has
a fixed length, one has to allocate the number of symbols between channel estimation,
energy harvesting and data transmission now, similar to the work in Wang et al. (2014).
Also, if the random power source and the random channel are correlated, such as in
wireless powered communications, energy harvesting and channel estimation might be
correlated. In this case, the signals for energy harvesting contain the same channel gain
to be estimated and thus this information can be shared to improve estimation accuracy.

Next, we will focus on the second issue. This will be first studied in the context of a
wireless relaying system, where each communication is performed in two hops: from
source to relay; and from relay to destination. In energy harvesting channel estimation,
the transmission of the pilot symbols in the second hop is powered by energy harvested
from the first hop. Then, a one-hop system without relaying will be discussed.

4.4.1 With Relaying

Consider a wireless relaying network with one source, one relay and one destination. The
signal is transmitted from the source to the destination via the relay. There is no direct
link between the source and the destination. Assume that a total of K pilots are used for
both energy harvesting and channel estimation. Each pilot occupies a time duration of
Tp. We consider six schemes of energy harvesting channel estimation.

4.4.1.1 Scheme 1
In Scheme 1, the relay node obtains energy from the source that requires the channel
state information. The harvested energy will be used by the relay node to forward pilots
from the source node and transmit extra pilots to the destination node so that channel
estimation can be performed. In this case, energy harvesting estimation works in the
following way.

First, one has the source node that will transmit I pilots to the relay node for energy
harvesting. The received signals of these pilots are given by

y(i)r−eh =
√

Pshs + n(i)
r−eh (4.54)

where i = 1, 2, · · · , I, Ps is the transmission power of the source node, h is the channel
coefficient of the source-to-relay link and is a complex Gaussian random variable with
mean zero and variance 2𝛼2, s is the pilot value and it is assumed that s = 1 in the fol-
lowing, and nr−eh is the AWGN with mean zero and variance 2𝜎2. All the noise in this
section is assumed circularly symmetric. Using (4.54), the harvested energy is

Eh = 𝜂Ps|h|2ITp (4.55)
where 𝜂 is the conversion efficiency of the energy harvester that has been discussed in
Chapter 3 and ITp is the total time for energy harvesting. Note that Ps|h|2 is the amount
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of radiated power from the source node picked up by the harvester as its input. Due to
path loss and fading, this amount is often small.

In the second step, the source node will transmit another J1 pilots to the relay node.
These pilots will be forwarded to the destination for channel estimation using the har-
vested energy. The received signals of these pilots at the destination is

y(j1)
d−s =

√
Prgay(j1)

r−ce + n(j1)
d−s, (4.56)

where y(j1)
r−ce =

√
Psh + n(j1)

r−ce is the pilot that is forwarded by the relay, j1 = 1, 2, · · · , J1,
n(j1)

r−ce is the AWGN at the relay, Pr is the transmission power of the relay node that will
be calculated later, g is the channel coefficient of the relay-to-destination link and it is a
complex Gaussian random variable with mean zero and variance 2𝛼2, a is the amplifi-
cation factor, and n(j1)

d−s is the AWGN at the destination. Both n(j1)
r−ce and n(j1)

d−s are complex
Gaussian with mean zero and variance 2𝜎2. This chapter assumes identical noise vari-
ances for the relay and the destination. This is the case when the source, the relay and the
destination are peer nodes in the network such that they have similar receivers. Never-
theless, it is also straightforward to extend the result to the case when the relay and the
destination have different noise variances. In Scheme 1, since the relay node does not
perform channel estimation, fixed-gain relaying can be used such that one can set a as
a constant for simplicity.

Finally, the relay node also uses the harvested energy to transmit J2 pilots from its own
to the destination, and their received signals are given by

y(j2)
d−r =

√
Prg + n(j2)

d−r (4.57)

where j2 = 1, 2, · · · , J2, n(j2)
d−r is the AWGN at the destination and is again complex Gaus-

sian with mean zero and variance 2𝜎2. This signal only has the pilot value and it does
not have any forwarded signal. The relay uses the harvested energy in (4.55) to forward
J1 pilots from the source node and transmit J2 pilots of its own. Thus, the transmission
power of the relay can be written as

Pr =
Eh

JTp
= 𝜂Ps|h|2 I

J
(4.58)

where J = J1 + J2. Using y(j1)
d−s in (4.56) and y(j2)

d−r in (4.57), we can estimate the channel
coefficients g and h.

From (4.57), one has

y(j2)
d−r =

√
𝜂

I
J

Ps|h|g + n(j2)
d−r (4.59)

and from (4.56), one has

y(j1)
d−s =

√
𝜂

I
J

Ps|h|gha +
√
𝜂

I
J

Ps|h|gan(j1)
r−ce + n(j1)

d−s. (4.60)

It is well-known that the MB estimators are often simpler than other estimators. In
some cases, they also provide efficient estimation. Thus, they are considered first. The
first-order moments of (4.59) and (4.60) are

E{y(j2)
d−r} =

√
𝜂

I
J

Ps|h|g (4.61)
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E{y(j1)
d−s} =

√
𝜂

I
J

Ps|h|gha. (4.62)

One can approximate E{y(j2)
d−r} using 1

J2

∑J2
j2=1 y(j2)

d−r . Also, the value of E{y(j1)
d−s} can be

approximated as 1
J1

∑J1
j1=1 y(j1)

d−s. Solving the equations in (4.61) and (4.62) for g and h, one
has the MB estimators for g and h in Scheme 1 as

ĝ1 =
1
J2

∑J2
j2=1 y(j2)

d−r| 1
J2

∑J2
j2=1 y(j2)

d−r|
1
a

√
𝜂

I
J
| 1

J1

∑J1
j1=1 y(j1)

d−s|
(4.63)

ĥ1 = 1√
Psa

1
J1

∑J1
j1=1 y(j1)

d−s

1
J2

∑J2
j2=1 y(j2)

d−r

, (4.64)

respectively. Note that other orders of moments can also be used but the lower the order
of moment is, the better the MB estimator will be. Thus, we use the first order.

The ML estimators can be derived as in the following. Denote Gy =
√
𝜂

I
J
Ps|h|g. Using

(4.57) and the ML method, the log-likelihood function can be derived as

llf1 = −J2 ln(2𝜋𝜎2
d) −

1
2𝜎2

d

J2∑
j2=1
|y(j2)

d−r − Gy|2. (4.65)

Thus, by differentiating (4.65) with respect to Gy, setting the derivative to zero and solv-
ing the equation for Gy, the ML estimate of Gy can be derived as

Ĝy =
1
J2

J2∑
j2=1

y(j2)
d−r =

√
𝜂

I
J

Ps|ĥ|ĝ. (4.66)

Also, denote Hy =
√

Psh. Using (4.60) and the ML method, another log-likelihood func-
tion can be derived as

llf2 = −J1 ln(2𝜋(1 + |Gy|2a2)𝜎2
d)

− 1
2(1 + |Gy|2a2)𝜎2

d

J1∑
j1=1
|y(j1)

d−s − GyHya|2. (4.67)

By differentiating (4.67) with respect to Hy, setting the derivative to zero and solving the
equation for Hy, the ML estimate of Hy can be derived as

Ĥy =
1

J1Ĝya

J1∑
j1=1

y(j1)
d−s =

√
Psĥ. (4.68)

The invariance principle of ML estimation states that a function of ML estimate is the
ML estimate of that function. Using this principle, the ML estimates of g and h can be
derived by solving (4.66) and (4.68) for ĝ and ĥ, which are the same as the MB estimators
using the first-order moments. Thus, results for the MB estimators are also applicable
to the ML estimators. Since both y(j1)

d−s and y(j2)
d−r are samples received at the destination,
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in this scheme, the relay does not perform channel estimation. Only the destination
performs channel estimation. This reduces the complexity at the relay, which is desirable
to encourage idle nodes to take part in relaying. The first- and second-order moments
of the estimates can also be derived.

For Scheme 1, denote yr =
1
J2

∑J2
j2=1 y(j2)

d−r = ryr
ej𝜃yr and ys =

1
J1

∑J1
j1=1 y(j1)

d−s = rys
ej𝜃ys . One

sees that yr and ys are complex Gaussian random variables with means Syr
=
√
𝜂

I
J
Ps|h|g

and Sys
=
√
𝜂

I
J
Ps|h|gha and variances 2𝛽2

yr
= 2𝜎2

J2
and 2𝛽2

ys
= 2𝜎2

J1
(1 + 𝜂 I

J
Ps|h|2|g|2a2),

respectively. Hence, ryr
and rys

are Rician random variables.
From (4.63), one has

E{ĝ1} = a√
𝜂

I
J

E{r2
yr

ej𝜃yr }E
{ 1

rys

}
(4.69)

where

E{r2
yr

ej𝜃yr } =
3𝛽2

yr

e
|Syr |2
2𝛽2

yr 𝜋
∫

2𝜋

0
e

j𝜃yr +
|Syr |2cos2 (𝜃yr +𝜖)

4𝛽2
yr D−4

(
−
|Syr
| cos(𝜃yr

+ 𝜖)
𝛽yr

)
d𝜃yr

(4.70)

using Gradshteyn and Ryzhik (2000, eq. (3.462.1)) and Stuber (2001, eq. (A.29))

E
{

1
rys

}
=
√
𝜋e

−
|Sys |2
4𝛽2

ys

√
2𝛽2

ys

I0

(|Sys
|2

4𝛽2
ys

)
(4.71)

using Gradshteyn and Ryzhik (2000, eq. (6.618.4)) and Stuber (2001, eq. (2.45)), 𝜖 is the
negative of the phase angle of g, D−4(⋅) is the parabolic cylinder function (Gradshteyn
and Ryzhik 2000, eq. (9.240)) and I0(⋅) is the zeroth-order modified Bessel function of
the first kind (Gradshteyn and Ryzhik 2000 eq. (8.406.1)).

Also, from (4.64), one has

E{ĥ1} =
Sys√
Psa

E
{

1
ryr

e−j𝜃yr

}
(4.72)

where

E
{

e−j𝜃yr

ryr

}
= 1√

2𝜋𝛽2
yr

∫

2𝜋

0
e
−j𝜃yr −

|Syr |2sin2 (𝜃yr +𝜖)

2𝛽2
yr Q(−|Syr

| cos(𝜃yr
+ 𝜖)∕𝛽yr

)d𝜃yr
(4.73)

and Q(⋅) is the Gaussian Q function. The second-order moments can be derived in the
following.

