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Energy Sources

2.1 Introduction

There are many different types of energy sources available for harvesting in wireless
communications. Depending on their characteristics, they can be categorized
as follows:

• Uncontrollable and unpredictable: These energy sources cannot be controlled to gen-
erate the amount of energy required at a specific time in a specific location. Also,
they do not follow commonly used predictive models or implementation of such pre-
dictive models is too complicated for relevant applications. An example of such an
energy source is mechanical vibration. A piezoelectric or electrostatic energy har-
vester can convert the vibrational energy into electricity but it may be hard to predict
when or where the vibration will occur and it is even harder to generate it intentionally
(Mitcheson et al. 2008).

• Uncontrollable but predictable: These energy sources cannot be controlled to generate
the energy when and where it is needed. However, their generation follows certain
patterns that have been well studied and are relatively predictable with acceptable
errors. For example, solar energy is mainly determined by solar activities and weather
conditions. It is hard to control the movement of the sun or the weather to achieve the
level of solar energy desired but solar energy has strong diurnal and seasonal cycles
that can be predicted (Bergozini et al. 2010). This prediction can be further improved
by incorporating weather data in the forecast.

• Controllable and partially predictable: These energy sources can be controlled to pro-
duce the amount of energy required at a specific time in a specific location by the
wireless device. In other words, these energy sources are controlled by the communi-
cations system. Wireless power is a good example of energy sources in this category.
In wireless powered communications systems, a radio frequency (RF) signal can be
sent by the power transmitter to the remote wireless device for electricity. Also, in
an indoor environment, the indoor light can be controlled for the wireless device to
harvest its energy using a photovoltaic cell (Wang et al. 2010). These energy sources
are only partially predictable, because their behaviors are not fully deterministic. For
example, channel fading may change the received wireless power randomly. Obstacles
in the room may change the illumination too.

Figure 2.1 shows some commonly used energy sources in energy harvesting wireless
communications. They have different characteristics. For example, the solar energy can
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Figure 2.1 Some commonly used energy sources for energy harvesting wireless communications.

only be used when or where it is sunny. The wind energy can only be used when or where
it is windy. The electromagnetic energy can only be used when radio transmissions are
not blocked. Hence, not all the energy sources can be used in all wireless communi-
cations systems due to size, mobility or power limitations of the wireless device. It is
important to choose the appropriate source for harvesting in the designs of energy har-
vesting wireless communications systems. In the next section, we will discuss some of
these energy sources, their characteristics, and their applications.

2.2 Types of Sources

In this section, we briefly discuss some commonly used energy sources in energy har-
vesting wireless communications. These sources can be mainly divided into three cate-
gories: mechanical energy, solar/light energy, and electromagnetic energy. All of them
need to be converted into electricity using transducers.

2.2.1 Mechanical Energy

Mechanical energy is commonly available in our daily life. Many devices can be used
to convert vibration, motion, stress, pressure or strain into electricity. Their main prin-
ciple is the conversion of mechanical energy from the displacement and oscillation of
a spring-mounted mass component into electricity. Based on the randomness of the
mechanical energy source, they can be categorized into three types: random vibration
energy; steady flow energy; and intermittent motion energy.

The random vibration energy is often seen in built environments, such as bridges,
buildings and train tracks (Roundy et al. 2003). They follow certain amplitudes and fre-
quencies but may be random due to the random occurrence of events. The vibration
energy can be extracted from these sources but the amount of energy extracted depends
on the amplitude and frequency of vibration. In some cases, the presence of the energy
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harvesting device may also affect the vibration due to the harvester’s own weight, as
vibration is normally generated by the movement of a mass on a supporting frame and
the harvester could add weight to the mass.

The steady flow energy comes from fluid flow, such as air or water, through pipes, or
the continuous motion around a shaft, etc. Wind power is one of the most important
examples of this energy. It uses the wind turbine to convert the air flow energy into
electricity. Another example is the use of blood flow in vessels and breathing in human
subjects to generate energy for body sensors that can monitor human body temperature
or blood pressure (Mitcheson et al. 2008). The air flow and the blood flow are relatively
stable so that the energy harvested from these flows is more deterministic.

The intermittent motion energy falls between vibration and flow. These energy sources
come from cyclical motion in the natural environment but the energy can only be har-
vested during a short period of the cycle. For example, a sensor monitoring the surface
of a road can harvest energy from vehicles passing over it but this energy is only avail-
able periodically. Also, energy can be harvested from human walking through shoes but
only when the foot steps on the ground.

