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Differential Linear Matrix Inequalities
Optimization

Tiago R. Gongalves

Abstract—This letter proposes a new method to solve
convex programming problems with constraints expressed
by differential linear matrix inequalities (DLMIs). Initially,
feasible solutions of interest are characterized and a gen-
eral numerical method, based on the well known outer lin-
earization technique, is proposed and discussed from the-
oretical and numerical viewpoints. Feasible solutions are
written as a truncated series of a given set of time valued
continuous functions with symmetric matrix coefficients
to be determined. The numerical method encompasses
the piecewise linear solution usually adopted in the lit-
erature with lower computational burden. In the sequel,
several sampled-data control design problems whose opti-
mality conditions can be expressed in this mathematical
framework are provided. They are solved in order to put
in evidence the most important aspects of the proposed
method as well as to evaluate and compare numerical effi-
ciency and limitations. Moreover, it is shown that DLMIs are
particularly well adapted to cope with this class of optimal
control design problems.

Index Terms—Differential linear matrix
(DLMI), optimal control, sampled-data control.

inequalities

[. INTRODUCTION

IFFERENTIAL linear matrix inequality (DLMI) is a
mathematical entity expressed in the following general
form

L(X(),X©®) <0 (1)

for all ¢ € [0, h) with & > O being a given scalar that defines
the time interval of interest. In (1), X(¢) : [0, h) — R™ " is
a symmetric matrix function and the symbol L(-, -) denotes a
linear matrix-valued function. Observe that convex differential
constraints can also be expressed as (1) from the calcula-
tion of appropriate Schur Complements, [5]. Moreover, our
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main interest is to determine a solution (if any) that satis-
fies the boundary condition (Xg, X;) € 2 where X(0) = Xo,
X(h) = X; and Q is a convex set. To ease the notation, a
feasible matrix trajectory X(f) that satisfies the DLMI (1) for
all + € [0, h), under the boundary condition (Xo, X;) € €2,
is denoted simply as X € X. Hence, our main concern is to
find the optimal solution to the following convex programming
problem

f* = min f(Xo, Xp,) (2)
XeX

The importance of solving this problem for the class
of matrix functions X(f) to be specified later is enormous
mainly because several optimal control design problems can
be expressed of the form (2). Indeed, this is certainly the case
of reference [12] where the usefulness of DLMIs in the frame-
work of robust control design has been successfully pointed
out for the first time many years ago. More recently, the results
of [6], and [7] among others, by the same author, brought to
light once again the importance of DLMIs and consequently
the necessity to give more attention to the development of
numerical methods. The situation is even more critical when-
ever we have to handle a large number of coupled DLMIs
as (1), which often occur in many situations. As for instance,
the sampled-data optimal control design of Markov jump lin-
ear systems reported in [8], where a large number of coupled
DLMIs must be solved. Since the number of DLMIs equals
the number of modes of the Markov process, the development
of efficient numerical methods to deal with DLMIs appears to
be highly justified.

The importance to treat control design problems expressed
by DLMIs is shown in several recent papers as a consequence
of the efforts to solve time-varying systems and finite-time
horizon control problems, as in [3] and [13], respectively. In
addition, in [2], a sufficient condition involving DLMIs has
been given in order to characterize finite-time stability of lin-
ear time-varying systems with jumps. Specially, in [13], an
important contribution was made where a DLMI was solved
by splitting the time interval of interest into equally spaced
time instants which enabled the determination of approximate
solutions to Hso control problems with parameter uncertainty,
see also [9]. Recently, the same strategy has been discussed
in [6].