From (4.63), one has

E{|ĝ1|2} = a2

𝜂
I
J

E{r4
yr
}E
{

1
r2

ys

}
(4.74)

where

E{r4
yr
} = 2(2𝛽2

yr
)2 + 4(2𝛽2

yr
)|Syr
|2 + |Syr

|4 (4.75)
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using moments of a Rician random variable and

E
{

1
r2

ys

}
=
∫

∞

0

1
𝛽2

ys
x

e
−

x2+|Sys |2
2𝛽2

ys I0

(x|Sys
|

𝛽2
ys

)
dx (4.76)

using Stuber (2001, eq. (2.45)). Also, from (4.64), one has

E{|ĥ1|2} = 1
Psa2 E{r2

ys
}E
{

1
r2

yr

}
(4.77)

where

E{r2
ys
} = 2𝛽2

ys
+ |Sys

|2 (4.78)

and

E
{

1
r2

yr

}
=
∫

∞

0

1
𝛽2

yr
x

e
−

x2+|Syr |2
2𝛽2

yr I0

(x|Syr
|

𝛽2
yr

)
dx. (4.79)

4.4.1.2 Scheme 2
Scheme 2 works in a similar way to Scheme 1, but Scheme 2 harvests the energy by
splitting the signal in the power domain. Details of these energy harvesting strategies can
also be found in Chapter 6. First, the source transmits K1 pilots to the relay. The received
signal at the relay is divided into two parts. One part is used for channel estimation as
z(k1)

r−ce =
√
(1 − 𝜌)Psh + n(k1)

r−ce, which is forwarded to the destination to give

z(k1)
d−s =

√
Prgaz(k1)

r−ce + n(k1)
d−s (4.80)

where k1 = 1, 2, · · · ,K1 index the pilots from the source, 𝜌 is the important power
splitting factor, n(k1)

r−ce and n(k1)
d−s are the AWGN with means zero and variances 2𝜎2

r
and 2𝜎2

d , respectively. Another part of the received signal at the relay is harvested as
Eh = 𝜂𝜌Ps|h|2K1Tp.

Secondly, the relay also transmits K2 own pilots to the destination such that the
received signal at the destination is

z(k2)
d−r =

√
Prg + n(k2)

d−r (4.81)

where k2 = 1, 2, · · · ,K2 and n(k2)
d−r is the AWGN with mean zero and variance 2𝜎2

d .
Since the relay forwards K1 pilots from the source and also transmits K2 pilots from

itself, a total of K = K1 + K2 pilots will be received at the destination as

Pr =
Eh

KTp
= 𝜂𝜌Ps|h|2 K1

K
. (4.82)

Thus, one can obtain

z(k2)
d−r =

√
𝜂𝜌Ps

K1

K
|h|g + n(k2)

d−r (4.83)

and

z(k1)
d−s =

√
𝜂𝜌(1 − 𝜌)

K1

K
Ps|h|gha +

√
𝜂𝜌Ps

K1

K
|h|gan(k1)

r−ce + n(k1)
d−s. (4.84)
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The MB estimators are derived first. One has the first-order moments of z(k2)
d−r and

z(k1)
d−s as

E{z(k2)
d−r} =

√
𝜂𝜌Ps

K1

K
|h|g (4.85)

E{z(k1)
d−s} =

√
𝜂𝜌(1 − 𝜌)

K1

K
Ps|h|gha. (4.86)

Thus, it is quite straightforward to derive the MB estimators for g and h from (4.85) and
(4.86) as

ĝ2 =
a
√

1 − 𝜌√
𝜂𝜌

K1

K

1
K2

∑K2
k2=1 z(k2)

d−r| 1
K2

∑K2
k2=1 z(k2)

d−r|
| 1

K1

∑K1
k1=1 z(k1)

d−s|
(4.87)

and

ĥ2 = 1√
(1 − 𝜌)Psa

1
K1

∑K1
k1=1 z(k1)

d−s

1
K2

∑K2
k2=1 z(k2)

d−r

, (4.88)

respectively.
The ML estimators are derived in the following. Denote Gz =

√
𝜂𝜌Ps

K1

K
|h|g and

Hz =
√
(1 − 𝜌)Psh. Similar to before, using the ML method, the ML estimate of Gz can

be derived as

Ĝz =
1

K2

K2∑
k2=1

z(k2)
d−r =

√
𝜂𝜌Ps

K1

K
|ĥ|ĝ (4.89)

and using the ML method, the ML estimate of Hz can be derived as

Ĥz =
1

K1Ĝza

K1∑
k1=1

z(k1)
d−s =

√
(1 − 𝜌)Psĥ. (4.90)

Using the invariance principle, the ML estimators for g and h can be obtained by solv-
ing (4.89) and (4.90), which are the same as the MB estimators using the first-order
moments. Again, only the destination needs to perform channel estimation to reduce
complexity at the relay. The ML estimation and the MB estimator are the same for both
Scheme 1 and Scheme 2. From here on, we will not derive them separately and will only
focus on the simpler MB estimators.

Next, we derive the first- and second-order moments of ĝ2 and ĥ2. Denote
zr =

1
K2

∑K2
k2=1 z(k2)

d−r = rzr
ej𝜃zr and zs =

1
K1

∑K1
k1=1 z(k1)

d−s = rzs
ej𝜃zs , which are complex Gaussian

random variables with means Szr
=
√
𝜂𝜌Ps

K1

K
|h|g and Szs

=
√
𝜂𝜌(1 − 𝜌)K1

K
Ps|h|gha and

variances 2𝛽2
zr
= 2𝜎2

K2
and 2𝛽2

zs
= 2𝜎2

K1
(1 + 𝜂𝜌Ps|h|2|g|2a2 K1

K
), respectively.

From (4.87), the first-order moment of ĝ2 can be derived as

E{ĝ2} = a√
𝜂

K1

K

√
1 − 𝜌
𝜌

E{r2
zr

ej𝜃zr }E{ 1
rzs

} (4.91)
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where E{r2
zr

ej𝜃zr } and E{ 1
rzs
} are similar to those in Scheme 1, except that Syr

, 𝛽yr
, Sys

,

and 𝛽ys
are replaced by Szr

, 𝛽zr
, Szs

, and 𝛽zs
, respectively. The first-order moment of ĥ2 is

derived from (4.88) as

E{ĥ2} =
√
𝜂𝜌Ps

K1

K
|h|ghE

{
1
rzr

e−j𝜃zr

}
(4.92)

where E{ 1
rzr

e−j𝜃zr } is similar to before except that Syr
and 𝛽yr

are replaced by Szr
and 𝛽zr

,
respectively.

For the second-order moments, one has

E{|ĝ2|2} = a2

𝜂
K1

K

1 − 𝜌
𝜌

E{r4
zr
}E
{

1
r2

zs

}
(4.93)

and

E{|ĥ2|2} = 1
(1 − 𝜌)Psa2 E{r2

zs
}E
{

1
r2

zr

}
(4.94)

where E{r4
zr
}, E{ 1

r2
zs

}, E{r2
zs
}, and E{ 1

r2
zr

} are derived by replacing Syr
, 𝛽yr

, Sys
, and 𝛽ys

with
Szr

, 𝛽zr
, Szs

, and 𝛽zs
in the results for Scheme 1.

4.4.1.3 Scheme 3
In Scheme 1 and Scheme 2, channel estimation is only performed at the destination
node by using pilots forwarded from the source node that contain the cascaded channel
coefficient |h|gh as well as pilots of the relay node’s own that contain |h|g. This reduces
the complexity at the relay node. The accuracy of channel estimation can be further
improved if the relay node performs channel estimation. This is the case, for example,
in variable-gain relaying.

In Scheme 3, the source node sends J1 pilots to the relay node and the relay node uses
these pilots to estimate the source-to-relay link h. Then, the source node sends I pilots
to the relay node for energy harvesting. Using the harvested energy, the relay node sends
J2 pilots of its own to the destination node to estimate the relay-to-destination link g.

First, the source node sends J1 pilots to the relay node such that the received signal at
the relay node is

u(j1)
r−ce =

√
Psh + n(j1)

r−ce (4.95)

where j1 = 1, 2, · · · , J1 and n(j1)
r−ce is the AWGN with mean zero and variance 2𝜎2. Using

(4.95), the relay node can estimate h as

E{u(j1)
r−ce} =

√
Psh. (4.96)

Secondly, the source node sends I pilots to the relay node for energy harvesting. The
harvested energy is given by

Eh = 𝜂Ps|h|2ITp. (4.97)
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Finally, the relay node uses the harvested energy to transmit J2 pilots of its own to the
destination node. The received signal at the destination is

u(j2)
d−r =

√
Prg + n(j2)

d−r (4.98)
where j2 = 1, 2, · · · , J2. Since the harvested energy is used to transmit J2 pilots, the trans-
mission power of the relay is

Pr =
Eh

J2Tp
= 𝜂Ps|h|2 I

J2
. (4.99)

Using (4.99) in (4.98), one has

u(j2)
d−r =

√
𝜂Ps

I
J2
|h|g + n(j2)

d−r. (4.100)

Thus,

E{u(j2)
d−r} =

√
𝜂Ps

I
J2
|h|g. (4.101)

Using (4.96) and (4.101), the pilot-based MB estimators for g and h can be readily
derived as

ĝ3 =
1
J2

∑J2
j2=1 u(j2)

d−r√
𝜂

I
J2
| 1

J1

∑J1
j1=1 u(j1)

r−ce|
(4.102)

and

ĥ3 = 1√
Ps

1
J1

J1∑
j1=1

u(j1)
r−ce. (4.103)

In Scheme 3, the relay node performs channel estimation of h and the estimate of h
will be sent to the destination node via control channels for the estimation of g at the
destination node. Thus, this scheme is more complicated than Scheme 1 and Scheme 2.

The first- and second-order moments can also be derived. We denote ur =
1
J2

∑J2
j2=1 u(j2)

d−r = rur
ej𝜃ur and us =

1
J1

∑J1
j1=1 u(j1)

r−ce = rus
ej𝜃us . Then, ur and us are complex

Gaussian random variables with means Sur
=
√
𝜂Ps

I
J2
|h|g and Sus

=
√

Psh and variances

2𝛽2
ur
= 2𝜎2

J2
and 2𝛽2

us
= 2𝜎2

J1
, respectively.