These three types of mechanical energy have different levels of randomness, leading
to different levels of predictability. Based on the transduction method, the mechanical
energy sources can also be categorized into three types: electromagnetic; electrostatic;
and piezoelectric.

In the electromagnetic method, a magnet is used with a metal coil based on the law
of induction. This method produces electricity by moving the coil through the magnetic
field created by the stationary magnet (Moghe et al. 2009). When the coil moves or
the distance between the magnet and the coil changes due to mechanical motion or
vibration, an alternating current (AC) will be generated in the coil, which can be used to
power up the wireless devices. This motion can be either controllable or uncontrollable.
The advantage of this method is that no contact between coil and magnet is required
and the electricity generated can be used directly. However, it is hard to integrate the
electromagnetic device with the sensor circuit due to its size.

In the electrostatic method, the mechanical motion or vibration is used to change
the distance between two electrodes of a capacitor against an electrical field (He et al.
2009). This will change the capacitance of a variable capacitor. The variable capacitor is
made of two plates, one fixed and one moving. It needs to be initially charged. When
vibration or motion separates the two plates, the vibration or motion is transformed into
electricity due to the capacitance change, as the voltage across the capacitor will also
change to generate a current in the circuit for use. This method allows the integration
of the harvesting device into the sensor circuit.

In the piezoelectric method, a layer of piezoelectric material is used on top of the
wireless device so that mechanical strain on the surface of the wireless device will be
converted into electricity (Mitcheson et al. 2008). It uses a cantilever structure with a
mass attached to a piezoelectric beam that has contacts on both sides of the piezoelectric
material. The strain creates charge separation across the device to generate a voltage
proportional to the stress applied. In some cases, the amount of energy harvested from
this method is small and therefore, it may need to be combined with other methods.
Also, the piezoelectric materials are breakable.

Different motion, vibration and strain sources have different power densities. For
example, for a wind turbine operating at a wind speed between 2 m/s and 9 m/s,
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it can generate a power of about 100 mW (Ramasur and Hancke 2012). The blood
flow can generate a power of 1 μW, while the running shoes can generate a power of
several milliwatts (Paradiso and Starner 2005; Mitcheson et al. 2008). Finger typing
can generate a power of 7 mW, while lower limb movement could generate a power of
67 W (Mitcheson et al. 2008). Also, these energy sources have different applications.
For example, for a wireless sensor, it is unlikely to use a wind turbine or any harvesters
based on the electromagnetic method due to their bulky sizes. On the other hand, the
piezoelectric method is well suited for the sensor networks due to their size but only
for low-power applications due to the limited power.

2.2.2 Solar/Light Energy

Light is perhaps one of the most commonly used sources of energy for harvesting. The
photons from the light source can be converted into electricity using photovoltaic cells.
The photovoltaic cell has two types of semiconductor materials and their area of contact
forms a PN junction. When the photons arrive from the light source, the photovoltaic
cell will release electrons to produce electricity.

For outdoor applications, solar energy is a very reliable source for self-powered
devices. It has been used in many wireless networks to replace batteries by providing
an almost unlimited energy supply (Sitka et al. 2004). In most of these applications, a
solar panel is used to convert the radiation from the sun into electricity. This method
has been well established with relatively low cost and high efficiency over a wide range
of wavelengths. Also, the energy level provided by a solar panel is very close to the
nominal energy required by wireless devices. Specifically, the solar power density is
around 1370 W/m2 when it arrives at the Earth and after attenuation and conversion,
the available power density is still around 2 W/m2. However, one main disadvantage of
solar energy is its heavy reliance on the weather, time, and the operating environment.
For example, in the evenings when the sun goes down, there is hardly any solar energy
to harvest. Also, for indoor applications, solar energy may not be available. In this case,
it must be complemented by other energy sources. In general, solar energy is uncon-
trollable but can be predicted in standard conditions. In most cases, it can provide
more power than any other energy sources and thus is suitable for power-consuming
energy-harvesting communications applications.