This letter concerns the numerical solution of (2). A general
iterative algorithm based on the classical outer linearization
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technique is proposed and its convergence is proven. It
depends on a given set of time-valued continuous functions
whose main impact on optimality will be illustrated by means
of several examples. The proposed algorithm guarantees that
the differential inequality (1) is strictly satisfied in the whole
time interval [0, &), and optimality of the final solution within
a desired precision level is attained by properly increasing the
number of matrix variables to cope with. More precisely, the
main contribution of this letter is the proposition of a new
interactive algorithm able to determine a near-optimal solu-
tion to the convex programming problem (2) by adopting the
following parametrization

X0 =) X 3)
ieNgy

where ¢;(1) : [0,h) — R for all i € Ny = {0,1,...,n4},
with ny > 1, constitute a set of given time-valued continuous
functions and X; € R"*", i € Ny are symmetric matrices to
be determined. In this sense, the piecewise solution proposed
in [1] and more recently in [8], and polynomial solutions
of finite degree emerging from sum of squares optimization,
see [6], can be viewed as particular cases of our method that
follow from adequate choices of the functions {¢;(-)}ien,.
Hence, this letter proposes a new and alternative method to
cope with convex programming problems of the form (2).
However, it is important to stress that for the special case
of polynomial functions the results of [10] for polynomials on
convex domains and [11] for semidefinite programming are
relevant and deserve more attention and research effort for
comparison as far as numerical efficiency is concerned. Here,
our main purpose is to provide an algorithm able to handle
the convex problem (2) by adopting the approximation (3)
where the functions ¢;(-) for all i € Ny are not necessarily
polynomials. Of course, the determination of the best set of
functions (in some sense) is an open problem to be addressed
in the future.

The notation used throughout is standard. For real vectors
or matrices, (') refers to their transpose. The symbols R, R
and N denote the set of real, real nonnegative and natural
numbers, respectively. For symmetric matrices, (o) denotes the
symmetric block. For any real symmetric matrix or symmetric
matrix function the notation Z(-) > 0 (Z(-) > 0) indicates that
it is positive (semi)definite. For a symmetric matrix oy, (+)
indicates its maximum eigenvalue.

[I. PROBLEM STATEMENT AND PRELIMINARIES

Our main purpose is to provide a solution of (1), if any, for
a class of real matrix functions that are useful in the context
of optimal control systems design. To this end, the following
definition is relevant to characterize the solutions of interest.

Definition 1 (DLMI Solution): The symmetric matrix func-
tion P(t) : [0,h) — R™" is a solution of (1) if P(¢) is
continuous and satisfies

L(P®),P®) <0 4)

almost everywhere in the time interval [0, /).
This definition preserves continuity but allows solutions X (f)
that fail to be differentiable in some isolated points of the time

domain [0, #). Moreover such DLMI, whenever admits a solu-
tion, is not unique in general. Hence, we search for feasible
solutions of the form (3) where the continuous scalar valued
functions {¢;(-)}ien, define a basis for continuous scalar val-
ued functions in the time interval ¢ € [0, ). This means that
any DLMI solution P(f) can be approximated by X(¢) given
in (3), provided that X;, i € Ny with ny possibly large enough,
are properly determined. Several different sets of functions
exhibiting this property can be adopted, among them, the
simpler ones are as follows:
o Piecewise linear - The time interval [0, &) is split into
ng subintervals of length n = h/ng. The scalar valued
continuous function defined for all ¢ € [0, &)

_

cb(t):{o, n’

is used to construct the set of piecewise continuous lin-
ear functions ¢;(f) = ¢(t — in) defined in the whole
time interval [0, h), for all i € Ng. Summing up all
contributions we obtain

X() = X; + (%)(r _in) ©)

lt] <n

5
[zl > n ©)

valid in the time segment ¢ € [in, (i + 1)n) for each
i=0,1,...,nys — 1. Continuity is preserved but differ-
entiability, in general, does not hold at the border points
of each time subinterval.

o Taylor series - In the time interval [0, &) consider the set
of polynomial normalized functions ¢;(f) = (t/h)i for all
i € Ny. Hence, (3) rewritten as

t l
X0 =3 x(;) )
16N¢
is the Taylor’s expansion of a continuously differentiable
DLMI solution P(t) at + = 0 with successive matrix
coefficients X;(i!/h'), for all i € Ny.
o Fourier series - In the time interval [0, &), setting T > h,
the equation (3) has the form

o= T (7)o (1))

which has been obtained from the following mathematical
manipulations. Let Pr(f) : R — R"*" be a periodic even
function with period 27T. Extracting P(f) from P(f) =
Pr(t+ (T — h)/2) for all t € [0, h), the development of
Pr(¢) in Fourier series provides X(¢) given by (8). This
solution avoids the evaluation of the Fourier series at the
border points of the time interval under consideration. We
always have adopted T = 2h.

