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On 2 June 1948, the Professional Group on Audio of the IRE
was formed, establishing what would become the IEEE
society structure we know today.

75 years later, this group — now the IEEE Signal Processing
Society — is the technical home to nearly 20,000 passionate,
dedicated professionals and a bastion of innovation,
collaboration, and leadership.

Celebrate with us:
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We look back on past breakthroughs and ponder the ethi-
cal challenges associated with future advances
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The IEEE Signal Processing Society will celebrate its 75th 
Anniversary during the International Conference on Acoustic, 
Speech and Signal Processing, to be held in Rhodes Island, 
Greece, 4–10 June 2023.
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SCOPE: IEEE Signal Processing Magazine publishes tutorial-style articles on signal processing research and 
applications as well as columns and forums on issues of interest. Its coverage ranges from fundamental principles 
to practical implementation, reflecting the multidimensional facets of interests and concerns of the community. Its 
mission is to bring up-to-date, emerging, and active technical developments, issues, and events to the research, 
educational, and professional communities. It is also the main Society communication platform addressing important 
issues concerning all members.
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FROM THE GUEST EDITORS
Rodrigo Capobianco Guido , Tulay Adali , Emil Björnson ,  
Laure Blanc-Féraud , Ulisses Braga-Neto , Behnaz Ghoraani , Christian Jutten ,  
Alle-Jan Van Der Veen , Hong Vicky Zhao , and Xiaoxing Zhu  

I t is our great pleasure to introduce the 
first part of this special issue to you! 
The IEEE Signal Processing Society 

(SPS) has completed 75 years of remark-
able service to the signal processing 
community. When the Society was 
founded in 1948, we couldn’t imagine, 
for instance, how wireless networks of 
smartphones would be able to connect us 
easily at all times, or that an image pro-
cessing algorithm would be able to 
detect cancer in a few seconds. Those 
are just simple examples of the immense 
technological progress over the past 75 
years, which became possible thanks in 
great part to the dedicated work of pro-
fessional members of the SPS.

Celebrating 75 years
A special issue of IEEE Signal Pro-
cessing Magazine was published 25 
years ago to celebrate the 50th anniver-
sary of the SPS. To celebrate the 75th 
anniversary, we have focused on what 
has happened during the previous 25 
years in the field of signal processing, in 
addition to the main perspectives con-
sidering both societal and technical 
aspects in different domains covered by 
our Society. In response to an open call 
for papers, we received 41 white paper 
submissions. Among those, 18 were 
selected and invited to be considered for 
publication upon submission of a full 
version. Finally, 11 were accepted for 

inclusion in this first part of the special 
issue, while the remaining ones will 
appear in the upcoming second part.

The first three articles in this first 
part of the special issue focus on the his-
tory of the SPS. The article by Petropulu 
(SPS president) et al. [A1] describes the 
extraordinary growth we have witnessed 
in the field of digital signal processing 
(DSP) since 1998, where the SPS played 
a fundamental role in promoting cross-
disciplinary collabo-
ration and knowledge 
sharing. Then, the ar-
ticle by Ward (former 
SPS President) [A2] 
focuses on women re-
searchers and volun-
teers and their active 
role within the SPS. 
Finally, Pérez-Neira (SPS vice president, 
conferences) et al. [A3] present an article 
that comments on the most prominent 
SPS conferences and their evolution. 
These articles also discuss the main 
challenges and opportunities for the SPS.

Next, we have a powerful testimony 
by Edwards [A4], who has contrib-
uted significantly to our magazine and 
Society over the years. He begins by 
recalling a very special occasion: the 
day he was 14 years old and visited the 
1969 IEEE International Convention & 
Exhibition and decided on his future 
career. Then, using his unique journal-
istic skills, he narrates lots of interest-
ing events with significant value to our 
DSP community. 

As signal processing can be classi-
fied along techniques and methods 
such as sampling, transforms, statistical 
techniques including machine learning, 
and so on, it can also be partitioned into 
major application areas, such as speech 
and audio, image processing and multi-
media, communication and sensor array 
processing. Our technical committees 
(TCs) and unified Editors Informa-
tion Classification Scheme (EDICS) 

ref lect  t hese dua l 
partitionings. The se-
lected feature articles 
included in this spe-
cial issue provide a 
cross section of those 
fields. Particularly, 
in this first issue, we 
present seven of these 

feature articles. The first one, authored 
by Leus et al. [A5] describes the role of 
graph signal processing for signal analy-
sis over the recent decades in a variety of 
applications, including image and video 
processing; social, transportation, com-
munication, and brain networks; recom-
mender systems; financial engineering; 
distributed control; and learning. The 
second feature article is by Aviyente et 
al. [A6]. In it, the authors offer a brief his-
tory of the IEEE Bioimaging and Signal 
Processing TC, providing an overview 
of the main technological and method-
ological contributions and highlight 
promising new directions. Then, Bajić 
et al. [A7] review both the history of 
multimedia signal processing as well 
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Digital Object Identifier 10.1109/MSP.2023.3269591
Date of current version: 1 June 2023

https://orcid.org/0000-0002-0924-8024
https://orcid.org/0000-0003-0594-2796
https://orcid.org/0000-0002-5954-434X
https://orcid.org/0000-0002-9693-6924
https://orcid.org/0000-0002-1210-2173
https://orcid.org/0000-0003-0075-7663
https://orcid.org/0000-0002-4477-4847
https://orcid.org/0000-0003-4249-585X
https://orcid.org/0000-0002-3690-9924
https://orcid.org/0000-0001-5530-3613


4 IEEE SIGNAL PROCESSING MAGAZINE   |   June 2023   |

as the IEEE Multimedia Signal Pro-
cessing TC, with a focus on the last  
three decades.

The fourth feature article we present 
in this special issue is authored by Liu  
et al. [A8], where an overview of the 
IEEE Sensor Array and Multichan-
nel TC and its activities are introduced, 
followed by the main technological 
advances and new developments in 
the area along with promising future 
research directions. The fifth feature 
article, authored by Pesavento et al. 
[A9], presents an overview and advanc-
es in multiple-input, multiple-output 
systems, including details on direc-
tion of arrival, direction of departure, 
time delay of arrival, and Doppler 
mechanisms. The sixth feature article 
is authored by Björnson et al. [A10] 
and presents the story of wireless com-
munication technologies over the past 
25 years, including the advances in air 
interface, channel coding, source com-
pression, connection protocols, and 
related areas, covering from 2G to 
5G technologies. Finally, the seventh 
feature article, authored by Elbir et 
al. [A11], describes relevant details on 
the development of beamformers, 
emphasizing minimum-variance dis-
tortionless response strategies and the 
corresponding major breakthroughs 
over the past decades.

This concludes the first part of this 
special issue. In the second part, to be 
published in the magazine’s July issue, 
another set of relevant articles will 
appear, concluding our efforts to group 
together the most significant contri-
butions received to celebrate the 75th 
anniversary of the SPS. We would like 
to specially express our gratitude to all 
our contributing authors and review-
ers, in addition to Rebecca Wollman, 
who efficiently helped us with all the 
administrative details, and the entire 
team, led by Sharon Turk, who bril-
liantly promoted and supervised the 
editorial process.

We sincerely hope that you enjoy 
reading the first part of this special issue.
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FROM THE EDITOR
Christian Jutten   |  Editor-in-Chief  |  christian.jutten@grenoble-inp.fr 

Athina Petropulu  | IEEE Signal Processing Society President | a.petropulu@ieee.org

The 75th anniversary of the IEEE 
Signal Processing Society (SPS) is an 
ideal time to look at the rapid advances 

in our field and the many ways that these 
increasingly powerful technologies have 
transformed our professions and the 
world. This is not just a time to celebrate 
past achievements and pat ourselves on 
the back, but also to educate young stu-
dents and innovators about the history of 
our profession, the challenges we have 
overcome, and the breakthroughs that 
have led to the incredible growth of Sig-
nal Processing (SP). More importantly, 
this reflection will help shape our path 
forward, by inspiring 
new innovations, and 
also bringing aware-
ness of the ethical is-
sues associated with 
evolving and emerg-
ing technologies. 
This awareness will 
help us to develop 
meaningful safeguards and ensure re-
sponsible use of these technologies.

The 75th anniversary of the SPS 
coincides with another important 75th 
anniversary, that of a tiny yet mighty 
device: the transistor. This is not a mere 
coincidence. From their birth, signal 
and image processing (SIP) has been 
strongly associated with technological 
advances, especially in electronics and 
computers. In fact, SIP requires both 

sensors, for recording signals and im-
ages and computers, for implementing 
smart and efficient processing.

Fantastic growth during  
the last decades
For the sake of our younger SPS scien-
tists, let’s start with a few milestones in 
the common history of SIP and hard-
ware. The first computer was very big. 
ENIAC, built in 1943, was about 170 m2 
and 27 tons, with a power consumption 
of 150 kW. It had a very limited compu-
tational capacity: approximately 0.2 ms 
for addition or subtraction, 2 ms for mul-

tiplication, and up to 
65 ms for performing 
a division or a square 
root! ENIAC was a 
decimal machine, 
but, a few years later, 
in 1946, in the frame-
work of the Electron-
ic Discrete Variable 

Automatic Computer (EDVAC) project, 
the concept of the von Neumann ma-
chine appeared, using binary coding 
and computing. The basic components 
of these machines were electronic tubes.

By the 1950s and up to end of the 
1960s, a few computers were built with 
transistors as discrete components. In 
1958, Kilby (a Nobel Prize winner in 
2000) invented the first integrated cir-
cuit, which was patented in 1964 by 
Texas Instruments. This discovery had 
an incredible impact on the develop-
ment of the digital world.

The first microprocessor appeared in 
1971: the Intel 4004, a 4-bit micropro-
cessor with 2,300 transistors and a clock 
frequency of about 100 kHz. This 16-pin 
integrated circuit (about 3.8 × 2.8  cm) 
had a computational power similar to 
that of ENIAC! Of course, advances in 
microelectronics provided increasingly 
powerful integrated circuits and micro-
processors. Here are just a few mile-
stones, to show this impressive growth:

 ■ 1972: Intel 8080: 8 bits; 3,500 tran-
sistors; and clock of 200 kHz

 ■ 1979: Intel 8088: 16 bits; 29,000 
transistors; and clock of 5 MHz

 ■ 1989 :  Intel  80486: 32 bits; 
1,200,000 transistors; and clock of 
16–100 MHz.
Today, microprocessors are 64 bits 

and multicore, with more than 2 million 
transistors and a clock of about 5 GHz!

The microprocessor Intel 8088 was 
the basic component of the first IBM per-
sonal computer built in 1981. With 16 kB 
of random-access memory (RAM), ex-
tensible to 256 kB, and a floppy disk of 
160 kB, its price was quite high, and it 
was primarily used by companies and, 
later, by some laboratories.

Until the 1980s, images were re-
corded using a Vidicon camera, based 
on a cathodic ray tube, which provides 
an image by the scanning of an elec-
tron beam. At that time, it was impos-
sible to store such images in computer 
memory because the time access of the 
memory was not compatible with the 
speed of the scanning (30 frames/s 
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and about 500 lines), and the capacity 
of the memory (even dynamic RAM) 
was too small—fewer than 256 kB [1]. 
In 1970, Boyle and Smith (Nobel Prize 
winners in 2009) published a paper on 
charge-coupled semiconductor devices 
(CCDs) [2], which could be used as 
image sensors. The first commercial 
image CCD sensors were proposed by 
Fairchild in 1974, with 100 × 100 pixels. 
Then, in 1983, Sony developed the first 
 mass-produced consumer video camera 
based on a CCD sensor (CCD-G5) with 
384 × 491 pixels. Now, the size of CCD 
or CMOS image sensors in a camera is 
about 8,000 × 6,000 pixels or better!

Advances in technology have had 
a strong impact in many domains for 
the development of other electronic 
devices and sensors, especially in 
medicine, remote sensing, transporta-
tion, and telecommunications.

Christian’s experiences as a research-
er in his university lab in France provide 
some important perspectives on the 
impact of increasingly powerful tech-
nologies. “In 1980, 
about 20 researchers 
in three labs shared 
access to two 16-bit 
computers: HP 1000 
and T1600 (from 
the French company 
Télémécanique). On 
average, we could 
use one machine for 
about 1 h per day, 
with a personal partition of 24 kB of 
memory—for both the program and the 
data! Programs were written in Fortran, 
and there was no graphical output: we 
had to manually draw curves from the 
numerical results.” One of Christian’s 
friends designed methods for doing 

handwritten character recognition: de-
spite small images of 128 × 32 pixels, 
computations had to be done using in-
tegers since coding and computing in 

floating point were 
impossible using 24-
kB memory.

Later,  in  1985, 
Christian’s lab got its 
first PC, and it was 
possible to use other 
languages, like Pas-
cal and Basic. “But 
the performance was 
still very limited,” 

he notes. “A very simple program of 
source separation required about one 
hour to converge. In the lab, we did 
some simulations on computers, but, 
typically, Ph.D. students also built dedi-
cated machines.” To overcome the com-
puter’s slowness, Christian implemented  

Young people wonder how 
it was possible to get 
work done, locate journal 
articles, do comprehensive 
research, share ideas, and 
communicate with each 
other without e-mail and 
the Internet.
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the source separation algorithm with 
operational amplifiers, field effect tran-
sistors, and other discrete components 
(Figure  1). The con-
vergence of this ana-
log implementation 
required only a few 
milliseconds, and he 
added a low-pass 
RC circuit to slow 
down the conver-
gence speed so that it 
became observable!

Christian’s team worked on ar-
tificial neural networks (ANNs), and, 
by the end of the 1980s, a few Ph.D. 
students had designed new systolic and 
parallel architectures with the related 
software for overcoming the limita-
tions of classic computers for simulat-
ing ANNs.

Currently, e-mail and Internet ac-
cess are essential tools in our lives, both 
personal and professional. We’ve be-
come so used to fast, reliable, 24-h con-
nectivity that we see it as a crisis if our 
web server is down for more than a few 
minutes. Young people wonder how it 
was possible to get work done, locate 
journal articles, do comprehensive re-
search, share ideas, and communicate 
with each other without e-mail and 
the Internet. Christian remembers that 

one of the first e-mails that he sent in 
1985 came back three weeks later, with 
an error message and the list of serv-

ers through which it 
had passed! Before  
reliable Internet and 
e-mail connectivity 
became available at 
the beginning of the 
1990s, we had access 
to some printed jour-
nals in the lab or uni-
versity library, and, 

when we had to share documents with 
collaborators outside our workplace, we 
did so by fax.

In that era, writing articles and papers 
for journals and conferences was also 
much more tricky. “We used an elec-
tric typewriter,” says Christian. “If we 
needed to change the font, such as when 
typing equations or Greek characters, 
we had to replace the typeball.” When 
Christian’s lab acquired its first Laser-
Jet in 1989, it became so easy to print a 
text with different fonts in one step using 
PostScript. It was also possible to design 
figures on a computer and to add them 
to the text, and later it became easy to 
include photos and images, too.

Now, tablets, laptops, PCs, and even 
smartphones are so powerful and fast, 
with huge memories, tens of gigabytes, 

and hard disks of a few terabytes. 
For very complex simulations and 
computations, researchers can share 
university-based and national comput-
ing centers with incredibly powerful 
machines. All of these means of high-
performance computations seem com-
monplace today, but it’s important to be 
mindful that the growth of these tools 
has been extraordinarily fast over the 
last decades. The growth in SIP fol-
lowed a similar trajectory, and it is easy 
to understand why image processing, 
computational imaging, wireless com-
munications, and forensics, to name a 
few, didn’t appear until the 1990s since 
they required devices, sensors, and 
computers that didn’t exist or were not 
powerful enough.