In this case, the first-order moment of ĝ3 is given by

E{ĝ3} =
√

Ps|h|gE
{

1
rus

}
(4.104)

where E{ 1
rus
} can be obtained by replacing Sys

and 𝛽ys
with Sus

and 𝛽us
. It is also quite

obvious that the first-order moment of ĥ3 is

E{ĥ3} = h (4.105)

so that ĥ3 is an unbiased estimator.
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For the second-order moments, one has

E{|ĝ3|2} =
J2

𝜂I
E{r2

ur
}E
{

1
r2

us

}
(4.106)

with E{r2
ur
} = 2𝛽2

ur
+ |Sur

|2 and E{ 1
r2

us

} are obtained by replacing Sys
and 𝛽ys

with Sus
and

𝛽us
, respectively. Similarly, one has

E{|ĥ3|2} = 2𝜎2

PsJ1
+ |h|2. (4.107)

4.4.1.4 Scheme 4
Scheme 4 is similar to Scheme 3, where the relay node estimates the source-to-relay link
and the destination node estimates the relay-to-destination link, except that the relay
node uses power splitting to harvest energy from the pilots sent by the source node that
are also used for channel estimation at the relay node.

In this scheme, the source node sends K1 pilots to the relay node, part of which is
received for channel estimation as

𝑣
(k1)
r−ce =

√
(1 − 𝜌)Psh + n(k1)

r−ce (4.108)

for k1 = 1, 2, · · · ,K1 and part of which is harvested with the harvested energy given by

Eh = 𝜂𝜌Ps|h|2K1Tp. (4.109)

The relay node uses (4.108) to estimate the source-to-relay link h as

E{𝑣(k1)
r−ce} =

√
(1 − 𝜌)Psh. (4.110)

Next, the relay node uses the harvested energy in (4.109) to transmit K2 pilots of its
own such that the received signal at the destination is

𝑣
(k2)
d−r =

√
Prg + n(k2)

d−r (4.111)

for k2 = 1, 2, · · · ,K2, where the transmission power is given by

Pr =
Eh

K2Tp
= 𝜂𝜌Ps|h|2 K1

K2
. (4.112)

Thus,

E{𝑣(k2)
d−r} =

√
𝜂𝜌Ps

K1

K2
|h|g. (4.113)

Using (4.110) and (4.113), the MB estimators for g and h can be derived, respectively, as

ĝ4 =

1
K2

K2∑
k2=1

𝑣
(k2)
d−r

√
𝜂

K1

K2

𝜌

1−𝜌
| 1

K1

K1∑
k1=1

𝑣
(k1)
r−ce|

(4.114)

and

ĥ4 = 1√
(1 − 𝜌)Ps

1
K1

K1∑
k1=1

𝑣
(k1)
r−ce. (4.115)
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This scheme also requires channel estimation at both the relay and the destination.
In Scheme 4, let 𝑣r =

1
K2

∑K2
k2=1 𝑣

(k2)
d−r = r𝑣r

ej𝜃𝑣r and 𝑣s =
1

K1

∑K1
k1=1 𝑣

(k1)
r−ce = r𝑣s

ej𝜃𝑣s so that

𝑣r is a complex Gaussian random variable with mean S𝑣r
=
√
𝜂𝜌Ps

K1

K2
|h|g and variance

2𝛽2
𝑣r
= 2𝜎2

K2
, and 𝑣s is a complex Gaussian random variable with mean S𝑣s

=
√
(1 − 𝜌)Psh

and variance 2𝛽2
𝑣s
= 2𝜎2

K1
.

Then, following similar procedures, one has

E{ĝ4} =
√
(1 − 𝜌)Ps|h|gE

{
1

r𝑣s

}
, (4.116)

E{ĥ4} = h, (4.117)

E{|ĝ4|2} =
2𝜎2 + 𝜂K1𝜌Ps|h|2|g|2

𝜂K1𝜌∕(1 − 𝜌)
E
{

1
r2
𝑣s

}
, (4.118)

E{|ĥ4|2} = 2𝜎2

(1 − 𝜌)PsK1
+ |h|2, (4.119)

where E{ 1
r𝑣s
} and E{ 1

r2
𝑣s

} are obtained by replacing Sys
and 𝛽ys

with S𝑣s
and 𝛽𝑣s

in E{ 1
rys
}

and E{ 1
r2

ys

}, respectively.

4.4.1.5 Scheme 5
In Scheme 5, the relay node does not send any pilots of its own. Instead, the relay
node uses the pilots from the source node to estimate the source-to-relay link and
the destination node uses the same pilots forwarded by the relay to estimate the
relay-to-destination link. In contrast, in Scheme 1 and Scheme 2, the destination node
uses the pilots from the relay node to estimate the relay-to-destination link and uses
the pilots forwarded from the source node to estimate the source-to-relay link, while
in Scheme 3 and Scheme 4 the relay node uses pilots from the source node to estimate
the source-to-relay link and the destination node uses pilots from the relay node to
estimate the relay-to-destination link.

First, I pilots are sent from the source node to the relay node for energy harvesting.
Using time switching, the received signal at the relay node is given by (4.54). Thus, the
harvested energy is the same as before.

Secondly, J pilots are sent from the source to the relay node for channel estimation.
The received signal at the relay node is

𝑤
(j)
r−ce =

√
Psh + n(j)

r−ce (4.120)

where j = 1, 2, · · · , J and n(j)
r−ce is the complex AWGN with mean zero and variance 2𝜎2.

This received signal is first used for channel estimation at the relay to give

E{𝑤(j)
r−ce} =

√
Psh. (4.121)

Then, the signal in (4.120) is forwarded by the relay node using the harvested energy
as

𝑤
(j)
d−r =

√
Prga𝑤(j)

r−ce + n(j)
d−r (4.122)
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where the transmission power can be derived as Pr =
Eh

JTp
= 𝜂Ps|h|2 I

J
. Thus, one has from

(4.122)

E{𝑤(j)
d−r} =

√
𝜂

I
J

Ps|h|gha. (4.123)

The MB estimators for g and h can be derived as

ĝ5 =
1
J

∑J
j=1 𝑤

(j)
d−r

1
J

∑J
j=1 𝑤

(j)
r−ce ∗√

𝜂
I
J
a| 1

J

∑J
j=1 𝑤

(j)
r−ce|3

(4.124)

and

ĥ5 = 1√
Ps

1
J

J∑
j=1
𝑤

(j)
r−ce, (4.125)

respectively. Note that I + J = K for this scheme.
In this case, denote𝑤r =

1
J

∑J
j=1 𝑤

(j)
r−ce = r𝑤r

ej𝜃𝑤r , which is a complex Gaussian random
variable with mean S𝑤r

=
√

Psh and variance 2𝛽2
𝑤r

= 2𝜎2

J
.

For ĝ5, one can first find the conditional moment, conditioned on 𝑤r , and then take
the expectation over 𝑤r to have

E{ĝ5} =
√

Ps|h|gE
{

1
r𝑤r

}
(4.126)

and

E{|ĝ5|2} = Ps|h|2|g|2E
{

1
r2
𝑤r

}
+ 2𝜎2

𝜂Ia2 E
{

1
r4
𝑤r

}
(4.127)

where E{ 1
r𝑤r

} and E{ 1
r2
𝑤r

} are obtained by replacing Sys
and 𝛽ys

with S𝑤r
and 𝛽𝑤r

in E{ 1
rys
}

and E{ 1
r2

ys

}, respectively, and

E{ 1
r4
𝑤r

} =
∫

∞

0

1
𝛽2
𝑤r

x3
e
−

x2+|S𝑤r |2
2𝛽2
𝑤r I0

(x|S𝑤r
|

𝛽2
𝑤r

)
dx. (4.128)

For ĥ5, one also has

E{ĥ5} = h (4.129)

and

E{|ĥ5|2} = 2𝜎2

PsJ
+ |h|2. (4.130)

4.4.1.6 Scheme 6
In Scheme 6, power splitting is used to harvest the energy. The rest is similar to Scheme
5. In this case, the source node sends K pilots to the relay node, part of which is used for
channel estimation at the relay node to estimate the source-to-relay link, giving

x(k)
r−ce =

√
(1 − 𝜌)Psh + n(k)

r−ce (4.131)
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where k = 1, 2, · · · ,K and n(k)
r−ce is the complex AWGN with mean zero and variance 2𝜎2.

The other part of the received power is used for energy harvesting with the harvested
energy being

Eh = 𝜂𝜌Ps|h|2KTp. (4.132)

Using (4.131), the source-to-relay link can be estimated as

E{x(k)
r−ce} =

√
(1 − 𝜌)Psh. (4.133)

The received signal in (4.131) is then forwarded to the destination using the harvested
energy, giving

x(k)
d−r =

√
𝜂𝜌(1 − 𝜌)Ps|h|gha +

√
𝜂𝜌Ps|h|gan(k)

r−ce + n(k)
d−r (4.134)

where n(k)
d−r is also AWGN with mean zero and variance 2𝜎2. Thus,

E{x(k)
d−r} =

√
𝜂𝜌(1 − 𝜌)Ps|h|gha. (4.135)

Finally, one has

ĝ6 =
1
K

∑K
k=1 x(k)

d−r
1
K

∑K
k=1 x(k)∗

r−ce

a
√
𝜂

𝜌

1−𝜌
| 1

K

∑K
k=1 x(k)

r−ce|3
(4.136)

ĥ6 = 1√
(1 − 𝜌)Ps

1
K

K∑
k=1

x(k)
r−ce. (4.137)

The derivation in Scheme 6 is very similar to that in Scheme 5. Let xr =
1
K

∑K
k=1 x(k)

r−ce =
rxr

ej𝜃xr , which is a complex Gaussian random variable with mean Sxr
=
√
(1 − 𝜌)Psh and

variance 2𝛽2
xr
= 2𝜎2

K
.