It is important to remark that the first choice (5) repro-
duces the piecewise linear solutions considered in [1] and [8].
Moreover, as we have mentioned before, many different sets of
functions can be adopted. For instance, a set that combine the
first and second or the first and third are other possibilities. The
determination of the best set of functions that furnishes a near
optimal solution to (2) with the smallest computational burden
(represented by ng) is still an open problem to be addressed
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in the future. Actually, denoting X € & a symmetric matrix
function X(#) of the form (3) that satisfies the DLMI (1) for
all ¢ € [0, h) under the boundary condition (Xo, X) € 2, we
want to find the optimal solution to the convex programming
problem

fm =/ ZQE‘%f(Xo,Xh) €))

For a given set of functions ¢;(-), i € Ny, the corresponding
suboptimal solution is such that f* <« f(Z‘ whenever, putting
aside isolated points, P(f) < X(¢) in the time interval ¢ €
[0, k). Clearly, the three possibilities considered before, among
others, exhibit this important and necessary property whenever
ng is chosen (possibly) sufficiently large.

[1l. OUTER LINEARIZATION

This section is devoted to the development of a global
convergent algorithm able to solve the convex programming
problem stated in the right hand side of (9). The set of scalar
valuated functions ¢;(-), i € Ny, is supposed to be known. The
main idea is to use the notion of outer linearization, see [4],
in order to decompose the original problem in a simpler con-
vex problem expressed by linear matrix inequalities (LMIs).
To this end, let us introduce the set of m > 2 ordered and
different time samples

tw=1{t,€[0,h] :r=1,2,...,m} (10)
where t{ = 0 and t,, = h and the real scalars
do;

di = d—t’(m, cir = ity (11)
forall r=1,2,...,m and all i € Ny. Associated to 7, it is
convenient to define the convex set
Xn=1{Xo.....Xn : L Z Xid;y, Z Xieiw | <0Y (12

i€N¢ iEN¢
for all r = 1,...,m. It is clear that it has been obtained by

imposing the inequality constraint (4) for each time instant
t € T, SO being a convex set expressed in terms of m LMIs.
The next lemma states a useful property, that is, the set X is
a subset of X},.

Lemma 1: For any m > 2 then Xy C &),.

Proof: It follows immediately from the fact that Xy =
limy,—, s &;;; Whenever the samples in the interior of the time
segment are such that 7o, = limy— T = [0, h]. Hence,
since 7, C [0, k] for any given m > 2, the claim follows. W

The set &), for m > 2 is a result of an outer linearization
procedure applied to the convex set Xy in the sense that the
constraints of &), are expressed through linear matrix inequal-
ities and the subset relation Xy C A}, holds for all m > 2.
Hence, it is natural to take advantage of this property by
introducing the auxiliary convex programming problem

fm=_ min v JF(Xo. Xpn)

Xo,--- n¢€ m

13)

which can be solved with no big difficulty since it can be
expressed, after linearizing the objective function by calcu-
lating Schur Complements if necessary, as a problem in the

framework of semidefinite programming that can be handled
by any LMI solver. The following globally convergent algo-
rithm based on outer linearization is proposed. Indeed, it will
be proven hereafter that, whenever it exists and is bounded, the
proposed algorithm always converges to the optimal solution
of problem (9).
o Step 1: Let the set of functions ¢;(-), i € Ny be given.
Set m =2 and 1, = {0, h}.
o Step 2: Solve problem (13) to determine f; and the
symmetric matrices X, ..., Xn¢.
o Step 3: For the matrix function (3), calculate by line
search the optimal solution (0,41, ty+1) of

Omt1 = tgllg,)f(L] O'max(‘C(X(t): X(t))) (14)
If 6,11 < O Stop. Otherwise, update Ty+1 = T J{tm+1}
set m <— m+ 1 and go back to Step 2.

This algorithm is surprisingly simple and can be numeri-
cally implemented in a very efficient way by using standard
LMI techniques, see [5], to handle problem (13) in step 2 and a
line search procedure to determine the parameters (6,41, fn+1)
in step 3. More details about numerical implementation and
performance evaluation are given in the next section. For the
moment, the next theorem shows that this is a globally con-
vergent algorithm able to determine the optimal solution of
the problem under consideration.