For indoor applications, illumination from indoor lights is another source of energy. Its
radiation is typically at the level of 1 W/m2 and given an efficiency of 15%, the converted
electricity could be at the level of 0.15 W/m2. Typical values range between 10 μW/cm2

and 100 μW/cm2 (Wang et al. 2010). This is much smaller than the power density of
the Sun. Indoor light is relatively controllable compared with the Sun but still varies
depending on obstacles, distances, and operations.

Another type of energy that also uses the thermal effect is thermal energy (Leonov
2013). It uses the thermoelectric effect by converting the temperature difference
between two metals or semiconductors of different materials into electricity. This
is also called the Seebeck effect. Such temperature difference naturally occurs in
human bodies or in certain machines. The amount of power converted depends on
the thermoelectric properties of the materials and the temperature difference but in
general is on the order of 10 μW/cm2 to 1 mW/cm2 (Leonov 2013). This is suitable for
wearable sensors, such as fitness bands and smart watches.
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2.2.3 Electromagnetic Energy

The electromagnetic energy in this subsection mainly refers to RF energy. The advan-
tage of RF energy over solar energy is that it can work under most conditions: indoor
or outdoor, day or evening, sunny or cloudy. It can be as controllable as the light illumi-
nation but can also be as unpredictable as vibration. RF energy sources can be divided
into two main categories: near field; and far field (Lu et al. 2015). The near field applica-
tions include magnetic resonance or inductive coupling. They are often used to charge
devices in a wireless way over a very short distance. Due to the short distance, their effi-
ciency can be higher than 80% but this efficiency decreases quickly with distance. This
method is completely controllable and predictable. However, for wireless communica-
tions systems, this short distance may not be realistic. Hence, energy harvesting wireless
communications often use the far field method that can harvest energy over a distance
of more than 10 m.

The sources of RF energy in the far field method can be from the ambient environment,
such as radiations from the cellular base station, TV transmitter or WiFi router. It can
also be from dedicated power transmitters. One unique advantage of RF energy is that
most wireless systems are implemented using radio waves too and hence, information
delivery can be combined with energy transfer in the same system and sometimes by
the same signal.

The level of power from a global system for mobile communications (GSM) base sta-
tion is around −40 dBm/cm2. Studies show that other ambient sources, such as TV,
third generation (3G) and WiFi produce even weaker power. For example, a 3G base
station generates a power density of around −50 dBm/cm2, while WiFi signals provide
a power density of around −70 dBm/cm2 (Pinuela et al. 2013). Hence, although there
are many different ambient RF energy sources, in general their power densities are very
low, as their power densities decay quickly with distance. Consequently, these ambi-
ent RF sources can only be used for low-power applications, such as radio frequency
identification (RFID) or sensor networks, or the wireless device must be very close to
the sources. To harvest enough energy for more power-consuming wireless operations,
either a large antenna or a wide-band antenna need to be used. Alternatively, dedicated
sources of RF energy are required, as in wireless powered communications systems, at
additional cost.

There are other types of energy available for harvesting. For example, the pyroelec-
tric effect of materials can be used to generate electricity. Biomedical substances can be
used to generate biochemical energy. Acoustic waves can be converted into electricity
using transducers or resonators too. Alternatively, all the above energy sources can be
combined. Table 2.1 gives an overview of the amount of energy available from different
sources.

2.3 Predictive Models of Sources

The amount of energy from most energy sources varies with time. This time-variance
leads to uncertainty in the energy supply for wireless communications. Thus, it is very
useful to have accurate models that describe this energy uncertainty, because wireless
communications systems can use these models to make critical decisions on the usage
of energy.
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Table 2.1 Typical amount of energy from
different sources.

Source Typical amount of energy

Solar 100 mW/cm2 (sunny)
Indoor light 0.01 ∼ 0.1 mW/cm2

Wind 0.38 mW/cm3 (at 5 m/s)
Piezoelectric 0.2 ∼ 0.4 mW/cm3

Electrostatic 0.05 ∼ 0.1 mW/cm3

Ambient RF 0.2 nW/cm2 ∼ 1μW/cm2

In this section, we will discuss some important modeling studies on the amount of
energy provided by various sources. The data used to derive these models were collected
by using a certain measuring equipment or energy harvester. Thus, there is a conversion
loss from the available energy at the source as the input of the equipment to the mea-
sured or harvested energy as the output of the equipment. Nevertheless, since the same
equipment or energy harvester is used to collect all data, this conversion loss can be
considered as constant so that the behaviors of the data before collection and after col-
lection are approximately the same to justify the usefulness of the derived models. In the
next chapter, we will discuss models that describe the conversion loss or the efficiency
of the energy harvester. Using the energy source model here and the energy harvester
model in the next chapter, one can predict how much energy is available for wireless
communications. We will also discuss models of the harvested power directly in the
next chapter. In the following, we will focus on the solar energy models and the ambi-
ent RF energy models, as they are the two most widely used energy sources in wireless
communications systems.