For ĝ6, one can also first find the conditional moment, conditioned on xr , and then
take the expectation over xr to have

E{ĝ6} =
√
(1 − 𝜌)Ps|h|gE

{
1

rxr

}
(4.138)

and

E{|ĝ6|2} = (1 − 𝜌)Ps|h|2|g|2E
{

1
r2

xr

}
+ 2𝜎2

𝜂Ka2𝜌∕(1 − 𝜌)
E
{

1
r4

xr

}
(4.139)

where E{ 1
rxr
} and E{ 1

r2
xr

} are obtained by replacing Sys
and 𝛽ys

with Sxr
and 𝛽xr

in E{ 1
rys
}

and E{ 1
r2

ys

}, respectively, and

E
{

1
r4

xr

}
=
∫

∞

0

1
𝛽2

xr
x3

e
−

x2+|Sxr |2
2𝛽2

xr I0

(x|Sxr
|

𝛽2
xr

)
dx. (4.140)

For ĥ6, its first-order moment and second-order moment are given by

E{ĥ6} = h (4.141)
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and

E{|ĥ6|2} = 2𝜎2

(1 − 𝜌)PsK
+ |h|2, (4.142)

respectively.
Next, we use some graphs to show the performances of the obtained estimators for h

and g in terms of the MSE. From the first- and second-order moments of the estimates,
one can see that the estimator performance depends on various system parameters,
including 𝜂, Ps, 2𝜎2, g, h, K , I and J . For 𝜂, Ps, 2𝜎2, and K , their effects on the estima-
tor performance are quite straightforward. In particular, it is expected that the estimator
performance improves when 𝜂, Ps, and K increase or when 2𝜎2 decreases, as this reduces
the noise which is the main source of estimation error. Thus, in the examination, we set
𝜂 = 0.5, Ps = 1, K = 100, and 2𝜎2 = 2 to focus on the effects of g, h, I, J2, 𝜌, K1, and K2.
Define 𝛾g =

|g|2
2𝜎2 as the instantaneous SNR of the relay-to-destination link and 𝛾h = |h|2

2𝜎2 as
the instantaneous SNR of the source-to-relay link. The values of g and h will change with
𝛾g and 𝛾h and their real and imaginary parts are equal to each other. The MSE is defined
as 1

R

∑R
r=1 |g − ĝr|2, 1

R

∑R
r=1 |h − ĥr|2, and 1

R

∑R
r=1 |gh − ĝrĥr|2 for ĝ, ĥ, and ĝĥ, respectively,

where R = 10 000 is the total number of simulation runs and ĝr and ĥr are the channel
estimates in the rth run.

Figures 4.15 and 4.16 show the MSE of the estimators ĝ1 and ĥ1 in Scheme 1 versus the
values of I and J2, respectively, when different values of SNR or different values of g and
h are considered. In Figure 4.15, the values of J1 and J2 are set as J

2
to focus on the effect

of I, and the value of I is examined from 4 to 96 with a step size of 4. In Figure 4.16, the
values of I are fixed to focus on the effect of J2, and the value of J2 is examined from 2 to
J − 2 with a step size of 2. Several observations can be made. First, from Figure 4.15, the
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Figure 4.15 MSE of ĝ1 and ĥ1 versus I for different values of SNR in Scheme 1.
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Figure 4.16 MSE of ĝ1 and ĥ1 versus J2 for different values of SNR in Scheme 1.

MSE first decreases and then increases with the value of I, as expected, as a larger value
of I leads to more harvested energy such that the estimation at the destination node will
be more accurate but it also leads to a smaller value of J due to fixed K such that the
sample size in the estimation reduces. The optimum value of I exists, and there is also
a wide range of choices for I that give close-to-optimum performances. This provides
flexibility in system design. Secondly, under the same conditions, the estimator generally
performs better with a larger value of SNR, as expected, as a larger SNR gives relatively
smaller noise, which is the main source of estimation error. Also, the performance of ĝ1
is close to that of ĥ1, especially near the optimum values of I. Finally, from Figure 4.16,
the MSE first decreases and then increases when the value of J2 increases. This is also
expected. A larger value of J2 leads to a better approximation of E{y(j2)

d−r} but due to fixed
J it also leads to a worse approximation of E{y(j1)

d−s}. Since both of them are needed in ĝ1
and ĥ1, their interaction yields an optimum value of J2, as seen from Figure 4.16.

Figures 4.17 and 4.18 show the MSE versus 𝜌 and K2, respectively, for ĝ2 and ĥ2 in
Scheme 2. In Figure 4.17, the value of 𝜌 is examined from 0.1 to 0.9 with a step size of 0.1,
when K2 = K

2
is fixed to focus on the effect of 𝜌. In Figure 4.18, the value of K2 is examined

from 4 to 96 with a step size of 4, while the value of 𝜌 is fixed. Again, optimum values
of 𝜌 and K2 exist. For 𝜌, when it is large, more energy is harvested for relay transmission
but the signal component in the samples will be weaker, leading to more estimation
errors. Thus, a balanced choice of 𝜌 needs to be made and it plays a similar role to I

K
in Scheme 1. From Figure 4.17, the MSE curve is relatively flat between 0.2 and 0.8,
indicating that there is a wide range of choices for 𝜌 that can achieve close-to-optimum
performance, which is desirable for system design. For K2, since K is fixed, a larger value
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Figure 4.17 MSE of ĝ2 and ĥ2 versus 𝜌 for different values of SNR in Scheme 2.
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Figure 4.18 MSE of ĝ2 and ĥ2 versus K2 for different values of SNR in Scheme 2.
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Figure 4.19 MSE of ĝ3 and ĥ3 versus I for different values of SNR in Scheme 3.

of K2 gives a better approximation using the pilots from the relay node but also gives a
worse approximation using the pilots from the source node, as K1 will be smaller. In all
cases, increasing the SNR reduces the MSE.

Figures 4.19 and 4.20 show the MSE versus I and J1, respectively, for ĝ3 and ĥ3 in
Scheme 3. In Figure 4.19, the value of I is examined from 4 to 96 with a step size of
4, when J1 = J

2
is fixed to focus on the effect of I. Also, in Figure 4.20, the value of J1 is

examined from 2 to J − 2 with a step size of 2, while the value of 𝜌 in this figure is fixed. In
Figure 4.19, the optimum value of I still exists for ĝ3, as the value of I affects both energy
harvesting and the sample size for ĝ3. However, for ĥ3, its MSE monotonically increases
with I, as the estimation of h does not rely on energy harvesting and it only relies on J1.
When I increases, for fixed K , the value of J1 decreases such that more estimation errors
occur. Also in this case, the SNR has very minor effect on ĥ3. In Figure 4.20, it can also
be seen that the optimum value of J1 does not exist.

Figures 4.21 and 4.22 show the MSE versus 𝜌 and K1, respectively, for ĝ4 and ĥ4 in
Scheme 4. In Figure 4.21, the value of 𝜌 is studied from 0.1 to 0.9 with a step size of 0.1,
while we fix K1 = K

2
to focus on the effect of 𝜌. As well, in Figure 4.22, the value of K1 is

examined from 4 to 96 with a step size of 4, while the value of 𝜌 in this figure is fixed.
As can be seen from Figure 4.21, the value of 𝜌 affects the performance of ĝ4 both ways,
making its MSE larger due to weaker signal component in the samples and less accurate
ĥ4 but also making its MSE smaller due to more harvested energy, when 𝜌 increases.
For ĥ4, increasing 𝜌 will increase the MSE of ĥ4 as the signal component in 𝑣(k1)

r−ce will be
weaker. Also, similar to Figure 4.20, increasing K1 reduces the MSE of the estimator.

For Scheme 5 and Scheme 6, the effects of the system parameters are straightforward.
From their expressions of the first- and second-order moments, it can be expected that
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Figure 4.20 MSE of ĝ3 and ĥ3 versus J1 for different values of SNR in Scheme 3.
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Figure 4.22 MSE of ĝ4 and ĥ4 versus K1 for different values of SNR in Scheme 4.

the MSE of ĥ5 increases when I increases and for the MSE of ĝ5 there is an optimum I
due to the interaction between energy harvesting and sample size. Also, the MSE of ĥ6
monotonically increases when 𝜌 increases due to weaker signal component in the sam-
ples, while the MSE of ĝ6 first decreases then increases with 𝜌. They are not shown here.

Figures 4.23 and 4.24 compare the estimators in different schemes in terms of their
minimum MSE of ĝĥ achieved by performing exhaustive searches over the relevant
parameters. One sees from these two figures that Scheme 5 and Scheme 6 have the best
performances, followed by Scheme 3 and Scheme 4, and Scheme 1 and Scheme 2 have
the worst performance. Also, Scheme 5 outperforms Scheme 6, Scheme 3 outperforms
Scheme 4, and Scheme 1 outperforms Scheme 2, indicating that time switching leads
to better MSE performance than power splitting. Finally, the estimator performance
is more sensitive to 𝛾g than to 𝛾h. More details of derivations can be found in Chen
et al. (2017b).

4.4.2 Without Relaying

In this subsection, we consider the case without relaying. In this case, the transmis-
sion contains three parts: channel estimation; energy harvesting; and data transmission.
Figure 4.25 shows a diagram of the considered data frame. In this system, the data frame
is first divided into two parts in time for channel estimation and data transmission. Then,
each part in time is divided into two parts in amplitude so that energy harvesting is per-
formed by taking parts of the received energy for channel estimation as well as parts of
the received energy for data transmission. This is equivalent to dividing the whole data
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Figure 4.23 MSE of ĝĥ versus 𝛾g for different schemes.

0 2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6

M
ea

n 
sq

ua
re

d 
er

ro
r 

of
 g

hˆˆ

γh (dB)

γg = 10 dB
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Figure 4.25 The considered data frame
with three parts.

Channel
Estimation

Power

Data Transmission

Timet

P

Energy Harvesting

frame into three parts in time only. It is the area of the block in the figure that matters,
as it represents the energy allocation.

From this diagram, the received signals for the pilots used in channel estimation can
be expressed as

pi =
√
𝜌pPsh + ni (4.143)

where i = 1, 2, · · · , L index the pilots, Ps is the transmission power, 𝜌p is the portion of
power split from the received signal for channel estimation, h is the complex fading gain
to be estimated, and ni is the complex AWGN with mean zero and variance 2𝜎2. These
pilots can be used to estimate the channel gain using the maximum likelihood method as

ĥ = 1√
𝜌pPsL

L∑
i=1

pi = h + e (4.144)

where the estimation error e is Gaussian with mean zero and variance 2𝜎2

𝜌pPsL
.