Theorem 1: Assume that the set &} is non empty and f; is
finite. The previous algorithm generates a sequence such that

I <fms1 <13 (15)
for all m > 2. Moreover, it converges to the global optimal
solution of (9).

Proof: The inequalities in (15) follow from the result of
Lemma 1 which states that Xy C A, for all m > 2. Moreover,
it is also true that &, C A&, for all m > 2. This last property
follows from the fact that 7,, C 7,41 and the optimal solution
of problem solved in step 2 is unfeasible on the subsequent
interaction, whenever the convergence condition in step 3 is
not satisfied. As a consequence, the algorithm proceeds until a
feasible solution is generated in step 3. The sequence {f,"},;>2
converges because it is nondecreasing and bounded. Moreover,
it converges to the optimal solution since it is feasible and its
objective function is such that lim,,;,—  f < f;. |

The rationale behind this algorithm stems from the fact that
the test in step 3, namely, 6,41 < 0 is used to detect if the
current solution is feasible, that is, X € AXj. If not, the time
tm+1 € [0, h] corresponding to the largest constraint violation
is included in the set 7,4+; which makes the current solu-
tion unfeasible and forces the next solution to be feasible as
far as all points belonging to 7,41 are concerned. In general,
this has a positive impact on the reduction of the number of
iterations needed for convergence. The numerical behavior of
the proposed algorithm will be illustrated by means of several
examples reported in the next section.

Remark 1: The determination of 6,41 in step 3 must be
done with care. In order to be sure that 6,411 < 0 implies
omax(LX (1), X(£))) < 0 for all ¢ € [0, A, the line search used
in problem (14) must be implemented with a small step size 6,
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typically satisfying §¢ <« h. In the numerical experiments
reported in the next section, we have successfully considered
8t/h = 0.001. As usual, a post-optimization feasibility test is
recommended.

Remark 2: The complexity of the algorithm at interaction
m > 2 can be measured by the number of LMIs which is equal
to m~+2 and the number of scalar variables (14 +1)(n+1)n/2
where ng is the number of time subintervals for the piecewise
linear solution, the degree of the truncated Taylor series expan-
sion or the number of terms, excluding the constant one, of the
Fourier series. In the next section, the impact of this impor-
tant aspect on numerical performance will be analyzed for the
three approximations previously discussed.

For the sake of comparison we now observe that the piece-
wise liner function (6) is continuous and can be imposed
as a feasible solution to the problem under consideration.
Indeed, denote &), the set Xy for the special case the func-
tions ¢;(1) = ¢(t — in) for all i € Ny are given by (5). The
next lemma summarizes an important property of this class of
functions in the context of this letter.

Lemma 2: Let ny > 1 be given. The condition X € Ay,
holds if and only if for each i =0, 1,...,n4 — 1, the LMIs

ﬁ(M Xi) <0

n

L‘,(M X; +1> <0
n
together with the boundary conditions (Xo, X,,) € €2, are
feasible.

Proof: First of all notice that, by construction of the
piecewise function, X(0) = Xo and X(h) = X,, mean-
ing that the boundary conditions are satisfied. The proof
follows from the simple observation that the piecewise solu-
tion (6) valid in the time interval ¢t € [in, (i + 1)n) for
i=0,1,...,ns—1 can be rewritten as the convex combination
X() =1 — oj(1))X; + «i(1)X;41 where

(16)

a7

i) = tT’” [0, 1] (18)
Hence, multiplying inequality (16) by 1 —«;(#), inequality (17)
by «;(¢), summing up the results and taking into account that
L(-,-) is linear it is seen that X € A, which proves the
sufficiency. Necessity is immediate since the inequalities (16)
and (17) are equal to LX), X(1)) < 0 evaluated at t = in
and ¢ = (i + 1)n, respectively. The proof is concluded. |
Two aspects should be remarked. First, whenever the 2ng
LMIs indicated in Lemma 2 are feasible then the correspond-
ing piecewise solution X(r) solves the DLMI whatever the
value of ngy > 1. Second, this kind of solution, proposed in [1]
and more recently in [8], is directly calculated by any LMI
solver without the need of an interactive process. For this
reason, in our opinion, it establishes an adequate numerical
efficiency measure to compare the three previously discussed
approximations as presented in the next section.