2.3.1 Solar Energy Modeling

As discussed before, solar energy is not controllable but due to its clear diurnal and
seasonal patterns, it is predictable. However, its prediction is highly dependent on the
weather conditions.

The simplest model for solar energy prediction is the exponentially weighted moving
average (EWMA) model (Cox 1961; Kansal et al. 2007). It divides the data at different
time slots on different days into a matrix, where the columns of the matrix could repre-
sent different time slots on the same day while the rows of the matrix could represent
different days. It uses a weighting factor of 𝜌 to predict the solar energy in the next time
slot by linearly combining the current measurement and the previously predicted solar
energy. The weighting factor decreases with time to lay a higher emphasis on the mea-
surements taken at a time closer to the time to be predicted. Mathematically, the EWMA
predictor is given by

Ê(t + 1) = 𝜌E(t) + (1 − 𝜌)Ê(t) (2.1)

where Ê(t + 1) is the predicted value in the next time slot t + 1, E(t) is the measure-
ment in the current time slot t, and Ê(t) is the predicted value in the current time slot t.
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The exponential weighting can be seen by replacing Ê(t)with 𝜌E(t − 1) + (1 − 𝜌)Ê(t − 1)
to give

Ê(t + 1) = 𝜌E(t) + (1 − 𝜌)𝜌E(t − 1) + (1 − 𝜌)2Ê(t − 1) (2.2)

where the predicted value at time slot t − 1 has a smaller weighting factor of (1 − 𝜌)2

since 0 < 𝜌 < 1. Using (2.1) in solar energy prediction, one has

Êt(d + 1) = 𝜌Et(d) + (1 − 𝜌)Êt(d) (2.3)

where d represents the day, t represents the time slot on that day, Êt(d + 1) is the pre-
dicted value at time t on the (d + 1)th day, Et(d) is the measured value at time slot t on
the dth day, and Êt(d) is the predicted value at time slot t on the dth day. If a matrix is
used, Et(d) is the element on the dth row and tth column of the measurement matrix.
From (2.3), the prediction for each time slot is calculated by taking into account the
predicted and measured values at the same time slot on the previous day.

The EWMA model works well when the weather condition is stable over a few days or
does not change at all. However, if the weather does change, its accuracy will decrease.
For example, if the weather keeps switching between sunny and cloudy on different
days, using the predicted and measured values on the current day will not help the pre-
diction for the next day much. In this case, the weather conditioned moving average
(WCMA) model can be used (Piorno et al. 2009). The WCMA model again divides data
into a matrix with rows representing days and columns representing time slots. How-
ever, unlike EWMA, it uses the average of the measured values on a few previous days,
not just one previous day. Specifically, one has

Êt+1(d) = 𝜌Et(d) + (1 − 𝜌)
∑D

i=1 Et+1(i)
D

(2.4)

where Êt+1(d) is the value predicted for the next time slot t + 1 on the dth day, Et(d) is the
measured value at the current time slot t on the dth day, D is the number of previous days
used, and Et+1(i) is the measured value at time slot t + 1 on the ith day, i = 1, 2, · · · ,D.
This model can improve the accuracy over the EWMA model by using an average of
the values at the same time slots on previous days instead of one single predicted value
on the previous day. However, if there is a cloudy day followed by many sunny days or
vice versa, this method will cause errors. To reduce the error, the measurements in the
previous time slots on the same day can also be used, to replace a single measurement at
the current time slot on the same day assuming that the weather conditions are at least
stable for the whole day. In this case, the WCMA model can be modified as

Êt+1(d) = 𝜌Et(d) + (1 − 𝜌)G(K , d, t)
∑D

i=1 Et+1(i)
D

(2.5)

where

G(K , d, t) = V ⋅ P
𝟏 ⋅ P

(2.6)

K is the number of time slots in the past on the same day, V is a K × 1 vector with
the kth element being 𝑣k = Et−k+1(d)