The received signals of the symbols used for information delivery can be expressed as

yi =
√
𝜌dPsh + ni (4.145)

where i = L + 1, L + 2, · · · , L + M index the data symbols to be decoded and 𝜌d is the
portion of power split from the received signal for data decoding. Using the estimate in
(4.144), one has

yi =
√
𝜌dPsĥ −

√
𝜌dPse + ni. (4.146)

Thus, the achievable rate can be derived as

R = M
L + M

log2

⎛⎜⎜⎝
1 +

𝜌dPs|ĥ|2
2𝜎2 + 𝜌d

2𝜎2

𝜌pL

⎞⎟⎟⎠
. (4.147)

Finally, the total energy harvested from pilots for channel estimation and symbols for
information delivery can be derived as

E = 𝜂(1 − 𝜌p)Ps|h|2L + 𝜂(1 − 𝜌d)Ps|h|2M (4.148)

where 𝜂 is the conversion efficiency defined as before. The average energy harvested over
each symbol is thus

Ē = E
L + M

= 2𝛼2𝜂Ps
(1 − 𝜌p)L + (1 − 𝜌d)M

L + M
(4.149)
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where E{|h|2} = 2𝛼2 has been used.
From the above, the pilot symbols are used for channel estimation. The estimated

channel gain is then used for data decoding. At the same time, both the pilot and data
symbols are harvested for energy. Putting all these requirements together, we can for-
mulate an optimization problem as

max
𝜌p,𝜌d ,L

R (4.150)

subject to Ē ≥ E0 (4.151)
1 ≥ 𝜌p ≥ 0 (4.152)
1 ≥ 𝜌d ≥ 0 (4.153)
M + L ≥ L ≥ 0. (4.154)

In this problem, we try to maximize the average achievable rate for information delivery
with respect to the number of pilots for channel estimation as well as the two power
splitting parameters 𝜌p and 𝜌d, while satisfying a minimum requirement on the har-
vested energy per symbol. The values of L, 𝜌p, and 𝜌d actually determine the energy
allocation between channel estimation, data transmission, and energy harvesting within
the transmitted data frame. Thus, this is essentially a resource allocation problem. It is
related to the second issue discussed at the beginning of this section, that is, the addition
of energy harvesting capability consumes resources provided for other functions and
therefore, it needs to be carefully chosen. A similar problem was studied in Zhou (2015),
where a minimum mean squared error channel estimator was considered, but the rest
of the settings are similar to those in this subsection. Also, without energy harvesting,
the problem in (4.150) becomes the classical pilot allocation problem in conventional
communications, where a larger number of pilots gives better estimation accuracy but
reduces the throughput of the channel (Wang et al. 2014).

In the following, we consider a simpler case when 𝜌d = 𝜌p = 𝜌. Also, fix L + M = K so
that M = K − L. Using them in (4.148), the optimization problem becomes

max
𝜌,L

K − L
K

log2

(
1 +

𝜌Ps|ĥ|2
2𝜎2 + 2𝜎2

L

)
(4.155)

subject to 2𝛼2𝜂(1 − 𝜌)PsK ≥ E0 (4.156)
1 ≥ 𝜌 ≥ 0 (4.157)
K ≥ L ≥ 0. (4.158)

One sees that the rate monotonically increases with 𝜌 so that the optimum 𝜌 is deter-
mined by the constraint on the harvested energy as 𝜌opt = max{0, 1 − E0

2𝛼2𝜂PsK
}. By replac-

ing 𝜌 with the optimum value in the rate expression, one has the rate as the function of
a single variable L. By taking the first-order derivative of this function with respect to L
and solving the equation for L, the optimum L can be obtained. This involves a non-linear
function due to the logarithm function. We show some numerical results instead. Let
Ps = 1, |ĥ|2 = 1, K = 100, 2𝜎2 = 1, 𝜂 = 0.5, E0 = 50, and 2𝛼2 = 1. Figure 4.26 shows R
versus L under these conditions using the optimum 𝜌. From this figure, the optimum L
is around 8.
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Figure 4.26 R versus L.

This problem has many variants that one can work on. For example, instead of using
the instantaneous achievable rate, one may use the average achievable rate as the objec-
tive function. Thus, R will be replaced by Eĥ{R} in the above problems, where E{⋅}
denotes the expectation operator. Also, one can consider the sum rate in the downlink
and uplink. In this case, the uplink rate decreases with the parameter 𝜌 due to a reduced
harvested energy. Thus, the constraint on the harvested energy is not needed any more
but the tradeoff will be reflected by the fact that the downlink rate increases with 𝜌while
the uplink rate decreases with 𝜌.

The key point in these optimizations and in energy harvesting estimation generally is
that both energy harvesting and channel estimation are part of the overhead incurred
for data transmission. Hence, an increase in one part will lead to a decrease in the other
part, assuming a fixed amount of resource. In Yang et al. (2014) and Zeng and Zhang
(2015b), only channel estimation and energy harvesting were considered in the tradeoff,
without taking into account the achievable rate for data transmission. One can either
maximize the amount of harvested energy with respect to a constraint on the estimation
accuracy or vice versa. Again, the fundamental problem in all these studies is the tradeoff
between energy harvesting and channel estimation subject to limited resource. This is
unique for energy harvesting estimation, as conventional communications do not have
this allocation issue.

4.5 Energy Transmission Waveform

For information transmission, it is well known that the transmitted pulse can be
optimized to achieve the largest signal-to-interference-plus-noise ratio for best
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performance. Similarly, for power transfer, the transmitted waveform can also be
optimized to achieve the maximum transferred power. In an energy harvesting
communications system, this is part of the signal design problem at the transmitter.

The transferred power needs to be harvested and maximized at the receiver. Thus, the
amount of transferred power is a function of the parameters of the transmitted wave-
form at the transmitter, the parameters of the communications channel, and the param-
eters of the energy harvester at the receiver. To optimize the transmitted waveform for
maximum transferred power, one must know the channel parameters and the energy
harvester parameters, as the optimal waveform will be adapted to the channel conditions
and the harvester designs. Next, energy transfer waveform design will be discussed.

4.5.1 Scenario

Consider a wireless energy transfer system where there are M energy sources with M >

1. Each source transmits an energy waveform with a complex amplitude of𝑤m = 𝜔mej𝜓m ,
where m = 1, 2, · · · ,M index the sources, j =

√
−1, 𝜔m is the magnitude of the energy

waveform, and𝜓m is the phase of the energy waveform. These𝜔m and𝜓m are the param-
eters to be optimized. The waveforms are transmitted over Rayleigh fading channels. The
faded signals are then harvested by the energy harvesters at the receiver. These M energy
sources could be M simultaneously transmitting users. In this case, only one harvester
is needed to harvest all energies. These M energy sources could also be M antennas, fre-
quency bands or time slots. In this case, either M harvesters will be needed or the same
harvester will be used for M times.

In the multi-user case, if all users transmit their waveforms simultaneously in the same
frequency band using the same antenna, the received signal at the single harvester is

z =
M∑

m=1
𝑤mhm + n (4.159)

where hm is the fading gain from the mth user to the energy harvester and n is the
AWGN with mean zero and variance 2𝜎2. The channel gain hm is a circularly symmetric
complex Gaussian random variable with mean zero and variance 2𝛼2

m. For example, in
a two-way relaying system or a non-orthogonal multiple access (NOMA) system, the
received signals come from all users. Also, if co-channel interference is harvested, the
received energy is made of signals from all interfering users too. Using (4.159), if a linear
energy harvester is used, the harvested power (the term power is used interchangeably
with the term energy here due to the fixed time slot) is

Po = 𝜂|z|2 (4.160)

where 𝜂 is the conversion efficiency of the harvester. Thus, the harvested power is a
function of the waveform parameters 𝜔m and 𝜓m, the channel parameters hm, and the
harvester parameter 𝜂, as mentioned before. If a non-linear energy harvester is used, as
discussed in Chen et al. (2017d), the harvested power is

Po =
a|z|2 + b
|z|2 + c

− b
c

(4.161)

where a, b, and c are the parameters of the harvester that can be determined by standard
curve-fitting methods.
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On the other hand, if the sources operate over different antennas, frequency bands, or
time slots, one needs M energy harvesters, or one harvester used for M times. For the
mth harvester, the received signal to be harvested is given by

zm = 𝑤mhm + nm (4.162)

where nm is the AWGN with mean zero and variance 2𝜎2, and all the other symbols
are defined as before. This is, for example, the case when harvesters are tuned at
different frequencies (Sun et al. 2013) or antennas (He et al. 2015) to increase the
amount of harvested energy, or when the energy is accumulated from transmissions in
different time slots. In this case, using the linear harvester, the total harvested energy is
given by

Po =
M∑

m=1
𝜂m|zm|2 (4.163)

and using the non-linear harvester, the total harvested energy is

Po =
M∑

m=1

(am|zm|2 + bm

|zm|2 + cm
−

bm

cm

)
, (4.164)

where 𝜂m is the conversion efficiency of the mth harvester. In this case, the individual
signals are harvested and combined.

4.5.2 Energy Waveform Optimization

Here we consider the optimization of the average total harvested power, subject to the
constraint that the total transmitted power is fixed for all M sources. Thus, the opti-
mization problem is written as

{𝑤̂1, · · · , 𝑤̂M} = max
𝑤1,··· ,𝑤M

{E{Po}}, with
M∑

m=1
|𝑤m|2 = P (4.165)

where E{⋅} is the expectation operation and P is the total power limit. This optimization
depends on the harvester model and the channel condition.

4.5.2.1 Linear Harvester
When a single linear energy harvester is used, the average harvested power can be cal-
culated from (4.160) as

E{Po} = 𝜂

[ M∑
m=1

(2𝛼2
m)𝜔2

m + 2𝜂𝜎2

]
. (4.166)

This value can be easily maximized using linear programming to give the maximum
average harvested power as

E{Po}max = 2𝜂P𝛼2
m̂ + 2𝜎2 (4.167)

where m̂ = max
m=1,2,··· ,M

{2𝛼2
m}. Thus, the optimum waveforms are given by 𝜔2

m = P when
m = m̂ and 𝜔2

m = 0 when m ≠ m̂. In other words, the maximum harvested power can
be achieved by transmitting all the power P at the user with the highest average channel
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fading power to the energy harvester and switch off all other users. In doing so, the phase
of the optimum waveform can be an arbitrary value.

In the second case when multiple linear harvesters are used over different frequencies,
antennas or time slots, similarly, the average total harvested power is calculated from
(4.163) as

E{Po} = 2
M∑

m=1
𝜂m𝛼

2
m𝜔

2
m + 2

M∑
m=1

𝜂m𝜎
2. (4.168)

Again, using linear programming, this value can be maximized as

E{Po}max = 2𝜂m̂P𝛼2
m̂ + 2

M∑
m=1

𝜂m𝜎
2 (4.169)

where m̂ = max
m=1,2,··· ,M

{2𝜂m𝛼
2
m} in this case and the optimum waveform is achieved by

setting 𝜔2
m = P when m = m̂ and 𝜔2

m = 0 when m ≠ m̂.