Challenges for the future: Growth 
versus ethics and ecology
In the 2020s, the developments in 
integrated circuits have led to GPUs 
whose highly parallel architectures are 
well-suited for efficiently performing a 
large number of operations. Multicore 
computers and GPUs provide research-
ers with the tools to train deep neural 
networks more quickly and efficiently 
than was previously possible. These 
tools enabled the development of large-
scale deep learning frameworks, such 
as TensorFlow and PyTorch, making it 
easier for researchers and engineers to 
experiment with artificial intelligence 
(AI) models. These tools also sup-
ported the development of large-scale 
language models, such as the Chat-
GPT, developed by OpenAI, enabling 
language translation, chatbots, and 
content generation.  

With all of the computational power 
available today, AI can analyze large 
amounts of data and identify patterns 
and insights that might be difficult 
for humans to detect. AI is now capable 
of performing a wide range of tasks, 
including image recognition, natural 
language processing, decision making, 
and even creative tasks, such as music 
composition and art generation.

While AI can accelerate the pace of 
scientific discovery, it also poses several 
concerns. AI systems may perpetuate 
and amplify biases that exist in society, 

FIGURE 1. This analog electronic implementation of a source separation algorithm was 
about 1 million times faster than the simulation on a PC available in 1985.

Christian remembers that 
one of the first e-mails 
that he sent in 1985 came 
back three weeks later, 
with an error message and 
the list of servers through 
which it had passed!
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such as racial or gender bias. This can 
happen when the AI system is trained 
on biased data, or if the algorithm it-
self is designed in a way that perpetu-
ates bias. Another problem with AI 
methods is that they operate as “black 
boxes,” meaning that their inner work-
ings are not transparent or easily un-
derstandable by humans. This can 
make it difficult to explain how the AI 
system arrived at a particular decision 
or prediction and can also make it chal-
lenging to identify and correct errors or 
biases in the system. When it comes to 
AI language models, such as the Chat-
GPT, there are serious concerns stem-
ming from the kind of information it 
is accessed and potential violations of 
data privacy and intellectual rights. 
ChatGPT designs its answers by utiliz-
ing various resources available on the 
web and other servers, but the accuracy 
of these sources cannot always be guar-
anteed. Additionally, it is important to 
consider whether such AI tools respect 
academic integrity. When scientists or 
students write a paper or report, they 
must carefully cite all sources used; 
otherwise, the work may be considered 
plagiarism. Unfortunately, in Chat-
GPT’s answers, sources are not always 
accurately referenced.

More research is needed to make 
AI systems more explainable and trust-
worthy by using interpretable or ex-
plainable machine learning algorithms. 
Such algorithms should produce results 
that can be easily understood by hu-
mans and provide insights into how the 
AI system arrived at its predictions or 
decisions. Additionally, it is crucial for 
such systems to provide a measure of 
uncertainty in their answers, such as 
confidence intervals or standard de-
viations, similar to scientific practices, 
where results are often reported with 
a range of values that account for pos-
sible variations in the data or measure-
ment errors.

Another significant concern with AI 
methods, particularly deep learning al-
gorithms, is that they consume a lot of 

power. This is because these algorithms 
require large amounts of computational 
resources to train and run. They use huge 
servers and high-performance GPUs, 
which require high power, large amounts 
of memory, and also communications 
between servers and 
GPUs. The energy 
consumption is only 
going to increase as 
the use of AI contin-
ues to grow, and more 
powerful AI systems 
are developed. In 
addition to the envi-
ronmental impact of 
energy consumption, 
high levels of power consumption can 
also result in higher operating costs and 
can limit the scalability and accessibility 
of AI systems.

There is increasing research and de-
velopment focused on developing more 
energy-efficient AI systems. This in-
volves a range of techniques and strat-
egies, including the use of specialized 
hardware, such as tensor processing 
units; the development of more effi-
cient algorithms and architectures; and 
the use of techniques, such as model 
compression and pruning, to reduce 
the computational requirements of AI 
systems. In addition to these techni-
cal approaches, there is also a need for 
broader policy and regulatory measures 
to encourage the development and adop-
tion of energy-efficient AI systems. This 
could include incentives for energy-effi-
cient design, regulations on the energy 
consumption of AI systems, and the de-
velopment of standards and benchmarks 
to encourage the use of more energy-
efficient AI technologies [4], [5], [6]. It 
is also important to consider whether 
AI is necessary to solve the problem at 
hand or whether simpler and less costly 
solutions exist. Furthermore, it’s crucial 
to evaluate the impact of any proposed 
AI solution on both humans and the en-
vironment. In evaluating and compar-
ing AI systems, one should use metrics 
that take into account both performance 

and complexity or power consump-
tion, such as the Akaike criterion [7] or  
similar ones.

The rapid evolution of technology has 
opened the doors to many extraordinary 
breakthroughs that have had an incred-

ible impact on our 
field and will con-
tinue to transform the 
world. Let’s celebrate 
these achievements, 
but let’s also be mind-
ful that, with these 
promising technolo-
gies, there can also be 
 significant peril—to 
scientific progress, 

to society and human well-being, and to 
the ecological environment. Innovation 
comes with great responsibility. Let us all 
do our best to be smart and thoughtful as 
we navigate the future.

In this IEEE Signal Processing Maga-
zine special issue celebrating the 75th anni-
versary of the SPS, you will find additional 
insights into the history of SPS during the 
last decades and more technical articles 
about the evolution, breakthroughs, and 
discoveries in different domains in SIP.
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S ignal processing (SP) is a “hidden” technology that has 
transformed the digital world and changed our lives in so 
many ways. The field of digital SP (DSP) took off in the mid-

1960s, aided by the integrated circuit and increasing availability 
of digital computers. Since then, the field of DSP has grown tre-
mendously and fueled groundbreaking advances in technology 
across a wide range of fields with profound impact on society. 
The IEEE Signal Processing Society (SPS) is the world’s premier 
professional society for SP scientists and professionals. Through 
its high-quality publications, conferences, and technical and edu-
cational activities, the SPS has played a pivotal role in advancing 
the theory and applications of SP. It has been instrumental in 
promoting cross-disciplinary collaboration and knowledge shar-
ing among researchers, practitioners, and students in the field. 
This article highlights the SP advances between 1998 and mid-
2023 and the evolution of the SPS to empower the growth of SP.

Introduction 
Without hyperbole, SP is behind much of the digital world we 
live in today. The field of DSP took off in the mid-1960s, aided 
by the integrated circuit of Kilby and Noyce in the 1950s, the mi-
croprocessors of Texas Instruments and Intel in the 1960s, and 
the increasing availability of digital computers. A big push into 
the field can be attributed to the fast Fourier transform (FFT), 
by James Cooley and John Tukey, which reduced from O(N2) to 
O(N log N) the computation time of the FT. This allowed many 
SP algorithms that were already available to be implementable 
in close to real time. Around the same time, the first book on 
DSP, by Ben Gold and Charles Rader, appeared [1]. Since then, 
the field of DSP has grown tremendously and fueled ground-
breaking advances in technology across many fields with pro-
found impact on society. For example, DSP has revolutionized 
the way we create, store, and transmit audio and video content. 
DSP has enabled digital audio processing, high-quality audio 
recordings, and streaming services. Similarly, digital video pro-
cessing techniques, such as compression, have made it possible 
to transmit high-quality video content over various networks. 
DSP has played a crucial role in the development of wireless 
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communication systems and the smartphone, which has become 
so ubiquitous in all aspects of our daily life that it is difficult for 
most people to imagine life without it. Techniques such as chan-
nel coding, and equalization have made it possible to achieve 
high data rates and reliable wireless communication over long 
distances. These techniques led to the widespread adoption of 
wireless technologies, such as Wi-Fi, Bluetooth, and cellular net-
works. DSP techniques, such as array processing, have played 
determining roles in geophysics exploration, radar, sonar, and 
other related applications. DSP has been instrumental in the 
development of medical imaging techniques, such as magnetic 
resonance imaging, computed tomography scans, and ultra-
sound. These technologies rely on DSP algorithms to process 
raw data and create high-resolution images of the human body, 
enabling doctors to diagnose and treat a wide variety of medical 
conditions with greater accuracy and precision. DSP has also en-
abled significant advancements in speech and audio recognition. 
Techniques such as voice recognition, speech to text, and music 
recognition rely on DSP algorithms to analyze and classify audio 
signals. This has led to the development of many popular ap-
plications, including virtual assistants, transcription services, and 
music streaming platforms. DSP has enabled the development of 
advanced control systems for a variety of applications, including 
robotics, aerospace, and automotive industries. DSP algorithms 
are used to analyze sensor data and control the behavior of com-
plex systems, with high accuracy and precision.

The SPS is the world’s premier professional society for 
SP scientists and professionals. It has nearly 20,000 members 
across 120+ countries. Through high-quality publications, 
conferences, technical, and educational activities, the SPS 
advances and disseminates state-of-the-art scientific informa-
tion and resources, educates the SP community, and, by bring-
ing people together, catalyzes advances in the field of SP.

The SPS has had many names since it was established, on 
2 June 1948, as the first Professional Group on Audio of the 
Institute of Radio Engineers (IRE). In 1963, the IRE merged 
with the American Institute of Electrical Engineers to form 
IEEE, and the Professional Group on Audio became the IEEE 
Audio Group, in 1964. In 1976, the IEEE Audio Group was 
renamed the IEEE Acoustics, Speech, and Signal Process-
ing (ASSP) Society, reflecting the Society’s expanding scope 
beyond audio processing to include SP in a broader sense. In 
1989, the ASSP Society changed its name to the SPS, due to the 
growing field of image processing.

The SPS currently has 12 technical committees (TCs), 3 tech-
nical working groups (TWGs) and 2 megatrend initiatives that 
support a broad selection of SP-related activities associated with 
specific areas of study within the SP field. The TCs are actively 
involved in awards, conferences, publications, and educational 
activities. The Society’s leadership leans heavily on TC members 
for their advice on specific areas within SP. The TCs are
1) Applied Signal Processing Systems TC
2) Audio and Acoustic Signal Processing TC
3) Bio Imaging and Signal Processing TC
4) Computational Imaging TC
5) Image, Video, and Multidimensional Signal Processing TC

6) Information Forensics and Security TC
7) Machine Learning for Signal Processing TC
8) Multimedia Signal Processing TC
9) Sensor Array and Multichannel TC
10) Signal Processing for Communications and Networking TC
11) Signal Processing Theory and Methods TC
12) Speech and Language Processing TC.
The TWGs include 
1) Industry TWG
2) Integrated Sensing and Communication TWG 
3) Synthetic Aperture TWG.
The megatrend initiatives are: 
1) Autonomous Systems Initiative
2) Data Science Initiative.

The SPS currently publishes several high-impact periodicals, 
including IEEE Signal Processing Magazine; IEEE Open 
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 Journal of Signal Processing (OJ-SP); IEEE Journal of Selected 
Topics in Signal Processing; IEEE Signal Processing Letters; 
IEEE/ACM Transactions on Audio, Speech, and Language 
Processing; IEEE Transactions on Information Forensics and 
Security; IEEE Transactions on Image Processing; IEEE Trans-
actions on Signal Processing; IEEE Signal Processing Society 
Content Gazette; and Inside Signal Processing Newsletter. The 
SPS publishes about 3,000 journal papers annually.

Reflecting the highly interdisciplinary nature of SP, the 
SPS publishes jointly with other IEEE Societies a growing list 
of journals, including IEEE Transactions on Computational 
Imaging, IEEE Transactions on Signal and Information Pro-
cessing Over Networks, IEEE Transactions on Multimedia, 
IEEE Transactions on Big Data, IEEE Journal on Biomedical  
and Health Informatics, IEEE Transactions on Cognitive 
Communications and Networking, IEEE Transactions on 
Medical Imaging, IEEE Transactions on Mobile Computing, 
IEEE Transactions on Wireless Communications, and IEEE 
Wireless Communications Letters.

The SPS is also involved with a large number of IEEE-level 
publications, including IEEE Sensors Journal, IEEE Control 
Systems Letters, IEEE Transactions on Affective Computing, 
IEEE Computing in Science and Engineering Magazine, IEEE 
Internet of Things Journal, IEEE Internet of Things Magazine, 
IEEE Transactions on Computational Social Systems, IEEE 
Life Science Letters, IEEE MultiMedia Magazine, IEEE Trans-
actions on Network Science and Engineering, IEEE Reviews 
in Biomedical Engineering, IEEE Transactions on Smart Grid, 
IEEE Security & Privacy Magazine, IEEE Transactions on 
Artificial Intelligence, IEEE Transactions on Green Communi-
cations and Networking, IEEE Transactions on Quantum Engi-
neering, IEEE Transactions on Computational Social Systems, 
IEEE Transactions on Machine Learning in Communications 
and Networking, IEEE Journal of Indoor and Seamless Posi-
tioning and Navigation, and IEEE Transactions on Radar.

The Society also organizes several conferences and workshops 
each year as a sole sponsor [7]. The two flagship conferences are 
the International Conference on Acoustics Speech and Signal 
Processing (ICASSP) and the International Conference on Image 
Processing (ICIP). ICASSP was first held in 1976 and is, in a 
sense, the continuation of the Arden House workshop, which was 
first held in 1968 with a focus on the FFT. The first ICIP was held 
in 1994. Other SPS solely sponsored workshops, mainly focused 
on the areas covered by the SPS TCs and on new areas the SPS 
is exploring, include the IEEE Workshop on Automatic Speech 
Recognition and Understanding (ASRU); IEEE International 
Workshop on Computational Advances in Multi-Sensor Adaptive 
Processing (CAMSAP); IEEE Data Science and Learning Work-
shop (DSLW); IEEE Workshop on Image, Video, and Multime-
dia Signal Processing (IVMSP); IEEE Workshop on Machine 
Learning for Signal Processing (MLSP); IEEE Workshop on 
Multimedia Signal Processing (MMSP); IEEE Sensor Array and 
Multichannel Signal Processing Workshop (SAM); IEEE Work-
shop on Spoken Language Technology (SLT); IEEE Workshop 
on Signal Processing Advances in Wireless Communications 
(SPAWC); IEEE Workshop on Statistical Signal Processing (SSP); 

IEEE Workshop on Applications of Signal Processing to Audio 
and Acoustics (WASPAA); and IEEE International Workshop on 
Information Forensics and Security (WIFS). Several thousand 
people attend our conferences annually, and conference record-
ings are kept in our SPS Resource Center for later access.

The SPS also cosponsors a growing list of conferences and 
workshops, including the IEEE International Conference on 
Multimedia and Expo (ICME), IEEE International Symposium 
on Biomedical Imaging (ISBI), IEEE Conference on Advanced 
Video and Signal-Based Surveillance (AVSS), ACM/IEEE 
International Conference on Information Processing in Sen-
sor Networks (IPSN), IEEE International Symposium on Sig-
nal Processing and Information Technology (ISSPIT), IEEE 
Workshop on Signal Processing Systems (SiPS) and IEEE 
Conference on Artificial Intelligence (IEEE CAI).

Over the years, the SPS has played a pivotal role in advanc-
ing the theory and applications of SP. It has been instrumental in 
promoting cross-disciplinary collaboration and knowledge shar-
ing among researchers, practitioners, and students in the field.