[V. EXAMPLES AND NUMERICAL IMPLEMENTATION

In this section the previous algorithm is used to solve a
series of optimal control problems of increasing difficulty. It

consists on the minimization of the Hs, norm from the exoge-
nous input w to the controlled output z of a closed-loop linear
system governed by a state feedback sampled-data control
given by

x(t) = Ax(t) + Bu(t) + Ew(z) (19)
z(t) = Cx(t) + Du(?) (20)
u(t) = Lx(tx), Vt € [tg, tiq1) (2D
where fp = 0 and #x+1 — fx = h are evenly spaced sam-

pling instants for all k € N with sampling period 7 > O.
The time-valued functions x(7) : Ry — R”, u(?) : R — R,
w() : Ry — R, and z(r) : Ry — R""! are the state, the
control, the exogenous input, and the controlled output, respec-
tively. The sampled-data state feedback gain matrix L € R!*"
is the design variable to be determined.

Following [8], where numerical issues have not been
developed, defining the augmented matrices of compatible
dimensions

~[i 8} o-[5]

the problem to be solved can be expressed as (2) where the
objective function is given by f(Xo, Xs) = @ and the set of
feasible solutions & is defined by the DLMI

-X+XF +FX XG J
LX,X) = ° -1 0
—ul
subject to the boundary condition (Xp, X;,) € 2 defined by two
coupled LMIs. One involving the initial condition X(0) = Xo,

(22)

<0 (23)

of the form
v [V Y]
[ . Xo ] >0 (24)
and one involving the final condition X (k) = X}, that is
1
X Xh[o] =0 (25)

. \%

both related to the DLMI (23). It is to be noticed the presence
of the scalar variable & > 0, the symmetric matrix variable
V € R™" and the matrix variable ¥ € R!*” which provide
the minimum H, cost and the associated sampled-data state
feedback gain matrix L = YV~'. For the numerical experience
to be presented in the sequel, we have considered the following
open-loop unstable system data whose complexity depends on
the dimension n, that is, 2 =1 [s] and

_ 0n-1 In— _ On—1 _
A—[ 0 o :|,B—|: 1 j|,E—l,, (26)

n—1

_ Qn _ 0y
e=[&] oY)

where I, 0, and 1, denote the identity n x n matrix, the null
nx 1 vector and the one n x 1 vector, respectively. Several H
state feedback sampled-data optimal control problems with
ng € {1, 2,4, 8, 16} for the piecewise linear approximation and
ng € {1,2,3,4,5} for the Taylor and Fourier series approxi-
mations have been solved with different matrices 0, € R"*",

27
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401 TABLE |
- MINIMUM Hoo COST - (PIECEWISE LINEAR)
g 30| T
2 I o ng\n | 2 3 4 5
220 T T | 527.35 2.82x10° 5 5
g JPttand 2 122.96 2.70x10° 8.53x10* 00
oy e 4 46.01 515.46  7.14x10° 1.42x10°
L 8 25.90  187.95  1.45x10° 1.40x10*
O . 4 & s 10 12 14 16 s 16 19.12 111.41 617.47  3.68x10°
Subintervals ng
TABLE Il
Fig. 1. Number of iterations for piecewise linear. MINIMUM H oo COST - (TAYLOR SERIES)
25 - ng\n | 2 3 4 5
1 527.35 2.82x 10" o o0
— 2 55.21  730.24  1.35x10%  3.72x10°
45! : ¢ 3 3 22.14 137.33 863.79  6.62x10°
2 H L8 4 17.63 92.68 436.96 2.07x10°
g10f P T 5 15.71 78.28 340.71  1.41x10°
— 50 - s - b :
.- Fig. 1 shows that the algorithm converges for m = 2ny
% ) ) 3 . 5 6 independently of n, the order of the open-loop system.
Degree n, This means that both procedures have to handle problems

Fig. 2. Number of iterations for Taylor series.
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Fig. 3. Number of iterations for Fourier series.