4.5.2.2 Non-Linear Harvester
In many applications, the energy harvester is not linear. Consider the single harvester
case first. In this case, the average harvested power can be derived from (4.161) by taking
the expectation to give

E{Po} = a − b
c
+ b − ac

2𝛽2 e
c

2𝛽2

[
−Ei
(
− c

2𝛽2

)]
(4.170)

where 2𝛽2 = 2
∑M

m=1 𝜔
2
m𝛼

2
m + 2𝜎2 and Ei(⋅) represents the exponential integral Grad-

shteyn and Ryzhik (2000, eq. (8.211.1)). If one denotes g(x) = xex[−Ei(−x)], one can
show that g(x) is a monotonically increasing function of x. Thus, the maximization of the
average harvested power in (4.170) is equivalent to the maximization of 2𝛽2 in that func-
tion. However, 2𝛽2 is a quadratic form of 𝜔m. Thus, the maximum harvested power is

E{Po}max = a − b
c
+ b − ac

2𝛽2
e

c
2𝛽2

[
−Ei
(
− c

2𝛽2

)]
(4.171)

where 2𝛽2 = 2P𝛼2
m̂ + 2𝜎2 and m̂ = max

m=1,2,··· ,M
{2𝛼2

m}. The optimum waveforms are𝜔2
m = P

when m = m̂ and 𝜔2
m = 0 when m ≠ m̂. Again, in this case, one allocates the full power

to the source with the best channel condition and switches off all other sources.
In the case when multiple non-linear harvesters are used, one can use the Lagrange

multiplier to find the optimum solution. In this case, the function g(x) defined before
can be approximated as g(x) ≈ 0.98x+0.12

x+0.86
by curve-fitting for 0 < x < 30. Then, one has

the target function for optimization as
M∑

m=1

(
am −

bm

cm

)
+

M∑
m=1

(bm − amcm)
0.98cm + 0.12(𝜔2

m2𝛼2
m + 2𝜎2)

cm + 0.86(𝜔2
m2𝛼2

m + 2𝜎2)

+𝜆

(
P −

M∑
m=1

𝜔2
m

)
(4.172)

where 𝜆 is the Lagrange multiplier. Using (4.172), one has the optimum waveforms as

𝜔2
m =

√
1.2𝛼2

mcm(amcm − bm)∕𝜆0 − cm − 1.72𝜎2

1.72𝛼2
m

(4.173)
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where 𝜆0 =
⎛⎜⎜⎝

∑M
m=1

√
1.2𝛼2

mcm (amcm−bm )

1.72𝛼2
m

P+
∑M

m=1
cm+1.72𝜎2

1.72𝛼2
m

⎞⎟⎟⎠

2

. One sees that, in this case, the optimum waveforms

are not to transmit the full power over the best channel any more. Instead, the power
needs to be distributed among different frequencies, antennas, or time slots. In all
the above cases, the phase of the optimum waveform can be arbitrary. This gives
flexibility in the system design. More details on this work can be found in Chen et al.
(2017d), where in addition to Rayleigh fading, the general Rician fading channel and
the Gamma-shadowed Rician fading channel have also been discussed.

The above discussion considered the use of a single harvester for signals from multiple
users or multiple time slots, or the use of multiple harvesters for signals from multiple
antennas and frequencies. In Clerckx and Bayguzina (2016), the authors considered the
other case when a single harvester is used for a sum of signals from multiple antennas
and frequency bands and the noise can be ignored. Specifically, the received signal at
the single harvester is given by Clerckx and Bayguzina (2016, eq. (4))

y = ℜ

{ N∑
n=1

hnwnej2𝜋fnt

}
(4.174)

where ℜ{⋅} takes the real part of a complex value, n = 1, 2, · · · ,N index N frequency
bands or subcarriers within the signal bandwidth, fn is the nth frequency band,
hn = [hn,1hn,2 · · · hn,M] is the channel gain in the nth frequency for M transmitting
antennas, and wn = [𝑤n,1𝑤n,2 · · ·𝑤n,M]T is the waveform amplitude to be determined in
the nth frequency band for M transmitting antennas, (⋅)T is the transpose operation, N
is the total number of frequencies, and M is the total number of antennas. Compared
with (4.159), one can notice several differences. First, the noise has been ignored in
(4.174). Secondly, only the real part of the received signal is harvested for energy.
The imaginary part has been discarded. Thirdly, instead of having a sum of signals
from multiple users, (4.174) considers a sum of signals from multiple frequency
bands and multiple antennas. Finally, instead of harvesting each signal and adding
the harvested energy up, as in (4.163) and (4.164), (4.174) adds up the signals before
harvesting them.

Using the received signal in (4.174), they aimed to maximize the output current at the
energy harvester to give the following optimization problem as

n0∑
i≥2,ie𝑣en

kiE{yi}, with
N−1∑
n=0

M∑
m=1
|𝑤n,m|2 < P (4.175)

where n0 is a constant that determines how much non-linearity of the energy harvester
one can account for in the optimization, ki is the parameter of the harvester, and other
symbols are defined as before. When n0 = 2, this model gives the linear harvester. In this
case, it was shown in Clerckx and Bayguzina (2016) that the optimum waveforms are to
transmit the full power P over the best channel among all frequencies and antennas.
This agrees with our discussion before. If n0 > 2, higher-order terms are included in the
optimization and thus, the harvester is non-linear. In this case, it was reported in Clerckx
and Bayguzina (2016) that one has to distribute the power over all different frequencies
or antennas in order to maximize the output of the energy harvest. This again agrees
with the observation from Chen et al. (2017d).
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Both Chen et al. (2017d) and Clerckx and Bayguzina (2016) conclude that, if a linear
harvester is used or the harvester operates in its linear region, the optimum strategy is
to put the full power at the source with the best channel condition, and if a non-linear
harvester is used or the harvester operates in its non-linear region, the optimum strategy
is to distribute the power across all sources.

In another related work (Collado and Georgiadis 2014), the authors also investigated
the effect of waveform on the conversion efficiency of the energy harvester. This is
different from the results in Chen et al. (2017d) and Clerckx and Bayguzina (2016)
in that here the conversion efficiency 𝜂 is a function of the waveform, while it is
a constant in most studies. The motivation of this work was that waveforms with
higher peak-to-average-power ratio (PAPR) can activate the energy harvester with a
lower threshold. The study in Collado and Georgiadis (2014) showed that the chaotic
waveform has the highest conversion efficiency and thus, the largest harvested power,
as it has the largest PAPR.

4.6 Other Issues and Techniques

In the previous sections, we have discussed energy harvesting detection, energy harvest-
ing estimation, and energy harvesting waveform. These are the main design problems
in the physical layer to solve the fundamental issues of any communications systems. In
addition to these techniques, other advanced techniques may also be employed in the
physical layer to solve one or two specific issues, such as security, spectral efficiency,
and energy efficiency, to improve energy harvesting communications. Next, we will dis-
cuss some of these issues and techniques, including circuit power consumption, physical
layer security, NOMA, and joint detection and estimation.

4.6.1 Circuit Power Consumption

Circuit power consumption is an important issue for energy harvesting communi-
cations. Many current energy harvesting communications systems are designed for
low-power applications, such as wireless sensing and radio frequency identification
(Sudevalayam and Kulkarni 2011). Consequently, the circuit power may not be negli-
gible compared with the transmission power. In this subsection, we consider the case
when the harvested power needs to cover both the circuit power and the transmission
power for the remote device. Figure 4.27 shows a diagram of the circuit of the remote

LNA/
Reception Power

Decoder/
Decoding Power

Encoder/
Encoding Power

Antenna

Amplifier/
Amplification

Power

Figure 4.27 A diagram of the circuit of the remote device.
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device considered in this book. The remote device needs to receive information from
the access point and then responds to the information by sending its own data. Thus,
four main parts of circuit power are considered: reception power; decoding power;
encoding power; and amplification power.

Assume that the remote device uses a transmission power of Px plus a circuit power of
Pc = Pre + Pdc + Pec + Pam, where Pre is the reception power, Pdc is the decoding power,
Pec is the encoding power, and Pam is the amplification power. It was reported in Bjornson
et al. (2014) that, based on the central limit theorem, one has the amplification power
and the reception power following Gaussian distributions with

√
Pam ∼  (0, 𝛿2

t Px)
and
√

Pre ∼  (0, 𝛿2
r Pr), respectively, where 𝛿2

r and 𝛿2
t are the parameters related to the

receiver and transmitter structures, respectively, and Pr is the received signal power.
Furthermore, one has Pdc = Fde ⋅ 22B, Pec = Fco ⋅ 22B, where B is the bit resolution of the
signal, and Fde and Fco are constants depending on the decoder and encoder structures,
respectively (Chen et al. 2013).

Using all the above assumptions, the total power consumption including circuit power
and transmission power can be written as

Ptot = Px + 𝛿2
t Px + Fde ⋅ 22B + Fco ⋅ 22B + 𝛿2

r Pr (4.176)

where Pam ≈ E{Pam} = 𝛿2
t Px and Pre ≈ E{Pre} = 𝛿2

r Pr have been used. Thus, if the power
harvested from the access point is P = 𝜂𝛽2W as in (4.6), one has

𝜂𝛽2W = Px + 𝛿2
t Px + Fde ⋅ 22B + Fco ⋅ 22B + 𝛿2

r Pr. (4.177)

This gives the new transmission power of the energy harvesting device as

Px =
1

1 + 𝛿2
t
[𝜂𝛽2W − Fde ⋅ 22B − Fco ⋅ 22B − 𝛿2

r Pr]. (4.178)

This new transmission power can then be used in energy harvesting detection and
energy harvesting estimation to design new detectors and estimators that consider the
circuit power consumption. These designs will not be presented here as they are quite
straightforward.

4.6.2 Physical Layer Security

Physical layer security has become increasingly important in recent communications
systems. In fact, security is a fundamental problem in wireless communications due
to the broadcast nature of the wireless medium. Traditional security measures often
employ encryption algorithms at the upper layers. The most recent advance is to use the
physical (PHY) layer security technique by exploiting the characteristics of the wireless
fading channels for perfect secrecy (Liu and Trappe 2009). There are two unique aspects
of the physical layer security technique in energy harvesting communications.

First, since the transmission power of an energy harvesting device is dynamic, the
secrecy of the communications system becomes dynamic too. The secrecy rate is defined
as the difference between the rate over the desired channel and the rate over the eaves-
dropping channel. Hence, the secrecy rate changes with the energy arrival process, and
the average secrecy rate is often lower in such cases, similar to the BER analyzed before.

Secondly, for certain energy harvesting communications systems, such as the wireless
powered systems to be discussed in Chapter 6, RF signals are employed to carry energy
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as well as information, and the receiver receives the RF signals for both information
decoding and energy harvesting. To do this, in practice, the transmitter has to increase
its transmission power in order to facilitate energy harvesting at the receiver as extra
energy is required at the receiver for harvesting. However, this also increases informa-
tion leakage, as higher information energy is more susceptible to eavesdropping when
there is an eavesdropper trying to intercept the information. Moreover, at the receiver,
only a portion of the energy is used for information delivery, leading to a reduced rate.
Thus, the security issue in the hybrid information and energy transmission will loom
larger as a portion of the energy has to be used for power transfer.