Key developments in SP and the SPS
The developments in SP and the evolution of the SPS up to 1998 
are described in [2], which was published on the 50th anniver-
sary of the Society. In this article, we summarize some of that 
history and expand on developments after 1998 until mid-2023.

The 1940s and 1950s: The advent of DSP
The Wiener filter, in the 1940s and 1950s, and Kalman and Kal-
man-Bucy filtering, in 1960, addressed the processing of noisy sig-
nals with many applications, from radar to communications and 
guidance and control. In the 1960s, SP techniques were developed 
in geophysics exploration for oil discovery, with Burg develop-
ing his linear prediction algorithm that also found wide applica-
tion in speech processing. Array processing techniques, such as 
Capon’s, detect seismic events and track underwater targets. The 
analysis of time series motivated by detection of underground 
nuclear explosions led Cooley and Tukey, at IBM, to propose, in 
1965, a new fast implementation for the FT, the now ubiquitous 
FFT. The FFT reduced the computation time of the FT by orders 
of magnitude. This allowed many available SP algorithms to be 
implementable in close to real time. Around the same time, the 
first book on DSP appeared, by Gold and Rader [1]. Toward the 
end of the decade, the statistical theory of SP was finding more 
and more applications, with detection and estimation as major 
areas of activity. In 1968, Harry L. Van Trees penned the semi-
nal book on detection, estimation, and modulation theory, sum-
marizing the main tenets of the theory with applications to radar, 
sonar, and communications [3]. But these SP developments were 
happening in parallel to the core of DSP, as DSP was then emerg-
ing from speech and audio and radar applications through work, 
for example, at Lincoln Laboratories and Bell Labs.

The 1970s: DSP receives public attention and  
the rise of personal computers
The invention of the integrated circuit, by Jack Kilby, of 
Texas Instruments, in 1958 [8], and also independently by 
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Robert Noyce, of Fairchild, in 1959, significantly accelerated 
the development of digital computers. In 1971, Texas Instru-
ments introduced the TMS 1802NC, and Intel created the 
Intel 4004, the first microprocessors with a 4-bit chip and a 
clock speed of 108 kHz [9]. In 1981, IBM introduced the first 
personal computer with a built-in hard disk, the IBM PC 5150 
[10]. It had a 5.25-in floppy disk drive, 16 KB of random-
access memory (RAM), and a 4.77-MHz Intel 8088 proces-
sor. In the 1970s and early 1980s, typical RAM sizes were 
in the range of a few hundred bytes to a few kilobytes, while 
the read-only memory (ROM) sizes were of the order of kilo-
bytes. Hard disks were not yet widely available for personal 
computers, so data were typically stored on floppy disks with 
capacities of a few hundred kilobytes to a few megabytes. As 
computer technology advanced throughout the 1980s, clock 
speeds and memory capacities increased rapidly. By the end 
of the decade, personal computers were running at speeds of 
several tens of megahertz and had RAM capacities of several 
megabytes. These developments paved the way for the emer-
gence of DSP and image processing, which rely heavily on 
fast processing speeds and large amounts of memory.

In the 1970s, DSP started receiving increased attention 
from the general public. During that time, in Britain, the BBC 
began using eight-track digital audio recorders with error cor-
rection [2], [4]. Thomas Stockham showed how DSP could 
restore old recordings of Enrico Caruso. In 1978, Texas Instru-
ments designed a popular toy called Speak & Spell, which 
taught spelling by pronouncing a word and providing input on 
whether a spelling attempt was correct. Key DSP technologies 
were crucial to those advances, such as speech compression 
and the availability of the first integrated circuits for SP. Dur-
ing that decade, landmark books on DSP by Alan V. Oppen-
heim and Ronald W. Schaffer (1975) and Lawrence Rabiner 
and Ben Gold (1975) as well as the first book on digital speech 
processing, by Rabiner and Schaffer (1978), appeared [11], 
[12], [13]. Toward the end of the decade, Ralph O. Schmidt, 
with his MUSIC algorithm (published in the open literature in 
1979), [14], and Georges Bienvenu and Laurent Kopp (1979), 
[15] introduced high-resolution subspace-based techniques to 
detect and localize nearby sources.

During that decade, the ASSP Society membership grew 
from 5,299 to 8,619 members. SPS publications included IEEE 
Transactions on Audio and Electroacoustics; IEEE Transac-
tions on Acoustics, Speech, and Signal Processing (T-ASSP); 
IEEE Newsletter on Audio and Electroacoustics; and IEEE 
Acoustics, Speech, and Signal Processing Newsletter.

The 1980s: DSP a key player in data storage, image and 
video processing, and medical imaging
With the emergence of personal computers and cellular phones, 
array SP and digital communications became major areas of 
activity. Increasing levels of recording density required so-
phisticated new detection algorithms to read back accurately 
the recorded bits. Wavelets also appeared on the scene along 
with the first CDs, offering a new digital format for storing 
and playing music. The CD quickly replaced vinyl records and 

cassette tapes as the dominant music format. Biotechnology 
emerged as a significant field of study, with the development 
of new techniques for genetic engineering, gene sequencing, 
and biopharmaceutical production. This decade also witnessed 
much interest in digital image processing that laid the ground 
for video processing growth and led to important advances in 
a wide variety of applications, including multimedia, computer 
vision, medical imaging, image and video compression, virtual 
reality, and biometrics and facial recognition, to mention a few. 
The Society’s journals and conferences were the publication of 
choice for much of the work on wavelets.

DSP was a key player in these technologies, and the ASSP 
Society membership grew from 8,619 to 15,925. SPS publica-
tions included T-ASSP; IEEE Acoustics, Speech, and Signal 
Processing Newsletter; and IEEE ASSP Magazine.

The growth of the Society led to the development of the 
Publications Board, the Conference Board, and the Awards 
Committee. In 1981, the ASSP Society joined the IEEE Engi-
neering in Medicine and Biology Society (EMBS), the IEEE 
Nuclear and Plasma Sciences Society, and the IEEE Sonics 
and Ultrasonics Society to establish a new quarterly jour-
nal, IEEE Transactions on Medical Imaging. To address the 
increasing need for more content, in 1984, ASSP newsletter 
became IEEE ASSP Magazine.

The 1990s: Distributed web and new organizational 
structure for SPS’ rapid growth
The World Wide Web rapidly grew in popularity, revolution-
izing the way people accessed and shared information online. 
Personal computers became more affordable and widespread, 
and mobile phones became smaller, more affordable, and more 
popular. CD-ROMs became a popular storage medium for 
computer software, music, and video, replacing floppy disks 
and cassette tapes. Through the decade, disk drives recording 
densities grew at faster rates than Moore’s law allowing for stor-
ing ever increasing amounts of data and requiring new signal 
processing algorithms to retrieve the data. JPEG was standard-
ized in 1992, followed by the H.261 and MPEG conference and 
video standards. Digital cameras began to replace film cam-
eras. E-mail became a widely used form of communication, 
voice over Internet Protocol technology was introduced, and 
e-commerce emerged. GPS became available for civilian use, 
allowing for accurate location tracking and navigation. Advanc-
es in wireless communications and Wi-Fi allowed for commu-
nication and computing anytime, anyplace, anywhere. Again, 
DSP played a big role in those technologies. On the research 
front, among many other areas, compressed sensing techniques 
experienced significant activity, with many papers appearing in 
SPS journals and conferences.

A new journal, IEEE Transactions on Image Process-
ing, was introduced, in 1992, as a quarterly publication but 
quickly became monthly. Also in 1991, T-ASSP was renamed 
IEEE Transactions on Signal Processing (TSP). This was the 
year that the JPEG standard was established. IEEE Trans-
actions on Speech and Audio Processing was introduced in 
1993, IEEE Signal Pro cessing Letters in 1994, and IEEE 
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 Transactions on Multime dia in 1999. The SPS also cospon-
sored four other journals, including IEEE Transactions on 
Evolutionary Computing, IEEE Transactions on Fuzzy Sys-
tems, IEEE Transactions on Medical Imaging, and IEEE 
Transactions on Neural  Net works. IEEE ASSP  Magazine 
became IEEE Signal Process ing Magazine in 1991. ICIP was 
established to address the rapidly growing field of image pro-
cessing, and it was held for the first time in 1994. 

During this decade, the ASSP Society became the SPS, and 
the membership grew to 19,835. The growth necessitated major 
revisions of the Society bylaws. A new administrative structure 
was approved, in 1993, so that the Society would be headed by 
a Board of Governors (BoG) consisting of the Society officers 
and 12 members at large. A smaller Executive Committee was 
created that would act on Society matters between the biannual 
BoG meetings.

In 1993, Mercy Kowalczyk became the first executive director 
of the Society. She hired Theresa Argiropoulos, in 1993, to assist 
with operational support. At that time, the three SPS publica-
tions were managed externally, by Peirce and Barbara Wheeler. 
In 1996, Nancy DeBlasi was hired to transition the publications 
operations in-house, and by the end of the year, Deborah Blazek 
was also hired to support the publications business. In 1998, 
additional staff was hired to address the growing workload in 
operations (Linda Skeahan) and publications (Kathy Jackson and  
Jo-Ellen Snyder). By 1998, the submission and peer review of 
papers of the Transitions on Signal Processing moved to the 
online management system Manuscript Control (MC).

In 1996, the Society selected its first logo, which was 
designed by Gabriel Thomas, at the time a graduate student 
at the University of Texas at Austin. This SPS logo was used 
between 1996 and 2019.

The Society took its first steps in electronic publishing, 
making the proceedings of the 1993 ICASSP available on 
CD-ROM—a first for IEEE conferences. In 1997, IEEE Signal 
Processing Letters was one of the first IEEE publications to be 
made available online. The following year, all Society transac-
tions as well as letters were available online.

The 2000s: Distributed information processing  
and new SPS technical activities structure
With the emergence and proliferation of sensor networks, 
smartphones, and social media platforms, cloud computing 
became available, making it possible to store and access data 
over the Internet, revolutionizing the way businesses and indi-
viduals store and access information. Streaming services, such 
as Spotify, were introduced, and Netflix expanded, chang-
ing the way we consume entertainment. The use of artificial 
intelligence (AI) became more prevalent in the 2000s, with 

advancements in signal processing and machine learning, 
and with applications such as speech recognition and  image 
recognition. AI has since become increasingly important in 
many industries, including health care, finance, and transpor-
tation. Sensor networks entered the scene, leading to a burst 
of research in distributed and decentralized information pro-
cessing and optimization that became significant new areas to 
utilize the way data are collected, stored, and processed.

In 2002, the first ISBI was held; it was cosponsored and run 
by the EMBS and SPS. To strengthen the Society’s coverage 
of biomedical topics, the Bio Imaging and Signal Processing 
TC was established, in 2004. The Society’s interest in security 
issues with emerging technologies led to the 2006 creation of 
the Information Forensics and Security Technical Community. 
In 2008, the Image and Multidimensional Signal Processing 
TC, which was established in 1991, changed its name to the 
Image, Video, and Multidimensional Signal Processing TC. 
The Neural Networks for Signal Processing TC, which was 
founded in 1990, became the Machine Learning for Signal 
Processing TC, in 2003. 

In 2006, the scope of IEEE Transactions on Speech and 
Audio Processing was expanded, with the journal becoming 
IEEE Transactions on Speech, Audio, and Language Pro-
cessing. Continued progress was made with the Society’s efforts 
to publish high-quality and relevant periodicals. In 2004, IEEE 
Signal Processing Society Magazine was ranked number  1 
among IEEE journals in the Journal Citation Report, and it has 
since remained among the top journals in the field of electri-
cal and electronic engineering as well as computer science. The 
magazine is widely recognized for its high- quality articles and 
practical tutorials that cover a wide range of topics in SP. 

In 2006, IEEE Transactions on Information Forensics and 
Security was launched, and the following year, IEEE Journal 
of Selected Topics in Signal Processing was introduced. In 
2009, the SPS became a technical cosponsor of two new IEEE 
publications, IEEE Biometrics Compendium and IEEE Trans-
actions on Affective Computing. That year, IEEE International 
Workshop on Information Forensics and Security (WIFS) was 
also introduced.

In 1999, the Society approved a plan to digitize all its con-
tent, including journals, workshops and conference proceed-
ings, newsletters, and other publications sponsored by the 
SPS. This led, in 2002, to the Society’s Signal Processing 
Electronic Library (SPeL), containing all material published 
by the SPS from its 1948 beginnings through 2005. SPeL was 
released on two DVD-ROMs and enthusiastically received by 
SPS and other IEEE Members. It was intended to be a useful 
travel companion for SPS members. But events and technology 
dictated otherwise, and the Society donated the SPeL digital 
content to IEEE to form the emergent IEEE digital library, now 
IEEE Xplore. In 2001, SPS became the first IEEE Society with 
submission and peer review of all the journal papers handled 
online through MC.

During this decade, IEEE witnessed a drop in its mem-
bership, and the SPS membership changed from 19,835 to 
14,897, coinciding with a shift of journal subscriptions toward 
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 institutional customers instead of individual subscribers. The 
launch of IEEE Xplore gave broad access to SPS digital con-
tent through universities’ and companies’ Xplore subscriptions.

Other Society changes included the 2007 formation of a TC 
review committee charged with conducting formal reviews of 
the TCs, chaired by the president-elect. From this experience, 
the Society reformulated its Executive Committee and cre-
ated the vice president, technical directions position, and the 
Technical Directions Committee was elevated to the Technical 
Directions Board, in 2007.

In 2008, effective 2010, the Society decided that all fully 
sponsored periodical publications of the SPS would become 
available in electronic format for free to all Society members as 
a member benefit. To help authors search for papers of interest, 
the Society introduced the monthly IEEE Signal Processing 
Society Content Gazette, in 2010, which contained the table of 
contents pages of all the Society’s periodical publications. The 
digital versions of IEEE Signal Processing Magazine and the 
Gazette were also provided free to members.

Over the years, staffing grew to support the Society’s expand-
ing operations and new initiatives. Staff worked closely with 
the volunteer leadership on all areas of the Society’s activities. 
The conference business was also growing, and the first con-
ference staff was hired to provide support to that activity.

The 2010s: Higher-speed communications and 
emphasizing membership services
The popularity of smartphones dramatically increased in the 
2010s. The introduction of 4G networks made it possible to ac-
cess high-speed Internet on mobile devices. Internet of Things 
(IoT) technology became prevalent with the increasing number 
of connected devices, such as smart homes, wearables, and the 
industrial IoT. Graph-based data proliferated, initiating a new 
area in SP, graph SP. AI technology continued to progress with  
advancements in signal processing, deep learning and machine 
learning. In commercial SP technologies, AI is now used in a 
wide range of industries, including health care, finance, and 
manufacturing. Cloud computing continued to advance in the 
2010s, making it possible to scale information technology in-
frastructure efficiently, making it easier for businesses to grow. 
The development of self-driving cars emerged with the poten-
tial to revolutionize transportation.

With such dramatic growth in commercial SP technologies, 
the Society focused its efforts on enhancing member services. 
In 2011, the SPS Membership Board was formed, and the posi-
tion of regional director at large was created to bring regional 
perspective to the BoG and Membership Board. As a result of 
the Membership Board’s formation, the vice president, awards 
and membership position was separated into the vice president, 
membership and Awards Board chair positions, and only the 
vice president, membership was a member of the Executive 
Committee. In 2014, the Executive Committee was further 
amended, with the president-elect also taking on the responsi-
bilities of vice president, finance. With the increased emphasis 
on member services, SPS membership grew from 14,897 to 
18,730 members in this decade.