The examples were solved using MATLAB LMI toolbox with
default parameters in a computer with the following speci-
fications: MacBook Pro (Mid 2012), 2.9 GHz Intel Core i7
processor and 8GB 1600 MHz DDR3 running the MATLAB
R2016b version.

Figures 1, 2, and 3 show the number of iterations m needed
for convergence of the proposed algorithm for piecewise linear,
Taylor series and Fourier series approximations against ng,
respectively. In Fig. 1, ny is the number of time subintervals,
in Fig. 2 it is the degree of the polynomial and in Fig. 3 it is
the number of terms excluding the constant one. In all figures,
accordingly to (3), the quantity ng + 1 equals the number of
terms or which is the same, the number of free matrix variables
of each approximation. We have considered n € {2, 3, 4, 5}
and for each pair (n, ng) we have solved 20 different problems
with Q, being a square matrix with elements generated from
a standard normal distribution. This gives the total number of
1,200 runs performed by the algorithm. Based on these figures,
the following conclusions can be drawn:

« For the piecewise linear approximation the computational

effort of the proposed algorithm and the solution provided
by Lemma 2, solved in only one shot, are similar. Indeed,

with the same number of variables and the same number
of LMIs.

« Roughly speaking, for the Taylor series approximation,
Fig. 2 shows that convergence is attained for m ~ 3ny,
independently of the order n considered. Notice the solid
lines corresponding to m = 2ny, m = Sny, and the dashed
line corresponding to m = 3ng. In general, the same
numerical behavior is verified in Fig. 3 for the Fourier
series approximation. Hence, at a first glance, as far as
the computational effort is concerned this could lead to
the conclusion that the three approximations are equiv-
alent. However, this is not true as the next numerical
experiments indicate.

Tables I, II, and III give the value of the minimum H
cost obtained with piecewise linear, Taylor series and Fourier
series approximations for Q, = I,, respectively. As before,
observe that n € {2, 3,4, 5}, and in all tables the parameter
ng has the same meaning, that is, ny + 1 is the number of
free matrix variables of each approximation. Comparing the
values in the three tables it is simple to notice that the Taylor
and Fourier series approximations with ngy = 4 provide better
results (in terms of the minimum H, performance level) than
the piecewise linear solution with ny = 16. Since the computa-
tional burden depends on m = 3ny and m = 2ny, respectively,
the conclusion is that Taylor and Fourier series approxima-
tions are between two and three times better performing than
the piecewise linear approximation calculated by the proposed
algorithm or from the LMI conditions provided in Lemma 2.
It can be viewed that the Taylor approximation performs a lit-
tle bit better than the Fourier series approximation. It is clear
that the dimension n determines the number of variables to
be handled and, as a consequence, the computational burden.
Moreover, in all tables, the symbol oo indicates that the cor-
responding minimum cost is very large so as the associated
problem has been declared unfeasible by the algorithm, run-
ning with the stopping condition and convergence parameters
as indicated before.
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TABLE IlI
MINIMUM Hso COST - (FOURIER SERIES)

ng\n | 2 3 4 5
1 1.24x10°  1.09x10° 00 00
2 101.69 1.92x10%  5.61x10% 00
3 32.59 258.52 2.42x10°  3.25x10*
4 21.61 129.02 74417  4.86x10°
5 17.58 92.33 436.18 2.03x10°

V. CONCLUSION

In this letter a new method for solving convex optimization
problems subject to differential linear matrix inequalities with
initial and final boundary conditions has been presented. It
follows from a successful application of the classical outer
linearization technique in a new framework, namely, the one
defined by the specific class of optimization problems subject
to DLMIs. It is shown that the proposed algorithm is globally
convergent and requires to solve, in each iteration, a simple
convex problem expressed through linear matrix inequalities.
Numerical properties and comparisons are provided from the
solution of several Ho, optimal state feedback sampled-data
control problems of increasing difficulty. The same kind of
numerical analysis needs to be performed for the special case
of polynomial basis whose feasibility and optimality may
be alternatively tested from Handelman’s theorem or sum of
squares decomposition.
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