Assume that Alice is an energy harvesting device and she sends information to Bob
using the harvested energy. This communication is intercepted by an eavesdropper Eve.
The received signal at Bob is given by

yb =
√

Pxhbs + nb (4.179)

where Px is the transmitted power of Alice, hb is the channel gain from Alice to Bob, s is
the normalized transmitted symbol, and nb is the AWGN with mean zero and variance
2𝜎2 at Bob. Similarly, the transmitted symbol will also be intercepted by Eve to have

ye =
√

Pxhes + ne (4.180)

with an independent channel gain of he and noise of ne. The secrecy rate is defined as

Cs = max
{

log2

(
1 +

Px|hb|2
2𝜎2

)
− log2

(
1 +

Px|he|2
2𝜎2

)
, 0
}
. (4.181)

In conventional communications, only the channel gains are random so that Cs needs
to be averaged over the fading distributions to obtain the ergodic secrecy rate. In energy
harvesting communications, both the channel gains and the transmission power can be
random so that the averaging is performed over the channel gains as well as Px. This is
similar to the error rate analysis in Section 4.2.3. Also, the secrecy outage probability is
defined as the probability that the rate in the desired channel is larger than that in the
eavesdropping channel. Unlike the secrecy rate, energy harvesting does not change this
secrecy outage probability.

On the other hand, if Alice is not an energy harvesting device but Bob is so that Alice
needs to transmit her information as well as transfer a certain amount of energy to Bob
so that Bob can harvest the energy for a response, the secrecy rate becomes

Cs = max
{

log2

[
1 +

(Px + P0)|hb|2
2𝜎2

]
− log2

[
1 +

(Px + P0)|he|2
2𝜎2

]
, 0
}

(4.182)

where Px is the power used to guarantee the quality of information decoding at Bob,
while P0 is the extra power required by Bob for harvesting. Since the logarithm operation
is non-linear, in general, the value of P0 will lead to a different secrecy rate. This is the
second effect of energy harvesting on the physical layer security.

There are many studies on other security issues in the literature. For example, in
energy harvesting communications systems, some nodes are dedicated to energy
harvesting while other nodes are dedicated to information decoding. Hence, the energy
receivers could be potential eavesdroppers, or internal eavesdroppers (Pan et al. 2016).
One may use interference alignment to nullify the signals for enhanced security (Zhao
et al. 2017a). They are not discussed here.
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4.6.3 Non-orthogonal Multiple Access

NOMA is one of the most recent advances in wireless communications. It aims to solve
the spectral efficiency problem by using non-orthogonal channels in the power or code
domain, compared with the conventional orthogonal multiple access (OMA) systems.
In the following, we focus on the power domain NOMA.

In the power domain NOMA, signals for multiple users are superposed and transmit-
ted over the same time slot, the same frequency, or the same code (Ding et al. 2017a).
Multiple access is achieved by allocating different power coefficients to different users.
Consider a two-user system as an example. The superposed signal is given by a1s1 + a2s2,
where a1 and a2 are the power coefficients for user 1 and user 2 with a2

1 + a2
2 = 1, respec-

tively, s1 and s2 are the transmitted signals for user 1 and user 2, respectively, with unit
power. This signal is transmitted by the access point or base station. The received signal
at user 1 is

y1 = h1
√

Px(a1s1 + a2s2) + n1 (4.183)

where h1 is the channel gain from the base station to user 1 and n1 is the AWGN with
mean zero and variance 2𝜎2. The received signal at user 2 is

y2 = h2
√

Px(a1s1 + a2s2) + n2 (4.184)

where h2 is the channel gain from the base station to user 2 and n2 is the AWGN with
mean zero and variance 2𝜎2.

The key idea of power domain NOMA is to allocate more power to the user with
poorer channel condition. Thus, channel state information must be available. Assume
that |h1| ≤ |h2|. Then, a1 ≥ a2. In this case, user 1 will decode its received signal y1
directly so that its rate is

R1 = log2

⎛⎜⎜⎝
1 +

|h1|2a2
1

|h1|2a2
2 +

2𝜎2

Px

⎞⎟⎟⎠
(4.185)

and user 2 will decode user 1’s signal first and then use successive interference cancel-
lation to decode its own signal so that its rate is

R2 = log2

(
1 +

Px|h2|2a2
2

2𝜎2

)
(4.186)

assuming perfect cancellation. The sum rate is therefore

R = log2

⎛⎜⎜⎝
1 +

|h1|2a2
1

|h1|2a2
2 +

2𝜎2

Px

⎞⎟⎟⎠
+ log2

(
1 +

Px|h2|2a2
2

2𝜎2

)
. (4.187)

It can be shown that this sum rate is larger than the sum rate in OMA in many cases.
Thus, NOMA can achieve higher spectral efficiency. For more than two users, similar
procedures can be applied, where the channel gains are first ordered and the power
coefficients are assigned based on the order. Based on its power coefficient, each user
either decodes its own signal directly by treating other users as interference or adopts
successive interference cancellation before decoding.

For energy harvesting communications, if the access point or the base station harvest
energy, the first effect of energy harvest is that the transmission power Px may become
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Figure 4.28 The data packet structure that splits
pilots.

a random variable. Hence, the sum rate R is randomly varying, even if the channel gains
are static. This is applicable to all energy harvesting communications systems where
the access point harvests energy from the sun, wind or RF signals, etc. The energy
arrival process will affect the power allocation within users and therefore the efficiency
of NOMA. If the users harvest the RF signal from the base station, the second effect
of energy harvesting is that this may change their order of decoding, depending on
the portion of energy they harvest. Both effects can be examined by using a modified
version of the sum rate. For example, the average sum rate can be obtained over Px
before the optimization of a1 and a2. Power splitting can be applied to y1 and y2 before
deriving the rates.

Also, from the energy harvesting point of view, the non-orthogonal channels in
NOMA actually provide more energy than the orthogonal channels in OMA, due to
the extra multi-user interference. Interference degrades data performance but provides
an extra source of energy.

4.6.4 Joint Detection and Estimation

The purpose of energy harvesting estimation is to provide the channel estimates for
signal detection. Thus, signal detection and channel estimation need to be jointly con-
sidered with energy harvesting, similar to Section 4.4.2. In this case, there are three parts
in the data packet that need to be balanced, as illustrated in Figure 4.25: energy harvest-
ing; channel estimation; and data transmission. When the total resource is limited, there
exists an optimum tradeoff between them. In this subsection, using a relaying system,
we will discuss more cases of the tradeoff between data transmission, channel estima-
tion and energy harvesting in a fixed data packet. The data packet structures studied
in this subsection are shown in Figures 4.29, and 4.30. These data packets are for the
source-to-relay link consisting of three parts: pilots for channel estimation; pilots for
energy harvesting; and data for signal detection. For the relay-to-destination link, the
data packet only has two parts, pilots for channel estimation and data for signal detec-
tion, as the destination does not need any energy harvesting.

Figure 4.28 shows data packet structure where the pilots for channel estimation have
been split in power. In this structure, the source node only sends one group of pilots
but each pilot is split in power for both energy harvesting and channel estimation. The
data transmission happens in a time division manner. Figure 4.29 shows the data packet
structure where the data symbols have been split in power. In this structure, the source
sends one group of pilots for channel estimation, but the data symbols are split in power
for both energy harvesting and data transmission. Figure 4.30 shows the data packet
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Figure 4.29 The data packet structure that
splits data. S R
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Figure 4.30 The data packet structure that
splits both pilots and data. S R

Time t

Power

Channel
Estimation

Data Transmission

Energy Harvesting

P

ρ3

I – ρ3

m3 D – m3

structure where both pilots and data symbols have been split in power. In this structure,
the source sends one group of pilots for channel estimation and one group of data sym-
bols for information delivery. The energy is harvested by splitting all symbols in the data
packet. This structure is similar to Figure 4.25.

The considered system is an amplify-and-forward relaying system with one source,
one relay, and one destination, which means the signal is only amplified at the relay
before being forwarded. There are two hops: the hop from source to relay (SR);
and the hop from relay to destination (RD). The first hop assumes the structures in
Figures 4.28–4.30, while the second hop only has one part for channel estimation
and one part for data transmission without any energy harvesting. There is no direct
link between source and destination due to obstacles. Time division is used in all the
structures to achieve orthogonal channels. Therefore, the source first sends the data
packet to the relay, and then the relay sends the data packet to the destination. Also, a
total of D symbols are used in each structure for channel estimation, data transmission,
and energy harvesting. Each symbol occupies a time duration of T seconds. All block
fading channels are Rayleigh. All the values of m1,m2, and m3 are integers and smaller
than D. Also, 0 ≤ 𝜌1, 𝜌2, 𝜌3 ≤ 1.

In the first structure, there are three parts in the first hop: pilots for channel estimation
and energy harvesting, and data symbols for information transmission. First, one has the
received pilots at the relay for channel estimation as

y(i1)
r =

√
𝜌1Ps1h1x(i1) + n(i1)

1 (4.188)

where i1 = 1, 2,… ,m1 represent the pilots in the data packet, 𝜌1 is the power splitting
factor, 0 < m1 < D is an integer, Ps1 is the transmitted power of the source, h1 is the
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fading gain in the SR channel and is complex Gaussian with mean zero and variance
2𝛼2, x(i1) = 1 is the transmitted pilot, and n(i1)

1 is the complex AWGN with mean zero
and noise power 2𝜎2. The received pilots for energy harvesting can be expressed as

y(i1)
r =

√
(1 − 𝜌1)Ps1h1x(i1) + n(i1)

1 . (4.189)
In the same structure, the received data symbols are expressed as

y(j1)
r =

√
Ps1h1x(j1) + n(j1)

1 (4.190)
where j1 = m1 + 1,… ,D, and x(j1) is the transmitted data symbol with unit power. Using
(4.189), the harvested energy at the relay is derived as Er1 = 𝜂Ps1|h1|2(1 − 𝜌1)m1, where
𝜂 is the conversion efficiency of the energy harvester and we have assumed T = 1 for
simplicity. The harvested energy will be used to transmit m1 pilots to the destination for
the channel estimation and D − m1 data symbols from the source in the second hop in
order to maintain the data rate. Thus, the transmission power of the relay is

Pr1 =
𝜂Ps1|h1|2(1 − 𝜌1)m1

D
. (4.191)

Also, using the signals in (4.188), we can get an estimate of h1 as

ĥ1 = h1 + 𝜀1 (4.192)

where 𝜀1 =
Σm1

i1=1n(i1 )
1

m1
√
𝜌1Ps1

is the estimation error. Thus, one has h1 = ĥ1 − 𝜀1.
The received signal in (4.190) will be amplified and forwarded to the destination by

using the harvested energy. The amplification factor can be written as

â1𝑣ar
2 = 1

Ps1|ĥ1|2 + 2𝜎2
(4.193)

where ĥ1 is the estimated channel gain for the first hop between source node and relay
node in (4.192).