Student membership was also cultivated. The first annual 
Signal Processing Cup (SP Cup) was established, in 2014. The 
SP Cup is a student competition in which graduate and under-
graduate students work in groups to solve real-world prob-
lems by using SP methods and techniques. The program was 
expanded, in 2017, to include the Video and Image Processing 
Cup and, in 2020, the Five-Minute Video Clip Contest. The 
Student Career Luncheon at ICASSP was launched to help 
students explore job opportunities by connecting them with 
industry representatives. Since 2015, the Women in Signal Pro-
cessing Luncheon has become an SPS-sponsored event at all 
major SPS conferences, and similarly, the Young Professionals 
(YPs) luncheon event launched in 2016, emphasizing the role 
of women and YPs in the Society. The Young Professionals 
Development Workshop was introduced at ICASSP 2019. 

Other SP initiatives include the 2013 launch of the IEEE 
Global Conference on Signal and Information Processing 
(GlobalSIP) along with the IEEE China Summit on Signal 
and Information Processing (ChinaSIP). In 2018, the BoG 
approved discontinuing GlobalSIP after 2019, and beginning 
in 2016, ChinaSIP continued for a few years as the SPS Signal/
Data Science Forum.

In 2013, Richard Baseil became the SPS executive director. 
That year, two special interest groups (SIGs) were established 
to address technical areas in big data and the IoT. In 2015, a 
third SIG was approved, on computational imaging, which was 
later elevated to a TC, in 2018.

In 2014, the SPS teamed up with the Association for Com-
puting Machinery to jointly publish IEEE/ACM Transactions 
on Audio, Speech, and Language Processing. That year, two 
member benefits were introduced: SigView, an online portal of 
video tutorials with valuable educational content, and SigPort, 
an online archive of manuscripts, reports, theses, and support-
ing materials providing early exposure and peer feedback on 
work that is in progress. SigView videos were later relocated 
to the SPS Resource Center. Recognizing that data are a key 
element of SP, SigPort was duplicated and expanded to become 
IEEE DataPort, now an IEEE-wide product. Two new jour-
nals were added in 2015, IEEE Transactions on Signal and  
Information Processing Over Networks and IEEE Transac-
tions on Computational Imaging.

In 2015, the Society also looked to popularize and promote 
SP and its applications to the general public. Target audiences 
included high-school and college students and other non-SP 
professionals. Several visibility videos were posted on the SPS 
YouTube channel: “What Is Signal Processing,” “Signal Pro-
cessing and Machine Learning,” “Signal Processing in Free 
Viewpoint Television,” “The Benefits of Spoken Language 
Technology,” “Multimedia Forensics,” and “Under the Radar.” 
To enhance global reach, some videos were translated into Ara-
bic, Spanish, and Mandarin. Videos about careers in SP were 
also created as well as other SP technology-related videos.

In 2016, the SPS created the IEEE Foundation Student and 
Young Professionals Fund, which is aimed toward enabling 
SP student and YPs programs and activities. In 2019, to pro-
mote student engagement, the student/graduate student Society 
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membership fee was set to US$1 annually. The Society also 
focused on diversity, equity, and inclusion (DEI), and its first 
diversity statement was created along with a diversity pledge 
and a DEI webpage [6]. 

Ethical use of SP techniques has always been an emphasis of 
the Society. Privacy is an ongoing concern among many SP-relat-
ed fields, such as biometric data and datasets, so ethical guide-
lines continue to evolve for our publications and conferences.

SPS conferences started strengthening industry links. 
ICIP 2016 included an innovation program that featured 
state-of-the-art vision technologies, innovation challenges, 
talks by innovation leaders and entrepreneurs, tutorials, and 
networking. ICIP 2016 also launched a Visual Technology 
Innovation Award for industry leaders. ICIP 2017 also featured 
industry-focused keynote talks, panels, and programs related 
to several existing and emerging technologies. These industry 
initiatives have since been adapted by some ICIPs.

Another SPS change occurred in 2019. Historically, the 
BoG was responsible for electing Society presidents, but that 
year, it opened the vote to all members. A petition process was 
also instituted to give members additional opportunities to be 
heard. The Society also updated its logo to reflect the expand-
ing world of DSP.

The 2020s: Autonomous systems, AI, data  
sciences, and new outlooks for SP
The first few years of the 2020s have been turbulent, to say 
the least. The COVID-19 pandemic impacted all aspects of life. 
Lockdowns and social distancing measures increased the de-
mand for video conferencing, e-commerce, virtual events, on-
line learning platforms, and digital health technologies, such as 
telemedicine and virtual care. Meanwhile, the rollout of 5G net-
works is providing faster and more reliable Internet connections, 
and the development of 6G is aiming to generate even higher 
rates to support autonomous vehicles and smart cities. AI appli-
cations, such as deep learning, natural language processing, and 
predictive analytics, are being used in a wide range of indus-
tries, including health care, finance, and transportation. Quan-
tum computing technology promises to solve problems that are 
currently unsolvable with traditional computers, in areas such 
as cryptography, drug discovery, and weather forecasting. 

The SPS has two megatrend initiatives: the SPS Autono-
mous Systems Initiative (ASI) and the SPS Data Sciences Ini-
tiative (DSI). ASI aims at highlighting the central role of SP in 
the design and development of autonomous systems, a multi-
disciplinary area cutting across AI, robotics, and the IoT. DSI 
coordinates the activities of the various TCs on data science, 
another area at the heart of SP. SP takes a broad view of signals 
and data since, once digitized, signals are data. To address the 
new set of applications, SP journals and conferences capture 

much of the research activity in distributed and decentralized 
peer-to-peer and networked environments and, in graph SP 
(GSP), the new theories and applications of graph-based data. 
Our publications and conferences continue exploiting a priori 
information about structure in problems/data, connections to 
physical applications (such as 3D audio, radar, and ultrasound), 
social and other emerging applications, and connection to 
computational platforms and scenarios, e.g., distributed com-
puting, edge computing, and processing at the device, through 
peer-to-peer communications, possibly with no cloud and 
edge connectivity. DSI launched very successful webinars on 
brain research and GSP and has established a working group 
that works with the Education Board on incorporating topics 
around data science in academic and postacademic education 
curricula. The SPS Education Webinar program also grew sig-
nificantly in 2022, when we offered a total of 55 webinars on 
cutting-edge topics. Some webinars are author solicitations—
invitations based on Xplore article analytics—and some are 
arranged by the various TC and SPS initiatives.

In addition to all its journals being hybrid open access, 
the SPS now has a fully open access journal, OJ-SP. OJ-SP 
recently introduced new paper categories; in addition to regu-
lar papers, it now accepts short papers (eight + one pages long), 
overview papers, and dataset/competition/challenges papers.

To date, the SPS has 20 financially and technically cospon-
sored journals. In 2022, the SPS added IEEE Journal on Indoor 
and Seamless Positioning and Navigation (open access), IEEE 
Transactions on Radar Systems (hybrid), and IEEE Transac-
tions on Machine Learning in Communications and Network-
ing (open access).

In 2019, TWGs were established, and three have been created 
to address the areas of industry, integrated sensing and communi-
cation, and synthetic aperture. With the creation of the Synthetic 
Aperture TWG, the SPS is now involved in the development of 
standards. The SPS Synthetic Aperture Standards Committee 
continues to experience steady growth and increasing interest 
from the research community, which is a testament to the need 
for market-driven standards in this technology space.

To alleviate global pandemic restrictions, in 2020, ICASSP 
provided free remote access for nonmembers and nonauthors. 
Over 16,000 attendees joined the ICASSP virtual platform, 
most of whom were not SPS members, confirming that ICASSP 
topics, trends, and technologies are increasingly popular and 
growing at a very fast pace. The global mainstream interest in 
SP highlights the strength, dynamism, and diversity of our com-
munity. Indeed, ICASSP is the home of cutting-edge research 
in many areas, including speech and language processing, audio 
and acoustic SP, machine learning for SP and communications, 
distributed optimization and information processing, graph 
SP, and image, video, and multidimensional SP. For the first 
time, ICASSP 2023 will host satellite workshops, which will 
foster cross-discipline exchanges of ideas and promote focused 
events in topics at the cutting edge of our field. We expect that 
these will become permanent features in future ICASSPs. ICIP 
is the premier forum for presenting  technological advances 
and research results in the fields of theoretical, experimental, 
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and applied image and video processing, and it continues to 
attract high-quality research in these areas. It is increasingly 
becoming the conference venue of interest in research related 
to image and video deep learning methods.

With continued efforts to increase and strengthen industry 
participation at our conferences, industry involvement has pro-
gressively increased. At ICASSP 2022, an industry program 
was incorporated in the technical program. It included a full 
parallel industry track with a corresponding open call for par-
ticipation, high-profile industry keynotes speakers, industry 
expert sessions, industry workshops, and the traditional show-
and-tell demonstrations. The SPS is now participating in IEEE 
DiscoveryPoint for Communications, which is a platform to 
meet the technical information needs of practicing product 
design engineers working in communications.

In 2020, the SPS established the Education Board to serve 
members’ continuing education needs and promote SP educa-
tion broadly. It also set strategic goals to boost educational and 
training offerings. ICASSP 2022 offered education-oriented 
10-h courses, providing in-depth and multisided understanding 
of a topic and a final quiz to cap each course. Upon comple-
tion of each course, attendees were provided professional devel-
opment certificates for training hours. These courses are now 
offered on demand for SPS members in the SPS Resource Cen-
ter. The SPS plans to continue offering such courses in future 
ICASSPs and ICIPs.

For SPS students, a new member benefit is the SPS Schol-
arship Program, launched in 2023. The SPS is now awarding 
multiple scholarships up to a total of US$7,000 for up to three 
years of consecutive support to students who have expressed 
interest and commitment to pursuing SP education and real-
world career experiences. Students and graduate students from 
all 10 IEEE Regions are eligible for this program.

The Society has also provided initiatives to stimulate and 
grow entrepreneurship to enable SP-related discoveries to 
impact applications. The SPS is now offering an Entrepreneur-
ship Forum in conjunction with ICASSP to promote entrepre-
neurship in the SP community by sharing entrepreneurship 
journeys, discussing challenges and opportunities in translating 
SP research into commercial applications, providing a forum 
for pitching, and, ultimately, training a new generation of SP 
entrepreneurs. The first Entrepreneurship Forum was held at 
ICASSP 2022 with great success; it included a pitching compe-
tition, where the SPS offered US$10,000 in prizes.

Diversity, equity, and inclusion have remained a key focus of 
SPS efforts. The SPS recognizes the importance of diversity and 
inclusion and has several ongoing efforts to widen the pipeline 
of women and underrepresented minorities interested in sig-
nal processing. Initiatives include outreach programs geared to 
pre-college students and, in particular, female and underrepre-
sented students. The SPS understands that the key to increasing 
diversity in SP is a more diverse faculty providing opportunities, 
mentors, and role models that inspire students for excellence. In 
that spirit, in 2020, the SPS established the Promoting Diversity 
in Signal Processing (PROGRESS) Workshop to help women 
and underrepresented minorities pursue academic positions in 

SP. PROGRESS is offered to both SPS members and nonmem-
bers every year, in conjunction with ICASSP and ICIP. In 2021, 
the SPS started offering Mentoring Experiences for Underrep-
resented Young Researchers, connecting them with established 
researchers in the field [5], [6]. Also in 2021, the SPS started 
planning K-12 outreach initiatives to increase the visibility of the 
Society and the SP discipline to young students worldwide by 
developing exciting impactful educational programs.

The SPS strives to create an environment in which women 
and underrepresented minorities members feel included and 
appreciated. It is encouraging to see that our efforts have 
been paying off; today, the BoG includes members from nine 
of the 10 IEEE Regions, and over half of the voting members 
are female. To enhance our commitment to diversity, the SPS 
has revised its governance documents, using gender-neutral 
language. ICASSP 2023 will provide a lactation room and 
nongender-specific bathrooms, and we plan to add those as 
permanent features to all our conferences and workshops.

On the ethics front, the SPS has formed a team of volun-
teers representing various TCs to develop recommendations 
for responsible research and the ethical use of technology. The 
team is focusing on guidelines for authors, encouraging them 
to consider not only the potential benefits of their research but 
also the potential negative societal impacts and to adopt mea-
sures to mitigate risk. It is also developing guidelines for pro-
moting explainable machine learning and solutions with low 
computational and memory cost and ensuring that SP-enabled 
developments are compatible with human well-being.

So far in this decade, SPS membership has grown from 
18,730 to 19,164 members and is expected to surpass 20,000 
during the Society’s 75th anniversary year.

The SPS has engaged IEEE at large, with its leaders assum-
ing leadership positions within IEEE-level boards and commit-
tees. In the past 20 years, SPS volunteers have served almost 
uninterruptedly on the IEEE Board of Directors as directors of 
Division IX (at least eight directors), vice presidents of technical 
activities (four), vice presidents of educational activities (two), 
vice presidents of the IEEE Publications Services and Products 
Board (two), and presidents of IEEE (three). In these positions, 
they steered IEEE into financially sound operations, promoting 
a more diverse, equitable, and inclusive organization, adopting 
open access and open science, exploring new membership mod-
els, adopting an IEEE-wide mobility policy, and fostering new 
services for professionals in IEEE’s areas of interest.

The beyond
The Society envisions that open access publishing will continue 
to grow, conferences will continue to expand both physically 
and virtually, membership activities will increase, educational 
opportunities will expand, and diversity and ethics will remain 
pillars in all aspects of our future commitments to our members 
and the general public. SP is a key ingredient in many new tech-
nologies and products, and its strengths  continue to be  enhanced 
by evolving computer and communications capabilities and 
novel algorithms. From digital and statistical to distributed and 
graph SP, from radar and communications to speech, images, 



22 IEEE SIGNAL PROCESSING MAGAZINE   |   June 2023   |

and language technologies, from the physical world to the social 
networks to space technologies, SP professionals are data sci-
entists, AI developers and practitioners, and machine learning 
specialists, and SPS is stepping up in these areas to meet their 
needs. Opportunities abound!

The SPS staff
The SPS staff has always played an important role in maintain-
ing the continuity of the Society. Its members are highly capable 
professionals who work harmoniously with SPS volunteers and 
have the knowledge and skills to turn ideas into reality.

The current composition of the SPS staff is as follows:
 ■ Richard Baseil: executive director
 ■ Administration:

 • Theresa Argiropoulos: director, operations
 • Deborah Blazek: administrator, committees and governance
 • George Olekson: chapter and operations associate
 • Jessica Perry: membership communications and experi-
ence specialist

 • Jaqueline Rash: administrator, membership program 
and events

 ■ Conferences:
 • Caroline Johnson: senior manager, conference strategy 
and services

 • Nicole Allen: senior conference administrator
 • Samantha Esposito: conference administrator

 ■ Publications:
 • William Colacchio: senior manager, publication and edu-
cation strategy and services

 • Rebecca Wollman: publications administrator
 • Michelle Demydenko: society peer-review and education 
program administrator

 • Nanette Januszkiewicz: society peer-review and educa-
tion program administrator

 • Mikaela Langdon: society peer-review and education 
program administrator

 • Rupal Bhatt: web administrator.
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75TH ANNIVERSARY OF SIGNAL PROCESSING  
SOCIETY SPECIAL ISSUE

Rabab Kreidieh Ward  

W hen I began writing this 75th anniversary article cel-
ebrating women in signal processing (SP), I reread the 
1998 editorial titled “Fifty Years of Signal Processing: 

1948–1998” [1]. At that time, IEEE had more than 300,000 
members in 150 nations, the world’s largest professional tech-
nical Society. Within the IEEE umbrella, there were 37 IEEE 
Societies and technical groups, and the IEEE Signal Process-
ing Society (SPS) was the oldest among its many Societies.