1∕D
∑D

i=1 Et−k+1(i)
, P is a K × 1 vector with the kth element being

pk = k−1
K

, ⋅ is the dot product of two vectors, and k = 1, 2, · · · ,K . One sees that there is an
additional weighting factor G(K , d, t) to consider the variance over different time slots.
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Another simple predictor uses a 2-D linear filter. In this case, the predicted value is
calculated as

Êt+1(d) = a1Et+1(d − 1) + a2Et(d) + a3Et(d − 1) (2.7)

where the parameters of a1, a2 and a3 can be optimized using training data. There are
other more complicated models, such as adaptive management or neural networks. They
are not discussed here. In general, WCMA is better than EWMA. A detailed comparison
of these models can be found in Bergozini et al. (2010).

2.3.2 Ambient RF Energy Modeling

Another widely used energy source is the ambient RF energy. Example measurements of
such ambient RF energy at different time instants in different frequencies are shown in
Figure 2.2. This plot shows the measurements taken from the GSM uplink from 880 to
915 MHz in the UK (Azmat et al. 2016). One can see that the input power of the energy
harvester or the available power from this band changes with both time and frequency.
It is close to zero in many cases but at certain time instants and frequencies, it could be
as large as a few milliwatts. Thus, if a wireless device harvests energy from this band,
it will be useful to have some model that describes the change of power at different
time instants and frequencies so that the device knows when and where to harvest. To
simplify the problem, a wide-band harvester can also be used so that all input power
at different frequencies can be collected. In this case, all the components at different
frequencies will be added to give a simpler measurement plot similar to Figure 2.3, where
the measurements become a function of time only. Figure 2.3 measures the power in
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Figure 2.2 Example measurements of ambient RF energy at different time instants and frequencies in
the GSM band from 880 to 915 MHz.
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Figure 2.3 Time series of measured power in the 3G band from 1805 to 1880 MHz in the UK.

the 3G downlink from 1805 to 1880 MHz for four months in the UK. There are certain
patterns embedded in the data that can be extracted.

Using these measurements and time series analysis methods, the relationship
between the available ambient power and the time variable can be modeled. For
example, machine learning algorithms can be used. The linear regression method states
that the available power can be modeled as

Ê(t) =
I∑

i=1
aiEi(t) + a0 (2.8)

where a1, · · · , aI are the parameters to be obtained via training, a0 represents some ran-
dom error or disturbance, and Ei(t) are the features used. For polynomial regression, the
available power can be predicted as

Ê(t) =
I∑

i=1
ai[E(t)]i + a0 (2.9)

to a power of order I. There are other machine learning algorithms, such as support
vector regression and random forest. All of them split the data into two parts, one part
for training to obtain the optimal parameters and the other part for testing to calcu-
late the prediction error. Define the normalized root mean squared error (NRMSE)

as NRMSE =
√

1
I

∑I
t=1 (E(t)−Ê(t))2

1
I

∑I
i=1 E(t)

. Figure 2.4 compares the prediction errors of different
machine learning algorithms. In this case, the power measurements at different min-
utes are combined into hours and the combined hourly data are used to predict the RF
energy in the next hours. One sees that the random forest algorithm has the highest
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Figure 2.4 Comparison of prediction errors for different machine learning algorithms.

error, while the linear regression has the lowest error, in most cases. The average error
is 0.0339, or about 3% error.

The predicted energy can be used to control the wireless device so that it knows
when it should start to harvest the energy, as most energy harvesters have an activation
energy below which they cannot operate and hence it is only meaningful to harvest
energy above the activation level. Thus, there may be two types of errors. If the
predicted energy is too high but the actual energy is below the activation level, the
energy harvester will start but harvest no energy. Hence, it will waste existing energy.
If the predicted energy is too low but the actual energy is above the activation level, the
energy harvester will miss an energy opportunity. Figure 2.5 describes this situation,
where over-estimation leads to wasted existing energy while under-estimation leads to
missed energy. The error rate is 0.108 so that the total efficiency using linear regression
is around 89.2%.