In the second hop, the signal is transmitted from the relay to the destination. In addi-
tion to sending m1 pilots to the destination for channel estimation, the relay also for-
wards the D − m1 data symbols from the source to the destination. In this hop, the
received pilots for channel estimation at the destination node can be written as

y(i2)
d =

√
Pr1g1â1𝑣arx(i2) + n(i2)

2 (4.194)

where i2 = 1, 2,… ,m1, x(i2) = 1 is the pilot value, n(i2)
2 is the AWGN with zero-mean and

variance 2𝜎2, â1𝑣ar is the amplification factor, Pr1 is the relay transmission power given in
(4.191), and g1 is the fading channel coefficient of the RD link and is a complex Gaussian
random variable with mean zero and variance 2𝛼2.

Also, the received signals of the data symbols at the destination are given by

y(j2)
d =

√
Pr1g1â1𝑣ar(

√
Ps1h1x(j1) + n(j1)

1 ) + n(j2)
2 (4.195)

where n(j2)
2 is the AWGN at the destination node with zero mean and variance 2𝜎2.

By using the received signals in (4.194), the channel gain of the RD link can be esti-
mated as

ĝ1 =
√

Pr1√
P̂r1

g1 + 𝜀2 (4.196)
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where 𝜀2 =
Σm1

i2=1n(i2 )
2

m1â1𝑣ar
√

Pr1
and P̂r1 = 𝜂Ps1|ĥ1|2(1−𝜌1)m1

D
.

By using the channel estimates in (4.195), the received signal at the destination can be
rewritten as

y(j2)
d =

√
P̂r1ĝ1â1𝑣ar

√
Ps1ĥ1x(j1)

−
√

P̂r1ĝ1â1𝑣ar
√

Ps1𝜀1x(j1)

+
√

P̂r1ĝ1â1𝑣arn
(j1)
1

−
√

P̂r1
√

Ps1ĥ1â1𝑣ar𝜀2x(j1)

+
√

P̂r1
√

Ps1â1𝑣ar𝜀1𝜀2x(j1)

−
√

P̂r1𝜀2â1𝑣arn
(j1)
1 + n(j2)

2 .

(4.197)

From the above, the end-to-end SNR expression can be derived as

𝛾1end =
Ps1|ĝ1|2|ĥ1|2

𝑣1
(4.198)

where 𝑣1 = Ps1|ĝ1|2𝜀1𝑣ar + 2𝜎2|ĝ1|2 + Ps1𝜀2𝑣ar|ĥ1|2 + Ps1𝜀1𝑣ar𝜀2𝑣ar + 2𝜎2𝜀2𝑣ar +
2𝜎2

P̂r1â1𝑣ar
2

and E[|𝜀|21] = 𝜀1𝑣ar , E[|𝜀|22] = 𝜀2𝑣ar .
To derive the cumulative distribution function of the end-to-end SNR, we first calcu-

late Var(𝜀1) and Var(𝜀2). One has already had

𝜀1 =
Σm1

i1=1ni1
1

m1
√
𝜌1Ps1

. (4.199)

It has a mean of zero. Also, its variance is

Var(𝜀1) = E{|𝜀1|2} = 2𝜎2

m1𝜌1Ps1
. (4.200)

Similarly, the variance of 𝜀2 can be calculated as

Var(𝜀2) =
2𝜎2D(Ps1|ĥ1|2 + 2𝜎2)

[𝜂Ps1|ĥ1|2(1 − 𝜌1)m1]m1

. (4.201)

These two equations can be used in the end-to-end SNR.
Further, |ĥ1|2 is an exponential random variable with scale parameter

𝜆1 = 1
2𝛼2 + 2𝜎2

m1𝜌1Ps1

. (4.202)

The probability density function (PDF) of |ĥ1|2 can be written as

f|ĥ1|2 (x) = 𝜆1e−𝜆1x. (4.203)

Its CDF is

F|ĥ1|2(x) = 1 − e−𝜆1x. (4.204)
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Similarly, let 𝜆2 = 1
4𝛼4

2𝛼2+ |2𝜎2 |
m1𝜌1Ps1

+ |2𝜎
2 ||m2+D−m1 |𝜌1
|m2 |𝜂|1−𝜌1 |m1

. Its PDF can be approximated as

f|ĝ1|2 (x) = 𝜆2e−𝜆2x (4.205)

and its CDF can be approximated as

F|ĝ1|2 (x) = 1 − e−𝜆2x. (4.206)

By using these expressions, the CDF of 𝛾1end can be derived as

F𝛾1end
(x) = P1r{𝛾1end < x} = I11 + I12 (4.207)

with

I11 = 1 − e
−

2𝜎2x
m1𝜌1Ps1

+ 2𝜎2x
Ps1

2𝛼2+| 2𝜎2
m1𝜌1Ps1

| (4.208)

and

I12 = 1

Ps1

(
2𝛼2 + 2𝜎2

m1𝜌1Ps1

)e−
2𝜎2x+2𝜎2xm1𝜌1

2𝛼2m1𝜌1Ps1+2𝜎2
2𝛼2m1𝜌1Ps1 + 2𝜎2

m1𝜌1

− 1(
2𝛼2 + 2𝜎2

m1𝜌1Ps1

)

⋅ e−
𝜆2m1x2𝜎2𝜌1 (D)

𝜂𝜌1m1 (1−𝜌1 )m12Ps1y
− 2𝜎2x+2𝜎2xm2

2𝛼2m1𝜌1Ps1+2𝜎2

⋅
2

Ps1

( z1(x)
(𝜂m1(1 − 𝜌p)m1

2)m1

) 1
2

K1

(
2

√
z2(x)
𝑤4

)

(4.209)

where 𝑤4 = (𝜂m1(1 − 𝜌1)m1
2)(2𝛼2m1𝜌1Ps1 + 2𝜎2), z1(x) = ( 1

4𝛼4

2𝛼2+ 2𝜎2
m1𝜌1Ps1

+ 2𝜎2D𝜌1
m1𝜂|1−𝜌1 |m1

) (4𝜎4xD +

4𝜎4m1𝜌1xD + 2𝜎2xm1m1𝜌1D + 2𝜎2m1xD ∗ 2𝜎2x𝜌1

m1𝜌1
+ 2𝜎2x𝜌1) (2𝛼2m1𝜌1Ps1 + 2𝜎2) and

z2(x) = ( 1
4𝛼4

2𝛼2+ 2𝜎2
m1𝜌1Ps1

+ 2𝜎2D𝜌1
m1𝜂|1−𝜌1 |m1

) (4𝜎4xD + 4𝜎4m1𝜌1xD +2𝜎2xm1m1𝜌1D + 2𝜎2m1xD ∗

2𝜎2x𝜌1

m1𝜌1
+ 2𝜎2x𝜌1)m1.

The outage probability can then be derived as

P0(𝛾01) = F𝛾1end
(𝛾01). (4.210)

Moreover, the BER can be calculated as

BER1 = 1
2 ∫

∞

0

e−x
√

x ∗ 𝜋
F𝛾1end

(x)dx. (4.211)

where erfc(x) is the complementary error function. The structures in Figures 4.29 and
4.30 can be analyzed in a similar way. The analysis is ignored here for brevity.

Figures 4.31–4.34 show the performances of the first structure in Figure 4.28 for dif-
ferent parameters. One can see that there are optimum values of m and optimum values
of 𝜌1 in all the cases considered. The SNRs will change the locations of the optimum
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Figure 4.31 Outage versus m1.
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Figure 4.32 Outage versus 𝜌1.

values. This is expected, as a larger value of m1 leads to more pilots for a more accurate
channel estimate but this reduces the number of data symbols that can be transmitted.
Similarly, a larger value of 𝜌1 allows more energy for channel estimation for a more accu-
rate channel estimate but it also reduces the amount of energy harvested and hence a
smaller transmission power for the relay, leading to poorer performances. Similar trade-
offs exist for the other two data packet structures. Thus, for energy harvesting detection
and estimation, it is important to allocate the appropriate amount of energy for channel
estimation, energy harvesting and data transmission to achieve the optimum perfor-
mances.
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4.7 Summary

In this chapter, we have discussed several main physical layer techniques in energy har-
vesting communications systems.

First, the effect of energy harvesting on the physical layer techniques in conventional
communications systems has been examined. The examination has shown that, if the
fixed-power transmission strategy is employed so that the energy harvesting device
accumulates energy to transmit signals at a fixed power, there is an optimum number
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of time slots or harvesting time the device can choose to balance the requirement for
transmission power and transmission delay. If the variable-power transmission strategy
is used so that the energy harvesting device transmits as soon as the energy is harvested,
the BER and rate performances will be degraded due to the random variation in the
transmission power.

Secondly, new signal detectors, new channel estimators and new transmission wave-
forms for energy harvesting have been designed. For signal detection, the random trans-
mission power must be considered in the detector design when it is unknown. For chan-
nel estimation, energy harvesting reduces the resources used for channel estimation and
hence, an optimum tradeoff between energy harvesting, channel estimation and data
transmission exists, when the total amount of resources is fixed. For waveform designs,
if a linear energy harvester is applied or a single sum signal is used, the optimum strategy
is always to put all the transmission power at the source with the best channel condition,
while if a non-linear energy harvester is applied for a sum of harvested energy, the best
strategy is to allocate different amplitudes to different sources, while the phase of the
waveform can be arbitrary.

Finally, several other important physical layer issues have also been discussed briefly.
For the circuit power, if it is considered in the design, it normally degrades the rate per-
formance, as part of the harvested energy needs to be used for circuit power consump-
tion. For the physical layer security, the random variation in the transmission power can
affect the secrecy rate, while for NOMA, the decoding order and the power allocation of
different users can be changed due to energy harvesting. For joint detection and estima-
tion, the balance between channel estimation, energy harvesting and data transmission
within a fixed data packet is required to achieve optimum performances.

To summarize, the physical layer techniques in energy harvesting communications
have two main characteristics. The first characteristic is that the transmission power or
the transmission time of an energy harvesting device can be random, due to the random
energy arrival process. The second characteristic is that the resources for other func-
tions in the physical layer can be reduced, due to the addition of the energy harvesting
function, if the total resource is limited. In the next chapter, we will discuss the upper
layer issues in energy harvesting wireless communications systems.