The 50th anniversary piece was a celebration of the major 
players in SP and the historic growth of the SPS. It featured 
many important scientists in SP and the SPS, including numer-
ous blurbs, quotes, and personal recollections from male lead-
ers in the SPS. The first nod to a woman inventor doesn’t occur 
until the 1970s, mentioning Susan A. Webber in the field of 
subband coding breakthroughs. Readers have to wait until the 
1980s section to see the face and profile of an SPS woman 
member: Delores Etter, the Society’s first woman president, in 
1988. Beneath her smiling photo and blurb, the piece acknowl-
edges that, “As in most areas of science and engineering, 
there were relatively few women in SP until the last one or 
two decades, when their numbers increased markedly.” It men-
tions Marie Dolan and Carol McGonegal (who served on the 
Digital Signal Processing (DSP) Technical Committee (TC) 
in the 1970s), and various other women members of the SPS 
Board of Governors (BOG), starting with Edith L.R. Corliss 
(1973–1975). Leah Jamieson joined the BOG in 1981, Maureen 
Quirk in 1986, and Fay Boudreaux-Bartels in 1989, followed in 
the 1990s by Marcia A. Bush, Candice Kamm, Quirk, Sarah 
Rajala, Sally Wood, and Jamieson, who began her two-year 
term as Society president in 1998 (see Figure 1). 

Jamieson is the second and final woman given a profile 
entry in that 55-page anniversary celebration piece, followed 
by a tip of the hat to Quirk and SPS Executive Director Mercy 
Kowalczyk, who were involved with revising the Society Con-
stitution and Bylaws in 1993.

I know that during those 50 years, and in the 25 years since, 
great strides have been made by women to close the gender gap 
in society, at the SPS, and in science, technology, engineering, 

Digital Object Identifier 10.1109/MSP.2023.3236475 
Date of current version: 1 June 2023

The Evolution of Women in Signal Processing and Science, 
Technology, Engineering, and Mathematics

©SHUTTERSTOCK.COM/TRIFF

https://orcid.org/0000-0002-2471-1902


24 IEEE SIGNAL PROCESSING MAGAZINE   |   June 2023   |

and mathematics (STEM). I know from personal experience 
that we have accomplished many firsts, despite many road-
blocks. As a young woman living in Beirut in the 1960s, I had 
the highest grades in the country, but I couldn’t study engi-
neering at the American University of Beirut, so I had to go 
to Egypt for my engineering education, where approximately 
18% of students were women. Soon after, I became the first 
women member of the Lebanese Professional Engineering 
Society. Later I completed my Ph.D. in electrical engineering 
at the University of California at Berkeley, and I was only the 
second woman to earn a Ph.D. there, in 1972; the first was an 
Egyptian named Kawthar Zaki.

In 1970, women accounted for 38% of the U.S. workforce; 
8% were in STEM fields and only 3% were in engineering [2]. 
Like so many women, I couldn’t find a job in academia that 
acknowledged my expertise. I was a sessional lecturer for two 
years at the University of British Columbia (UBC), and then 
I went abroad, had children, and eventually became the first 
woman in the engineering faculty at University of Zimbabwe. 
Later, in the early 1980s, I became the first woman engineering 
professor in BC, which made me Canada’s first woman holding 
a Ph.D. to become professor of electrical engineering, and later, 
in 1998, to become Fellow of the Royal Society of Canada. At 
that time, most women I knew in science or engineering in Can-
ada were appointed on short terms as sessional lecturers, so the 
majority of my colleagues and students were male.

Gradually, over time, more young women chose engi-
neering, and some became established leaders in their fields, 
including Lina Karam, who was appointed in 2020 as the dean 
of engineering at the Lebanese American University in Leba-
non. I was appointed as director of the Institute for Computing, 
Information and Cognitive Systems at the UBC, and later as its 
Natural Sciences and Engineering Research Coordinator and 
Advisor at UBC’s Vice President (VP) Research Office. Some 
of my work has been licensed to U.S. and Canadian indus-
tries and has resulted in many accolades. Most notable are 
the IEEE Signal Processing Society Norbert Wiener Society 
Award, in 2008, and the R.A. MacLachlan Award, the high-
est award of the Association of Professional Engineers in BC, 
emphasizing significant technical contributions and leadership 
to engineering “that characterize the profession at its best.” 

In 2020, I became an international member of the National 
Academy of Engineering. This year, I am the recipient of the 
2023 IEEE Fourier Award for Signal Processing. Among my 
various awards, the dearest to my heart and the one that I feel 
I deserve most, is the highly competitive Killam Senior Award 
for Excellence in Mentoring, which I received in 2013.

But sadly, today many women still face many of the chal-
lenges that I encountered decades ago. According to the IEEE-
USA’s 2022 Annual Salary Survey, the gap for IEEE women 
members grew in 2021, by almost US$6,000, with the propor-
tion of IEEE women engineers remaining at under 10%, the 
same number for the past decade [3]. The news from other data 
collection sources is similarly distressing. “As the demand for 
STEM talent increases, women’s share of those jobs remain 
relatively flat,” according to the 2020 Women in Stem Work-
force Index, which found that in the United States, women hold 
only one in four STEM jobs [4]. Other troubling aspects of the 
Index include that the largest STEM occupation, computers and 
math, a field that has exploded in growth in the past decades, 
women’s share of jobs actually decreased from 44% in 1990 to 
27% in 2018, and women made up only 15% of the engineer-
ing and surveying workforce, the lowest representation among 
STEM workers. The STEM pay gap actually increased by 3% 
between 2010 and 2015 [5] and has flatlined since, at 27% in 
computers and math, 16% in engineering, and 26% in manage-
ment positions [4], with women consistently underrepresented 
at the executive, high-level leadership level [2].

The situation is even more grim for U.S. women of color 
(WOC) in STEM [6]: 13% of STEM bachelor’s degrees, 12% 
of master’s degrees, 7% of doctorate degrees, and they rep-
resent only 4.8% of the workforce. Among science and engi-
neering jobs, the numbers are even worse: 2.3% for Hispanic/
Latina women, 2.5% for Black women, and 0.07% for indig-
enous women.

I will provide more big-picture numbers later and also gen-
der-specific statistics from the IEEE and the SPS, but first, on 
this 75th anniversary of the SPS, I want to celebrate and fea-
ture some of the many women SPS members who have worked 
so very hard to grow our Society, our research fields, and our 
world. I want you to hear their personal anecdotes, struggles, 
and victories. I want you to learn about the positive work 

FIGURE 1. Women Presidents of SPS, from left: Delores Etter (1988–1989), Leah Jamieson (1998–1999), Rabab K. Ward (2016–2017), Athina Petropulu  
(2022–2023), and President-Elect Min Wu (2022–2023).
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they’re doing to encourage and support the next generation of 
brilliant women so that girls and young women from all walks 
of life, ethnicities, and cultural backgrounds have role models 
and heroes whose footprints they can follow, whose strides will 
encourage the next generations of women in SP and STEM to 
take great leaps and blaze their own trails in this world.

Women leaders and innovators at the SPS
Since I became a member of the Society in 1988, I’ve had the 
pleasure of meeting many fantastic women in STEM, includ-
ing many of the women mentioned in the 50th anniversary 
publication. These women broke down gender barriers at the 
SPS level in academia and industry in all corners of the globe.

My involvement with the IEEE and the SPS has been cru-
cial to my career success. To me, it was more than a profes-
sional home. I was exposed to new technical topics, and I have 
learned so much from my colleagues about strategic planning, 
creating common goals, embracing change, forging effective 
leadership and management, and the importance of rewards. 
Many of these colleagues are incredible women leaders.

Let’s start with Etter, the first woman president of the SPS. 
She received a Ph.D. in electrical engineering from the Univer-
sity of New Mexico in 1979 and became a faculty member in 
the Department of Electrical and Computer Engineering (ECE) 
with a focus on speech recognition, software engineering, and 
adaptive SP [7]. She also worked at Sandia National Laborato-
ries,  working in seismic SP. In 1998, she became the Deputy 
Under Secretary of Defense for Science and Technology, over-
seeing the American Defense Science and Technology Program. 
She also ran the Defense Modeling and Simulation Office, the 
Department of Defense’s high-energy laser research program, 
and was the principle U.S. representative at the North Atlantic 
Treaty Organization’s Research and Technology Board.

In the 2000s, she joined the faculty of the U.S. Naval 
Academy, becoming the first Office of Naval Research Dis-
tinguished Chair in Science and Technology. She was also 
elected member of the National Academy of Engineering and 
was Assistant Secretary of the Navy for Research Develop-
ment and Acquisitions, overseeing the purchases of military 
machinery and IT. The prestigious Dr. Delores M. Etter Top 
Scientists and Engineers Award is named for her.

I reached out to Etter to talk about the history of women in 
SP and her memories of those early years. She presented her first 
paper at an IEEE Asilomar Conference in 1978, and in 1979, 
she presented another paper at ICASSP. “I remember standing 
in the hall with the conference guide, trying to decide which 
of the parallel sessions to attend,” she recalls. “I was wearing a 
brown linen suit with a white blouse with lace on the collar. I had 
my name tag clearly visible on the collar of my jacket to show 
my name and university affiliation. While I was standing there, 
another attendee walked up to me and handed me his coat. I took 
it, and then looked around to see why he handed it to me. Down 
the hall was a sign for coat check. I am sure that I was frowning 
as I handed him back his coat and pointed down the hall!”

Etter says that in those days there were few women attend-
ees at SP conferences and SPS governance. “I wanted to help 

provide more visibility to the other women,” she says. Etter 
began volunteering in conference activities and “quickly real-
ized that the SPS decisions were made by the Administrative 
Committee,” which included no women, and “no members 
west of the Mississippi.” That would change in 1983, thanks 
to Etter, who campaigned for a position on the BOG. “I was 
able to get on the ballot and get addresses for SPS members in 
California,” she recalls. “I sent them a letter asking for their 
vote so that there would be broader representation geographi-
cally.” Etter was elected to the BOG, and she began a decade of 
significant involvement with the SPS, including chairing many 
key committees, and as editor-in-chief (EIC) of IEEE Signal 
Processing Society Magazine (1986–1987) and IEEE Transac-
tions on Signal Processing (TSP) (1993–1995.)

Jamieson is another trailblazer in SP and the SPS. After 
receiving her Ph.D. in electrical engineering and computer sci-
ence (CS) at Princeton, she became a distinguished professor 
at Purdue and later dean of engineering, specializing in speech 
processing and parallel SP. In 2007, she became president of 
IEEE, and chair of both the Purdue and the National Global 
Women in Tech organizations.

Jamieson got her start at the SPS in the 1980s, volunteer-
ing. “There is no question that my experiences in the SPS con-
tributed to many of my future successes,” she acknowledges. 
“Several of my fondest memories as a member of the SPS are 
the people: new friendships, new colleagues, opportunities to 
work with some truly amazing people through my years on 
Acoustic Speech and Signal Processing (ASSP)/SPS commit-
tees and boards, and the truly wonderful SPS staff. My memo-
rable experiences on the Board of Governors and as president 
included shoe shopping with SPS Executive Director Mercy 
Kowalczyk, something she said she didn’t get to do with her 
other presidents. Colleagues in the Society offered me encour-
agement over many, many years.”

Some of these colleagues were men, including Al Oppen-
heim and SPS Presidents Tariq Durrani (1994–1995) and Don 
Johnson (1996-1997). Jamieson went on to have numerous 
IEEE posts, including 2003 IEEE VP Technical Activities, 
2005 IEEE VP Publications, 2007 IEEE president and CEO, 
and 2012–2016 president of the IEEE Foundation.

“I had my first experience with strategic planning when I 
was on the Board of Governors,” she says. “As president of 
the IEEE Foundation, we developed a five-year ‘Strategy for 
the Future.’ Fostering collaboration became a central theme of 
much of my work at IEEE, and as dean of engineering.”

As SPS president during the 50th anniversary of the SPS, 
Jamieson says, “I think we would have been hard-pressed to 
do an article about women in 1998.” At that time, the climate 
for women in academia was described as “chilly” according 
to a 1996 book, The Chilly Classroom Climate: A Guide to 
Improve the Education of Women, coauthored by Bernice 
Resnick Sandler [8]. Known as the godmother of the 1972 
U.S. educational amendment Title IX legislation prohibit-
ing discrimination based on race, color, religion, gender, and 
national origin [9], her research on gender bias in academia 
documents women students’ many hurdles, from hostility and 
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denigration, to the various ways that professors overlooked, 
ignored, and dismissed women students, from lack of eye con-
tact and dialogue, to patronizing, simplistic responses to their 
questions or comments [10].

As the years passed, and research became increasingly 
collaborative, interdisciplinary and global, so did education 
research, with increased emphasis on teamwork, ethics train-
ing, and community outreach, including the IEEE program 
Engineering Projects in Community Service (EPICS), which 
Jamieson cofounded and directed. EPICS increased diversity, 
including that 33% of CS EPIC students were women, compared 
to only 11.5% nationally. These programs underline the need to 
connect girls and women in STEM to real-world, community-
based issues and needs that will benefit the world. As IEEE 
grew, so too did its publishing output and global readership, stra-
tegic planning, global offices, and key messaging, including its 
2010 core purpose of “Advancing Technology for Humanity.”

Yet despite many efforts, women engineers continue to 
experience a higher attrition rate in the workforce, lower pay 
scale, and many tensions between work and personal life 
responsibilities. Campus life is also still chilly. “Engineering 
students still tell the same ‘boys club’ stories,” Jamieson noted 
in her keynote talk at the 2021 ICASSP conference [11]: “Male 
lab partners who assume the woman will take notes while he 
does the experiments; women leading design teams whose 
members won’t pay attention to their leadership; unwanted 
sexual advances; faculty who shrug off concerns of women 
who come to them for help in dealing with these issues.”

Long-time SPS Member Quirk didn’t have such negative 
experiences at the professional level. “I found that male engi-
neers were very supportive of women,” she says. “They never 
belittled researchers because they were women. Engineers 
are much more interested in people getting the answer rather 
than any attribute a person might have.” Quirk provided me 
with an amusing anecdote from 1984, the year she joined the 
ASSP Conference Board Committee, the first woman on that 
committee. At that time, she was working at the Jet Propulsion 
Laboratory in Pasadena, and attended a DSP workshop. “Tom 
Quatieri gave a talk about sinusoidal representation for speech,” 
she recalls of the event that included few women researchers. 
“He mentioned that it worked far better on women. I started 
clapping, then there was silence. After a moment, everyone 
started to laugh and clap. Later when I read his paper, he men-
tioned that the signal speech reconstruction method was ‘pro-
nounced for low-pitched speakers.’” Two years later, Quirk was 
appointed SPS secretary until 1991; from 1993 until 1996, she 
was treasurer, then conference VP from 1997 until 2000.

Wood, another key woman member of the SPS starting 
in the 1980s, underlines the importance of networking and 
mentoring opportunities. In those days, “there were not many 
women in SPS, and we all knew each other,” she says. “When 
I got my B.S. degree, I was told that, in the United States, only 
2% of practicing engineers were women. At the SPS, I benefit-
ted from informal mentoring from a number of more senior 
SPS members. As a Society, I think SPS serves it members 
well by having a broad range of professional activities and 

venues for engagement. SPS is an intellectually vibrant and 
collegial community, which attracts so many women.”