In addition to regression methods, the wavelets method can also be used to model the
available ambient RF energy (Chen and Oh 2016). For example, the Daubechies D-2n
wavelet can be used. For a time series E of length N , the level 1 Daubechies D-2n trans-
form is given by

E → [m(𝟏)|k(𝟏)] (2.10)

where E = [E(1) E(2) · · ·E(N)] is the time series, m(𝟏) = [m(1)
1 m(1)

2 · · ·m(1)
N∕2] is the first

trend sub-signal whose ith element is given by m(1)
i = E ⋅ V(𝟏)

i , k(𝟏) = [k(1)
1 k(1)

2 · · · k(1)
N∕2]

is the first fluctuation sub-signal whose jth element is given by k(1)
j = E ⋅ U(𝟏)

j , V(𝟏)
i is the

level 1 scaling signal and U(𝟏)
j is the level 1 wavelet that will be explained later. In practice,

multiple levels are often used in order to obtain as many details about the time series as
possible. Thus, m(𝟏) can be used as if it were the signal to obtain level 2 decomposition as

m(𝟏) → [m(𝟐)|k(𝟐)] (2.11)
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Figure 2.5 Effect of prediction error on wasted and missed energy using linear regression.

where m(𝟐) is the level 2 trend sub-signal (or low-frequency component) and k(𝟐) is the
level 2 fluctuation sub-signal (or high-frequency component). They are defined in a
similar way to m(𝟏) and k(𝟏), except that their lengths are N∕4 now. Thus, one has

E → [m(𝟐)|k(𝟐)|k(𝟏)]. (2.12)

This process can continue until L levels are used. A level selection at this point is
necessary to decide how many high-frequency components should be included to
reconstruct the signal with the low-frequency component. Once this is decided, if two
levels are selected, the reconstructed signal would be

Ê =
N∕4∑
i=1

m(2)
i V(𝟐)

i +
N∕4∑
j=1

k(2)
j U(𝟐)

j +
N∕2∑
j=1

k(1)
j U(𝟏)

j (2.13)

and so on. There will be some difference between the original signal and the recon-
structed signal. The choice of levels actually determines the amount of this difference.
An important observation here is that, using these reconstruction equations, one can
have an analytical relationship between the power measurement and the time. Thus,
they provide a statistical model between the measured energy and the time.

The scaling signal and the wavelet are explained as follows. Specifically, one has V(l)
i =∑2n

k=1 ckV (l−1)
2i−2+k and U(l)

j =
∑2n

k=1 dkV (l−1)
2j−2+k , where l = 1, 2, · · · , L so that they can be itera-

tively derived with the initial conditions being the natural basis of V 0
i whose ith element

is 1 and all the other elements are zero, and ck and dk are the scaling and wavelet coef-
ficients, respectively, and are constants that are predefined. Figure 2.6 compares the
measured energy and the predicted energy using the Daubechies D-2n wavelet with
vanishing moments n = 10. One can see that the predicted value can track the actual
measurement very well. Other wavelets methods can also be used to model or predict
the ambient RF energy.
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Figure 2.6 Comparison of predicted and measured power using the wavelets method for the band
from 1805 to 1880 MHz in the UK (black outside represents measured power and light grey inside
represents predicted power).

2.4 Summary

In this chapter, we have discussed different sources of energy available for harvesting to
be used in wireless communications systems. This is the start of all energy harvesting
wireless communications systems.

First, it has been shown that different sources have different characteristics and hence
they can only be used for certain applications. For example, for mobile applications,
solar energy may not be convenient due to the bulky size of a solar panel. However, for
fixed nodes, such as a wireless sensor network access point, solar energy may be a good
choice by providing adequate energy. On the other hand, RF energy may be convenient
for radio communications systems due to its excellent integration with the RF circuits.
However, it may not provide enough energy for operations.

Secondly, different types of energy are generated based on different principles. Some
of them are green and renewable and hence they can be used for green communications.
Others may not be green or renewable and are only used for convenience. It is important
to consider the different amount of energy available from different sources so that the
right source can be chosen for the considered application.

Thirdly, in many cases, the energy source is not controllable but predictable due to
certain patterns or behaviors. The prediction models of the energy sources are useful in
offline system planning or online real-time adaptation. Different methods can be used
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to model the available energy at the source. Since the measured energy is a time series,
many time series analysis methods, such as regression and wavelets, can be used.

This chapter has discussed the energy source. In the next chapter, we will discuss the
energy harvester, which acts as a transducer between different types of sources and elec-
tricity. It is also an interface between the natural environment and the communication
circuit in the wireless device.