As a professor of ECE, and current associate dean for grad-
uate studies at the Santa Clara University School of Engineer-
ing, Wood became an IEEE Distinguished Lecturer (DL) in 
2003. She says that her proudest moments include serving as 
SPS VP of Awards, and becoming an IEEE Fellow.

Another important factor in the growing number of women 
in our field is that the SPS and the IEEE grew its membership 
at the global level, attracting many new members from around 
the world, including Asia, the Middle East, and Europe. I have 
met many incredible SPS women colleagues from all parts of 
the world, and I can only mention some of them here whom I 
have served with on different SPS committees: Urbashi Mitra, 
Sheila Hemami, Yan Sun, Tulay Adali, Bhuvana Ramabhadran 
and Behnaz Ghoraani from the United States, Deepa Kundur, 
Z. Jane Wang, Octavia Dobre, and Mahsa Pourazad from Can-
ada, Roxana Saint-Nom from Argentina, Hong (Vicky) Zhao 
from China, Helen Meng and Pascal Fung from Hong Kong, 
Anubha Gupta from India, and Maria Sabrina Greco, Christine 
Guillemot, Isabel Trancoso, and Josiane Zerubia from Europe.

Zerubia is the first woman from outside North America 
whom I have served with on the SPS BOG. She has been 
active member of the SPS for more than 25 years. As direc-
tor of research at Center INRIA since 1989, she has headed 
many labs and groups, including Scene Analysis and Sym-
bolic Image Processing, Variational and Stochastic Models 
for Image Processing, Models of spatio-temporal structure for 
high-resolution image processing, and AI and Remote Sensing 
on board for the New Space. A Fellow since 2003, Zerubia 
acknowledges, “It is not always easy to be a successful woman 
in SP and scientific fields. Male and female colleagues could 
try to push you down. The only way to survive is to work 
harder and to always get better results.” Zerubia also credits 
the work of her male counterparts who “strongly supported” 
women members, including former SPS Presidents Jose Moura 
and Ali Sayed. “My vision for the future for women in SP is 
that we need to encourage young ladies to choose to learn math 
and physics at a young age [and give them opportunities] to 
learn SP at university. We also need role models in SP. Mine 
are Rabab Ward and Jelena Kovačević .”

Kovačević  is a specialist in wavelet theory and biomedical 
imaging and a long-time advocate of women in STEM [12]. 
She grew up in the former Yugoslavia and credits her parents 
for putting her on the path to a career in math, providing her 
“infinite confidence” that she could do anything she wanted in 
life. She attended Columbia University and was one of only a 
handful of women Ph.D. students in the electrical engineering 
department, from where she graduated in 1991. That decade, 
she worked at Bell Labs in New Jersey and cofounded xWave-
forms. In both academia and industry, “I did hear an occasion-
al, ‘She got the job because she is a woman,’ comment and 
ignored it,” she says. But once she became the department head 
of ECE at Carnegie Mellon in 2014, she learned that only 21% 
of undergrads in her department were women. She listened 
to “heart-wrenching” stories from women students about the 
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hardships they faced simply because of their gender. “I edu-
cated myself. I attended a leadership academy for women at 
Carnegie Mellon. I read articles. I discovered that gender bias 
in STEM fields abounds. Even though we know that diversity, 
in gender and race, makes us smarter, better people.” She took 
action at the departmental level. “We completely revamped 
our faculty-hiring process, educated faculty on unconscious 
bias, had broad and inclusive search committees, and pub-
lished our search procedures,” she says. “We also hosted 
prominent career-building workshops and events like Rising 
Stars in EECS (electrical engineering computer science), and 
Judith Resnik Year of Women in ECE.” Within three years, 
the number of women undergraduate students grew to 27%. 
The department included five women junior faculty members, 
growing the number of women staff members to 18%. In 2018, 
Kovačević became dean of New York University’s Tandon 
School of Engineering, the first woman to head the school 
since it was founded in 1854.

Kovačević has been an active member of the SPS for more 
than 30 years, former EIC of IEEE Transactions in Image Pro-
cessing, former member-at-large of the BOG, and winner of an 
IEEE SPS Technical Achievement Award, which she counts 
among her proudest career moments. “We still have a lot of work 
to do on campus and after graduation,” she says. “Many women 
go to Silicon Valley, which isn’t welcoming to women. We need 
to make this a wider conversation: that gender equality in STEM 
is also a social issue that everyone needs to change, so that all 
parents; educators; and employers; all the elders in our culture, 
advocate for equality so that all children can follow their pas-
sions to have opportunities to fail and learn and succeed.”

As a long-time professor, I appreciate the importance of 
growing the number of professional women faculty members in 
academia. And many other women SPS members have the same 
goal, including our current SPS President Athina Petropulu.

“I have to admit that in the first few years I felt isolated at 
SPS conferences,” says the 1991 Ph.D. graduate of ECE from 
Northeastern University. “After I got involved as a volunteer 
(through a TC membership first), I started having a network, 
which made a big difference. Women in SP (WISP) is a great 
opportunity to feel part of a community. I am very proud to 
have been EIC of IEEE TSP and SPS VP Conferences. While 
there has been progress, women still do not get as many nomi-
nations for awards and recognition [(DL and distinguished 
industry speakers (DISs)]. Women represent untapped capi-
tal. If we make them feel included and comfortable, they will 
unfold their talents and the field of SP will be so much richer.”

Petropulu is a distinguished professor at Rutgers ECE, and 
she’s active on many levels at IEEE and the SPS, including as 
IEEE Technical Activities Board member, and a former BOG 
member-at-large at the SPS. She has won numerous awards, 
including the Barry Carlton Best Paper Award at the IEEE 
Aerospace and Electronic Systems Society, where she served 
as a DL in 2019. While president-elect at the SPS, Petropulu 
received approval for a new faculty diversity-building work-
shop she conceived and named Promoting Diversity in Signal 
Processing (PROGRESS) [13]. This workshop was inspired 

by iRedefine, a program she spearheaded, as president of 
the Electrical and Computer Engineering Department Head 
Association. “The idea is to motivate and prepare women and 
underrepresented minorities to consider academia,” she says. 
Between 2017 and 2018, iRedefine helped 36.6% of the 
66 student participants get academic jobs. “We all see that 
there are very few women faculty,” says Petropulu. “China has 
over 50% female students, but still very few faculty. Who is 
going to inspire those women to become leaders when they hit 
the job market? Companies recognize the value of diversity 
and have the means (high salaries) to lure women. But aca-
demia does not offer high salaries. How can it compete with 
industry for the best? At PROGRESS, we provide information 
on how to put together application materials, CVs (curriculum 
vitaes), give mock interviews, and also professional training 
on how to negotiate. Since PROGRESS is for all the world, 
we have panels focusing on different countries.”

PROGRESS attracted 202 students at its start in conjunction 
with ICIP 2020. It’s now an ongoing SPS workshop at ICASSP 
and ICIP conferences and some mentoring teleconferences. Panel 
members represented a diverse group of global academic leaders 
from Beirut to Bangalore, to Buenos Aires and Hong Kong. The 
exit surveys for their first workshop showed that interest in pur-
suing professional academia more than doubled [14].

Piya Pal, one of our younger senior members of the SPS, 
agrees that mentorship is a key factor for women in STEM. 
“SPS has a lot of activities planned during conferences, which 
are very encouraging for young people,” she says. “But I think 
the real work happens behind the scenes through forming per-
sonal relationships between a mentor and a mentee.” Born in 
Calcutta, Pal did her Ph.D. at the California Institute of Tech-
nology (Caltech) in 2013 and is now an assistant professor at the 
University of California, San Diego’s Jacobs School of Engi-
neering. “Encouragement from the [SPS] community and the 
visibility of my work at an early stage played an important role 
for my career development,” she acknowledges. Student paper 
awards were essential for her early career; her doctoral thesis 
was awarded the 2014 Charles and Ellen Wilts Prize for Out-
standing Thesis in Electrical Engineering at Caltech. “I was 
also honored to receive the Early Career Technical Achieve-
ment Award from the SPS and the U.S. PECASE Award for my 
works on sparse sampling techniques,” she says.

On the challenges for women in STEM, Pal acknowledges 
that “people (both men and women) can jump to quick con-
clusions (which are often wrong) about another person’s work, 
and this is usually due to lack of proper technical understand-
ing, or sometimes even due to deep-rooted biases. When faced 
with these situations, I have always tried my best to fight back 
purely on a technical basis and not let my personal emotions 
get in the way toward establishing the scientific truth.”

Women in the SPS: Challenges and opportunities
Many key women and men at the SPS have spent decades work-
ing very hard to open doors for women in SP. Yet many recent 
stats show that progress for women in STEM has plateaued 
over the past decade, particularly in leadership in  academia 
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and industry, and for WOC. I would like to now turn the spot-
light on IEEE and the SPS to check our progress in the past 25 
years and discuss new hurdles and opportunities.

When I became president-elect of the SPS in 2014, my pri-
orities included growing the number of women involved in SP, 
inspiring our young members to get involved with the SPS, and 
ultimately seek out fruitful careers in SP and all STEM fields. 
Since the start of my involvement in the SPS in 1998, I have 
found it to be very supportive of diversity, and its presidents 
take special care and consideration of the various methods for 
cultivating and advancing women’s participation in our Soci-
ety. It has been an honor to continue these endeavors, both as 
president and a senior member of the SPS. In the past decade, 
I have had many lively discussions about this topic with Past 
Presidents Mostafa Kaveh, Jose Moura, Ray Liu, Alex Acero, 
Ali Sayed, and Ahmed Tewfik. As the SPS shared my goal to 
increase its women members, we looked at ways to enhance 
women members’ experiences at the SPS. Senior women 
members know from personal experience that diversity, net-
working, and mentorships are crucial to both personal success 

and the vitality of any organization, and we wanted to grow 
these opportunities. The WISP Subcommittee was approved 
by the SPS BOG in May 2014, with the leadership of Kostas 
Plataniotis, the SPS VP Membership at that time. That year, 
we started holding the WISP luncheon at all major SPS con-
ferences, including ICASSP, ICIP, and GlobalSip. These lun-
cheons, which also welcomed male SPS members, featured 
women speakers discussing ways to build and advance wom-
en’s careers so that everyone can benefit and thrive. These lun-
cheons were well attended, especially by newcomers. I loved 
attending them, seeing colleagues, meeting new people, and 
participating in discussions with speakers and panelists.

When I was president in 2017, and under the support and 
direction of Nikos Sidiropoulos, the WISP Subcommittee 
was elevated to the committee level, directly reporting to the 
SPS Membership Board. (The chairs of WISP thus far include 
Antonia Papandreou-Suppappola, Namrata Vaswani, and cur-
rently, Celia Shahnaz.) Initially, the WISP Committee focused 
on the luncheons, and they have since become active in hosting 
other events, including International Women’s Day.

It was not always easy to break into the field and to make 
friends. In the beginning, it could be lonely as the only 
woman on a committee or in the room. Luckily, that problem 
does not exist anymore as more women are joining the 
IEEE Signal Processing Society (SPS). It brings diversity into 
the Society and generally, into the field. I have always felt 
supported during the Women in Signal Processing (WISP) 
meetings at the major conferences. I met fantastic col-
leagues, shared experiences, and made some of my best 
friends. Being able to mentor younger colleagues was 
always an inspiration. But there are still not enough awards 
given to women who would richly deserve them. New 
awards can be created. Similarly for keynotes, there should 
be a push to have more women speaking. My vision for the 
future for women in signal processing? Equity. —Sabine 
Süsstrunk, IEEE Fellow; head of the Image and Visual 
Representation Lab, and director of the Digital Humanities 
Institute (2015–2020) at Ecole polytechnique fédérale de 
Lausanne; member of the Executive Committee of Swiss 
National Science Foundation.

Some of my proudest moments are my paper awards, 
the successful conferences I organized, and the pride of 
having improved the IEEE Signal Processing Letters perfor-
mance. I can see a new generation of thought leaders and 
pioneers. —Anna Scaglione, IEEE Fellow; Cornell 
University, member of the SPS Board of Governors BOG 
(2011–2013), editor-in-chief of IEEE Signal Processing 
Letters (2012–2013).

Just around the time I got my Ph.D., my advisor decided 
to leave his tenured faculty position and left academia. I 

was an academic orphan. My Ph.D. was in adaptive filter-
ing and I was thinking that neural networks with a statistical 
connection could be a fruitful research direction. Hence, I 
decided to make it to the NNSP workshop, which in 1993 
was held in a small town in Greece. That trip indeed 
helped shape my career. I found a vibrant and friendly 
community with NNSP (now MLSP) TC, which I also 
chaired (2003–2005 and 2021–2013). The interactions 
within this and then the broader SPS community provided 
important support. That is why, when serving as Vice 
President (VP) Technical Directions, I worked on multiple ini-
tiatives to reach out to young professionals to help them 
connect easily with our technical activities within the SPS, 
and find a community that nurtures them. —Tülay Adali, 
IEEE Fellow; distinguished university professor, University of 
Maryland Baltimore County; SPS VP Technical Directions 
(2019–2021); chair of the IEEE Brain Initiative.

Luckily, I have had great mentorship through the years that 
supported my growth. SPS has dedicated women in signal 
processing committees and arranges dedicated events at 
major conferences to help female students, which are com-
mendable. However, it is often hard to measure if such 
events have led to sustained impacts on women’s careers. It 
is wonderful to see many of our senior women are taking 
up leadership positions in SPS, which for sure will inspire 
more to follow, leading to broader and more diverse partic-
ipation in our community across all races, genders, and 
demographic areas. —Yuejie Chi, Carnegie Mellon 
University; IEEE SPS Distinguished Lecturer (2022–2023); 
IEEE Information Theory Society Goldsmith Lecturer (2021).

IEEE Signal Processing Society Member Quotes
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A healthy portion of the time is devoted to networking, 
allowing me to meet many new women members from all 
parts of the world, and learn about their country-specific 
challenges and situations. Many women wanted to know 
how they could start volunteering at the SPS. A woman 
from China was surprised that in North America, we had 
so many initiatives to encourage women to go into STEM, 
saying that in her country there are now many women engi-
neering students and professional engineers, and that women 
are encouraged to do what they like to do. Women in some 
Arab countries said that approximately half of engineering 
students are women, although they face challenges getting 
employment in some fields, and so, some women start their 
own businesses or work in a related profession. A Canadian 
resident from Mexico said that women students in Mexico 
are very optimistic about getting into engineering programs 
at university, but they have fewer career prospects as male 
engineers tend to prefer hiring male graduates. I learned that 
there were many variations from one region to the next, even 
among neighboring countries.

The SPS has also spearheaded an informal event for senior 
women faculty members that began in 2018 at ICASSP, thanks 
to Yonina Eldar. “It is important to have a more intimate forum 
than the WISP luncheons, where senior colleagues can network 
and also discuss issues having to do with more advanced stages 
of our careers,” says Eldar. “It’s an informal women’s gathering 
with the goal of celebrating each other’s success and enjoying 
each other’s company, and of course creating a supportive net-
work.” The event has since become an ICASSP tradition.

The SPS still holds the networking luncheons at ICASSP/
ICIP, although during the peak of the COVID-19 pandemic, all 
events were held virtually. In general, the pandemic has caused 
many setbacks in academia, when women in STEM identified 
loss of mentoring and networking as a significant issue, with 
a years-long impact on their educations and careers [15]. It 
shows just how important these networking opportunities are 
for women in our field.

Recent SPS statistics provide some evidence that our vari-
ous programs have benefited women in SP, particularly at the 
student level. But there’s certainly much room for  improvement. 

I have attended the Women in Signal Processing events at 
ICASSP, whenever possible, both as a student and later as 
a professor. I can meet with my friends and professors from 
all over the world, make new contacts within the communi-
ty, and discuss relevant and timely issues that women in 
STEM (science, technology, engineering, and math) fields 
may face. However, it is not usually clear how to get 
involved into SPS activities other than attending those 
events. SPS is a large community, and it is easy to feel lost. 
—Tanaya Guha, University of Glasgow; honorary associ-
ate professor, University of Warwick; chair, IEEE Women in 
Engineering (WIE) Vancouver Section, IEEE Multimedia 
Systems and Applications TC (2021–2024); presently, 
Editorial Board member, Nature Scientific Reports.

As a daughter and a wife, I always face the expecta-
tions to take care of my aging parents and my own fami-
ly. I moved back and forth to balance my research career 
and family duties. Now I am self-employed to do inde-
pendent research in my field while taking care of my fam-
ilies. I hope I can have free access to IEEE e-library from 
home without having to physically visit a university in the 
future, which is important for a self-employed woman 
researcher. Women in signal processing can advance 
technologies to improve the quality of human life if they 
are inventive and persevering.  —Huiqun Deng, IEEE 
Senior Member; self-employed.

The lack of women in most forums pushes you toward a 
male mentality. To overcome that, I try to be present in dif-
ferent representative bodies so I can influence and invite 
women on board, or help them to gain visibility. WISP is 

the best tool and must keep on growing in members and 
visibility in many different activities, which should be orga-
nized for women and men. —Ana Perez-Neira, IEEE 
Fellow; Universitat Politècnica de Catalunya; SPS VP 
Conferences (2021–2023), general chair ICASSP 2020 
(with more than 15,000 virtual attendees).

You always need to do much more than a man to be 
recognized. I did more. Women still need to fight to 
break the glass ceiling, but their competencies are better 
recognized and this also encourages young women to 
pursue a career in SP. The SPS is an international organi-
zation, so the  recognition is more objective than in local 
and small professional committees. The international rec-
ognition helps in supporting our local recognition and 
professional career promotion. My fondest experience at 
SPS is chairing ICIP 2014 in Paris. —Beatrice Pesquet, 
IEEE Fellow; Télécom ParisTech; SPS BOG member 
(2017–2019), chair of SPS Image, Video, and 
Multidimensional Signal Processing (IVMSP) technical 
committee, and of SPS International Conference on 
Image Processing (ICIP) IDSP TCs.

I had to overcome shyness early in my career due to few 
women at conferences. Women’s meetings at conferences 
are motivating. More advertising and events with success-
ful women in the field would be interesting as well as 
financial support for young and promising researchers, 
and help from more experienced colleagues. —Mariane 
Petraglia, IEEE Senior Member; Federal University of Rio 
de Janeiro, Professional Trajectory Award Recipient; IEEE 
WIE Unicamp, Brazil (2015).
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An ad hoc committee chaired by Mari Ostendorf was tasked 
with collecting statistics and information about women 
IEEE Members in the field of SP and how they fare in 
awards and in leadership roles. Besides Ostendorf, the ad 
hoc committee also included Petropulu, Beatrice Pesquet-
Popescu, and Eve Riskin.

In September 2016, I received their report. It was an illu-
minating read, highlighting that women made up only 9.4% 
of SPS members and 10.6% of IEEE Members, and although 
10% of SPS fellows were women, reflecting their substantial 
technical achievements, since 1990, only 2.2% of SPS major 
(nonservice) awards were earned by women.

“Our primary findings are that women in the SPS are 
grossly underrepresented in technical achievement-related 
awards (Society, technical achievement, education) relative 
to their percentage representation in the Society, which is 
itself low relative to representation in IEEE overall … the 
trends are consistent with those for the major IEEE awards, 
where the numbers are significant. The representation of 
women among plenary speakers at the SPS flagship confer-
ences also appears to be unreasonably low …” [16]

The committee found that the single biggest issue was relat-
ed to the nomination process. Women members were nomi-
nated at much lower level than their male counterparts. This 

In 1970, women accounted for 38% of the U.S. work-
force, but only 8% of science, technology, engineering, 
and mathematics (STEM) occupations, and 3% of engi-
neering jobs. By 2019, the proportion of women had 
reached 48% of the U.S. workforce and 27% of the STEM 
workforce. Yet in the computer and engineering fields, the 
largest among STEM occupations at 80%, women repre-
sented only about a quarter of the computer workforce 
and 15% of engineering occupations [2].

A 2020 global snapshot of women in engineering (WIE) 
jobs found that women’s representation ranged from 11% 
in Brazil, to 14% in the United Kingdom, to 20% in India 
[21]. In the European Union, women account for only 
32% of the high-tech workforce [22].
Gender pay gap
Women typically earn less than their male counterparts in 
all fields, including STEM. Among the 70 STEM occupations 
in the U.S. Census Bureau, women earned more than men 
in only one STEM field (computer network architects) [2].

According to 2020 data on workers aged 35–44, 
women in the United States earned 30% less than men, 
and that pay gap increased with age. In STEM occupa-
tions, in 2019, women earned US$0.816 for every dollar 
that men earned [6]. In the United Kingdom, the pay gap 
for women engineers is 11%, and by the age of 35, 57% 
drop out of the profession despite the fact that the country 
has a shortage in the field [23].
The leaky pipeline
The pipeline starts leaking during childhood [6]. A 
2019 U.S. study asked school kids to draw a scientist. 
Only 28% depicted a woman scientist. The majority of 
boys drew male characters, and girls did the same 
twice as often as the girls who depicted a woman scien-
tist. Another 2019 U.S. meta-analysis of gender stereo-
types in science [24] found that although 70% of girls 
aged six drew a woman, only 25% of girls aged 16 
chose to depict a woman. When students reach middle 
school, boys are more than twice as likely as girls to 

choose science or engineering careers, according to 
2019 research.

Almost 50% of U.S. women in science and engineering 
majors switch to non-STEM faculties, compared to 33% of 
men. Fifty-seven percent of Bachelor of Arts (BA) recipi-
ents are women, but only 39% are STEM degrees, with 
the lion’s share in biological sciences, math and statistics, 
and physical sciences. Only 19% of BAs given to women 
were in computer sciences, and 21% in engineering 
[National Science Foundation (NSF) 2017–2019].

Additionally, U.S. women in STEM receive only 44.3% 
of master’s degrees and 41% of doctorate degrees, and 
36% are postdoctoral fellows. Yet only 29% are employed 
in STEM fields. In engineering, only 13% of working engi-
neers are women, earning 10% less than male counter-
parts [25], and as many as one in four of them will quit 
this profession after the age of 30.

The situation is much more grim for undergraduate U.S. 
women of color (WOC) in STEM, with 5% Asian, 5% 
Hispanic/Latina, 3% Black, and 0.16% identifying as 
American Indigenous. WOC represent roughly 17% of 
undergraduates, but only 9% are in STEM. WOC also 
receive only 12% of master’s degrees and 7% of doctorate 
degrees and make up only 5% of the STEM workforce [6].
Academia
As of 2019, women are only 34.5% of faculty at academic 
institutions, and fewer than 3.5% are Hispanic, Black, or 
Indigenous. Twenty-eight percent of tenured STEM faculty are 
women, and less than 3% are Hispanic, Black, or Indigenous.
Career crunch
According to 2019 U.S. NSF statistics, women represent 
52% of the college-educated workforce, but only 29% of 
workers in science and engineering. In computer  sciences, 
it’s 25%, and in engineering, we were only 16% of the 
workforce. In general, the disparity in income for STEM 
occupations is 16%, with the highest gender wage gaps 
among health care, physical scientists, and computer occu-
pations [26]. As mentioned previously, the situation with 
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is a crucial aspect of career success: when women were nomi-
nated, the success rate almost doubled.

This research suggested that women have to make much big-
ger strides than men in the same field, which is consistent with 
other gender-specific literature in this field. Unconscious bias is 
a culprit, which has repeatedly been linked to the gender divide. 
Research in academia has found that a CV with a male’s name 
gets a higher rating [17], and in academic fellowship applica-
tions, women with competence matched to their male coun-
terparts, such as publication volume and impact, were given 
significantly lower scores [18]. Even recommendation letters for 
women medical faculty members resulted in lower reviews [19].

The ad hoc committee report acknowledges that, “People 
tend to hire others who have similar backgrounds to theirs, and 
the same trends seem to hold in SPS nominations for awards 
and invited talks. Recognizing unconscious biases is a critical 
step to reducing their impact on judgments. In addition, the 
reality of these biases means that boards need to be proactive 
about building a diverse candidate pool, in nominations for 
awards but also for lecturers, TCs, and board members.”

Although IEEE and the SPS had various policies in place 
to provide gender balance among editors and TCs, the commit-
tee found no similar policies for nominees. They underlined the 
need for specific methods to bridge the gender gap: in leadership 

WOC is even worse. In the science and engineering work-
force, Hispanic/Latinas, Black women, and Indigenous 
women count for only 2.3, 2.5, and 0.07%, respectively.
Leadership
Among U.S. government labs and research centers, 86% 
of the directors are white men while only 5% are women, 
and no WOC are represented at the director level. Only 
26% of STEM-related leadership positions are held by 
women, including 3% of WOC. Between 2013 and 
2019, women counted for only 8% of CEOs at biotechnol-
ogy and initial public offering companies [6].
Science academies
Globally, women represent 33% of researchers, but only 
12% of members of national science academies [27]. A 
2021 Gender Insight report found that women member-
ships in National Academies included highs of 25% in 
Mexico and Canada, 19% in Malaysia and the United 
States, 15% in Brazil, 11% in Singapore, 10% in the 
United Kingdom, and 9% in India [21].
R&D
According to the United Nations Educational, Scientific 
and Cultural Organization, Central Asia has the highest 
number of women in R&D at 48.5%, followed by 45.8% 
in Latin America and the Caribbean, and 40.9% in Arab 
States [21].
And the prize goes to
Between 1901 and 2019 there were 616 Nobel Laureates 
in Physics, Science and Medicine. Only 19 of these prize 
winners were women. According to one study of National 
Institutes of Health funding between 2006 and 2017, 
women as first-time principal investigators received 
US$40,000 less than male counterparts [6].
Blatant discrimination
According to a 2018 National Academies of Sciences, 
Engineering and Medicine survey, 50% of women in 
STEM academia experience sexual harassment. Another 
2018 study found that half of women in STEM jobs expe-
rienced discrimination, 9% higher than their non-STEM 

counterparts. A whopping 70% of women in STEM report 
that they are routinely the target of biases and microag-
gressions related to their merits and competence. Even 
more chilling, 90% of STEM workers that do report sexual 
misconduct experience some form of retaliation [6].
COVID-19: A disturbing new normal
A 2021 report by the U.S. National Academies of 
Science, Engineering and Medicine found that women in 
STEM “face a myriad of systemic inequities” and “dispro-
portionate hardships,” suggesting “that the disruptions 
caused by the COVID-19 pandemic endangered the 
engagement, experience, and retention of women in aca-
demic STEM, and may roll back some of the achievement 
gains made by women in the academy to date” [28]. 
These hardships include loss of work-life boundaries; 
reduced productivity; isolation from networks, communities, 
and mentorships; increased issues with setting work-life 
boundaries, due in part to home childcare responsibilities; 
and psychological issues, ranging from burnout and sleep 
problems, to anxiety and depression. The report found that 
these various pandemic-related issues have been more pro-
nounced for WOC [29].

The benefits of closing the gender gap
The European Institute for Gender Equality found that 
decreasing the gender gap in STEM fields could result in 
more than one million jobs, grow gross domestic product 
of the European Union by up to €820 billion by 2050, 
and potentially close the gender wage gap [30].

In other research about healthy workplace dynamics, 
research has consistently found that workers, and their orga-
nizations, thrive in environments that provide workers with 
three basic needs: autonomy, competence, and intercon-
nectedness [31]. Psychological safety is another key factor 
that breeds inclusiveness, trust, and mutual respect, particu-
larly when provided by leaders and executives. Google’s 
Project Aristotle crunched the numbers among its teams, 
looking at numerous factors, and finding that psychological 
safety was the one key factor for successful teams [32].
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training activities, by annually tracking the percentage of women 
in all aspects of Society membership activities, including major 
awards nominees and winners, paper awards and DLs, and by 
making meaningful policy changes to address any gender gaps.

The committee also recommended training programs to 
address unconscious biases in leadership training, methods 
for reducing the number of “all-male nomination slates,” and 
including more male members among the WISP Committee to 
increase and diversify the pool of nominators. A silver lining 
among all this data was that as of 2016, SPS women student 
membership had grown to 21.8% of the total student mem-
bers. But the number of graduate women students was lower 
(16.5%), and women also represented less than 10% of nonstu-
dent members. “As expected, the membership statistics show a 
leaky pipeline,” the report acknowledges, citing a “particularly 
big drop from graduate student members to members.” Unfor-
tunately, this trend has not changed since. In 2021, although 
women student undergraduate memberships had risen to 31% 
of the total student numbers, for the graduate students it was 
16.3%, and the number of nonstudent members was 9%.

Whatever the specific causes, this “leaky pipeline” dilem-
ma is ubiquitous in STEM gender research, which has often 
found that after postsecondary graduation, we tend to lose far 
too many talented, bright women to other fields. In STEM and 
at the IEEE and SPS levels, there’s a pressing need to retain 
women members in IEEE, the SPS, and in academia, research, 
and industry.

Recent IEEE statistics from 2020 found that since 1993, the 
percentage of IEEE (and also SPS) women members increased 
from 6 to 13%. And since 2009, the proportion of women IEEE 
Fellows has doubled, from 3 to 6%, and SPS membership has 
also grown from 5 to 9%.

We recently gathered new statistics on women senior mem-
bership numbers, award recipients, women BOG members, and 
other important statistics on women in leadership roles at IEEE 
and the SPS. The SPS-compiled data included only the Society 
Awards and not the Paper Awards. We found that the number of 
women SPS fellows more than doubled since 2016, to 208. The 
number of women SPS award recipients during the last five-year 
interval (2017–2021) remained the same as the previous five-
year period at five, representing 12% of total SPS awardees. But 
the number of awards increased in the last five-year period to 
nine awards, up from four between 2012 and 2016, when 18.5% 
of recipients were women. The original four awards were
1) the Carl Friedrich Gauss Education Award (formerly the 

Education Award)
2) the Claude Shannon–Harry Nyquist Technical Achievement 

Award (formerly the Technical Achievement Award)
3) the IEEE Signal Processing Society Norbert Wiener Award 

(formerly the Society Award)
4) the Leo L. Beranek Meritorious Service Award (formerly 

the Meritorious Service Award).
The new awards are
1) the Industrial Innovation Award, established in 2015
2) the Amar G. Bose Industrial Leader Award, also estab-

lished in 2015
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3) the Meritorious Regional/Chapter Service Award was 
introduced in 2017

4) the Pierre-Simon Laplace Early Career Technical 
Achievement Award began in 2019

5) the Meritorious Regional Distinguished Teacher Award 
was introduced in 2020.
For the 2012–2016 time frame, two women received the 

Claude Shannon–Harry Nyquist Technical Achievement 
Award: Eldar (2013) and Kovačević (2016). Three women 
received the Leo L. Beranek Meritorious Service Award: 
Petropulu (2012), yours truly (2013), and Min Wu in 2015. 
Between 2017 and 2021, two women received the Pierre-
Simon Laplace Early Career Technical Achievement Award: 
Yuejie Chi (2019) and Piya Pal (2020). Tara Sainath was given 
the IEEE SPS Industrial Innovation Award in 2021. The Leo 
L. Beranek Meritorious Service Award was given to Ostendorf 
(2017), Helen Meng (2019) and in 2022 to Tulay Adali.

Among the IEEE-level SPS-related awards given to women, 
in 2011, Ingrid Daubechies received the IEEE Jack S. Kilby 
Signal Processing Medal, and Julia Hirschberg was given the 
James L. Flanagan Speech and Audio Processing Technical 
Field Award. In 2012, this award was given to Janet Baker 
(and her husband James Baker), and in 2018, to Ostendorf. I 
received the 2023 IEEE Fourier Award for Signal Processing.

On the IEEE leadership level, IEEE has had four women 
presidents: Jamieson, Martha Sloan, and since 2017, Karen 
Bartleson and Kathy Land. Karen Panetta served as an IEEE 
Women in Engineering (WIE) chair (2007–2009), and Shahn-
az is presently the IEEE WIE chair-elect. Hemami was IEEE 
VP Publications Services and Products (2012–2016), and 
Evangelia Micheli-Tzanakou was IEEE VP Education (2007–
2011). In 2022, I was elected as the 2023 IEEE VP Education.

In the SPS, the number of women in the SPS BOG increased 
to 16 in the last five years, and women make up four of the 34 
SPS TC chairs and four of the 16 SPS EICs. Among SPS DLs, 
five of 26 are women, but only one woman (Dilek Hakkani-
Tur) is among the 20 SPS DISs. The latter award was estab-
lished in 2018.

Some of these numbers are certainly a dramatic improve-
ment from earlier decades; there were no women EICs until the 
1980s, no women TC chairs before the 1990s, only two women 
fellows until the mid-1980s, and no women IEEE-level SPS 
awards recipients before 2007 (see Table 1).

Women SPS members and women in STEM fields have 
made many great strides, despite the inequities that they 
continue to face. Many of my women colleagues share a 
cause for optimism and celebration, in large part thanks to 
the  participation of women members and leaders in the field. 
We have more than 900 IEEE WIE groups worldwide and 
both an IEEE and a Technical Activities Board Diversity and 
Inclusion Committee, while almost all IEEE Societies and 
Councils have women or equity, diversity, and inclusion com-
mittees or subcommittees, and there are many other wom-
en-focused committees. We also have an IEEE conferences 
Code of Conduct, with a zero “tolerance for discrimination, 
harassment, or bullying in any form at IEEE-related events.”

Diversity is a key aspect of any healthy ecosystem, in 
nature and the cultural institutions we nurture. Wu, our 
current SPS president-elect, is an ideal leader for continu-
ing to grow our diversity. “Through many volunteer roles, I 
have gained experiences, broadened my horizon, developed 
leadership skills, and made friends and formed comrade-
ships around the world,” says the specialist in information 
forensics and security and multimedia SP. “Being an SPS 
member for about 25 years (starting as a student member in 
graduate school), I couldn’t have foreseen that two decades 
later, I would contribute directly to blazing a trail to diver-
sify the leadership of SPS,” she says, acknowledging that she 
has “overcome the twists and turns” in her career including 
“many forms of implicit bias and double-standard treatment.” 
Currently the associate dean for graduate programs at the 
University of Maryland’s A. James Clark School of Engi-
neering, Wu was born and raised in China, did her Bachelor 
of Science at Tsinghua University in Beijing, and her Ph.D. 
in electrical engineering at Princeton University. She offered 
some sage advice that has helped her overcome institutional 
and cultural gender biases. “Quietly biting our lips won’t help 
in the long run, nor lead to the greater good,” she said. “Get 
support and sounding boards from mentors and supportive 
colleagues. I have received broad support from members 
around the world, including many whom I have worked with 
over the years in various capacities. Take strides in doing 
good work, technical work and serving the community. Con-
tinue inclusive excellence, for more women as well as other 
underrepresented groups. Nurture a big heart and fair mind 
for the greater good and work with male colleagues to build a 
strong, vibrant community full of positive energy.”

As a girl, I was fascinated and gripped by Marie Curie and 
her incredible achievements. She said, “Life is not easy for any 
of us, but what of that? We must have perseverance, and above 
all, confidence in ourselves” [20].

She was my idol and I used to dream that one day, I would 
also do great things. As a young girl, I did not know exactly 
what my own great thing would be, but I had much confidence 
that I would be able to do it. That’s thanks in large part to my 
mother, who taught me and my siblings that with hard work, 
we could do anything we wanted and reach any goals we set 
for ourselves, no matter how high we set those goals. This self-
confidence was my savior as I certainly faced many obstacles. 
But whenever I came up against a closed door, I looked for 
another door to open.

We need to nurture and cultivate that confidence. We need 
to start with children, encouraging young girls and young 
women to follow their passions. I believe that more of us 
women  leaders should visit elementary and secondary schools 
and talk to students, girls and also boys about the beauty of 
invention, the mysteries of the universe, the fact that engi-
neering can solve so many of our social and environmental 
problems and advance technology for all of humanity. It is 
interesting that there has been a healthy increase in women 
students studying health-related engineering, and many bio-
medical strides and inventions have been made by experts 
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in SP to help foster a better life for humanity, to literally 
help save lives.

In every country, and all cultures, we still have a lot to do, and 
a long way to go, to bridge the gender divide, fix the leaky pipe-
line, and rise above the recent plateaus in the gender wage gap, 
the number of women in engineering and CS professions, and 
among women in leadership positions in academia and industry. 
Women, and men, need to continue to actively participate in clos-
ing these gender gaps; by mentoring girls and young women and 
providing them with opportunities to succeed at all levels of soci-
ety; by giving them the chance to make mistakes, and rewarding 
them when they do succeed; by pushing beyond our own cul-
tural limitations and internal biases to recognize their talents, no 
matter their gender, color, and ethnicity; by helping women open 
their own doors—in academia, industry, and all aspects of life.
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T hroughout the IEEE Signal Processing Society’s (SPS’s) 
history, conferences have functioned as a main way to 
connect within the Society, bringing together the sig-

nal processing research community to discuss and debate, 
establish research collaborations, and have a good time. 
These immersive conference experiences, to which attend-
ees travel from all over the world to be together for a set 
period of time, have certainly been challenged over these 
past years, but SPS leadership was able to guide and steer 
through the constant unanticipated changes, with contin-
ued financial stability and growing momentum for a more 
inclusive future. This article gives an overview of the evo-
lution of SPS conferences in the past decade and presents 
the challenges ahead.

Introduction
SPS conferences are overseen by the vice president (VP) 
for conferences, who chairs the SPS Conferences Board 
and serves on the IEEE Board of Governors for a three-
year term. The VP for conferences has the direct overall 
responsibilities for the development, design, operation, and 
improvement of the Society’s conferences and workshops 
and their proceedings. Under the direction and guidance of 
the VP for conferences, throughout the years, all the SPS 
conferences and workshops have remained adaptive, flex-
ible, and aimed at consistent improvement of the member 
and customer experience.

The two flagship conferences of the SPS are ICASSP 
and ICIP. An open call for proposals is held for each of these 
conferences annually, and members of the Society formu-
late a complete plan for the location, organizing committee, 
timeline, and innovations for the conference for review and 
selection by the SPS Conferences Board. For many volunteer 
conference organizers for ICASSP and ICIP, this is a five-
plus year commitment. The SPS conference organizers have 
consistently shown their ability to be innovative in terms of 
new engaging programming and event formats, being versa-
tile and proactive and able to lead an immense  operation to 

Digital Object Identifier 10.1109/MSP.2023.3240852 
Date of current version: 1 June 2023

IEEE Signal Processing Society Flagship  
Conferences Over the Past 10 Years

©SHUTTERSTOCK.COM/TRIFF

https://orcid.org/0000-0003-4281-3934
https://orcid.org/0000-0001-6100-947X
https://orcid.org/0000-0001-6617-1417


37IEEE SIGNAL PROCESSING MAGAZINE   |   June 2023   |

execute these conferences flawlessly throughout the years. 
The relationship between the conference organizers and the 
VP for conferences and SPS Conferences Board is a critical 
element to the success of the Society throughout the years, 
and none of the innovations highlighted in the following 
would have been possible without the effort of the confer-
ence organizers.

Due to the joint efforts of the SPS Conferences Board 
and the conference organizers, ICASSP and ICIP have been 
trending toward growth in terms of the number of papers 
submitted and attendees and the amount of content being 
offered throughout this period.

Throughout time, with the onboard-
ing of each new VP for conferences, new 
ideas and priorities are infused into the 
SPS flagship conferences, but there are 
many consistent goals and efforts: 1) focus-
ing on creating an equitable and inclusive 
Society by removing financial and access 
barriers and providing additional oppor-
tunities to engage as well as by adhering 
to a statement on diversity and inclusion, 
2) maintaining the high quality of the technical content and 
presentations, 3) providing excellent opportunities for net-
working and idea exchanges, 4) streamlining operational 
tasks and offering transparent and supportive guidance to 
the conference organizers, and 5)  leveraging metrics and 
data for decision making by the Society leadership.

Evolution in the past decade

From 2015 to 2017: Growing competition from other 
conference models
In the period from 2015 to 2017, the major goals to be pur-
sued were related to the search for a dynamic equilibrium 
in a changing world. On one hand, the tradition of the SPS 
with respect to quality and scope in flagship and Technical 
Committee (TC) workshops and conferences was consoli-
dated. On the other hand, it was perceived that it was nec-
essary to explore new scientific communication forms and 
ways to eliminate possible barriers to make possible the 
involvement of larger communities, such as students and 
industrial people. The Society, in that period, felt and tried 
to react to the growing competition from other conference 
models over the previous several years. At the same time, 
the SPS was confident that its members had strong scientif-
ic content that was used to communicate according to cer-
tain well-assessed modalities. For example, research works 
that were more consolidated typically targeted journal pub-
lications, while initial and limited works with promising 
results and interesting ideas were typically targeted for the 
conference format. All papers followed a careful and seri-
ous review process.

However, there may have been a gap in successfully 
reaching larger audiences, including the corporate and 
industry audience, that was avoided by other conferences 

using alternative models. Examples that were often cited 
at that time were other conferences in computer vision and 
deep learning, which took advantage of the explosion of 
machine learning with deep learning and convolutional 
networks to grow considerably. In that case, submitted con-
ference papers were subject to more severe selection and 
review, resulting in conference papers that were often more 
cited and more impactful than journal papers. Such confer-
ences achieved large industrial participation, appearing to 
be more selective despite parallel workshops being created 
to collect papers in a less selective modality and keeping 

the number of active people participating 
in the conferences high. The SPS made 
the decision to remain more open and 
inclusive for its members, with a lower 
rejection rate of around 55%. With this 
in mind, the SPS focused on being a top 
choice, offering highly attractive confer-
ence modalities for the community to 
show its research work. Many discussions 
and some experiments took place to see 
how new models of conferences could be 

explored and which modifications to flagship ones could 
be defined. Some directions were continued from previous 
years, some lines within existing conferences were potenti-
ated, and some experiments were evaluated and discontin-
ued, such as the IEEE Global Conference on Signal and 
Information Processing (GlobalSip), a flagship conference 
originally introduced to increase industrial attraction with-
in the SPS. Summing up, the attempt to modernize the con-
ference offerings of the Society followed two main lines: 
1)  proposals of new services within existing conferences 
and 2) attempts to introduce new conferences.

New services in existing conferences
Strong cooperation in this direction was in place with the 
SPS Membership Board, as many of the ideas that were 
explored came from the objective to introduce new services 
for members. In addition to membership, the citation index 
became, in this period, a central issue for SPS conferences, 
as a matter related to the attractiveness and impact of re-
search works and, consequently, to the careers of research-
ers in the field presenting their work.

During this period, many new services were introduced. 
Among them was the SPS Signal Processing Repository 
(SigPort) platform, which made available the ability for 
authors to upload and share complementary materials to 
their papers and share with members and attendees. This 
was first tried at the GlobalSip conference, where slides 
and posters were made available to attendees. SigPort is 
still available today as a repository for SPS members and 
for supplemental conference materials.

Open Preview was also trialed at ICIP 2016 as a first-
time offering within IEEE. This new service allowed 
for the possibility to speed up the citation of conference 
papers by publishing the preconference final papers in 

With the onboarding 
of each new VP for 
conferences, new ideas 
and priorities are infused 
into the SPS flagship 
conferences, but there  
are many consistent  
goals and efforts.
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IEEE Xplore as open access for the one-month period 
before the conference for anyone who visited IEEE Xplore. 
Following the results of the ICIP 2016 trial, this program 
is now a standard for ICIP, ICASSP, and other SPS confer-
ences and workshops as well as other conferences within 
IEEE (see Figure 1).

Within this period, new criteria were designed to allow 
papers recently published in SPS journals to be presented 
during flagship conferences and TC workshop sessions, 
increasing the visibility of these papers and allowing 
authors to collect in-person feedback at conferences. At the 
same time, the consolidation of procedures allowing the 
management of events, such as the IEEE Signal Processing 
Cup, was begun to favor the involvement of younger active 
members, including students, in conferences.

The necessity of finding ways to actively attract and 
involve more industrial members was also a central point. 
A subcommittee was created to discuss which forms for 
industrial participation could be put in place to promote 
initiatives and activity, such as dedicated sessions and sim-
plified review modalities for papers not to be published on 
IEEE Xplore but using SigPort. At that time, social media 
was not yet at full development despite having had a con-
siderable advance in the previous 10 years. For example, 
the difference between the tools to manage the conference 
program for ICIP, in Genova, Italy, in 2005 and the one 
used in this period was a big jump. Review processes as 
well as tools for assessing conference programs were made 

different, allowing organizers to concentrate on more 
specific aspects by relying on a more robust and spread 
digitalization. However, in the period under description, 
connectivity problems were not unusual at conferences, 
and while the progressive elimination of many hard mate-
rials (only the elders remember the weight of ICASSP and 
ICIP proceedings to be carried back to the lab on behalf of 
supervisors …) in favor of digital counterparts progressive-
ly made easier the life of attendees, some transition issues 
were to be considered, implying the coexistence of hard 
and soft materials. This required much work in the SPS 
Conferences Board to determine and discuss initial guide-
lines that were updated progressively to help conference 
organizers in their job. Through the improvement of a con-
tinuous relationship with conference organizers along with 
the presentation of proposals, the selection, realization, and 
postconference closure procedures were continuously per-
formed to keep the process under control. IEEE staff had a 
central role in that, especially in all administrative aspects. 
Also,  communication related to technical aspects was 
considered to be improved. The SPS Conferences Board 
introduced, at that time, the liaison member for each flag-
ship conference to try to guarantee better communication 
among the central boards and the conference committees. 
The participation in joint meetings with the TCs Board 
took advantage of liaison members to better synchronize 
the essential role of TCs in review processes with technical 
chairs of conference committees.
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FIGURE 1. The total downloads from IEEE Xplore through time, using the conference itself as reference moment, including both PDF and HTML downloads.
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New conferences
A second major point was related to defining a policy about 
new conferences. Together with the issue of maintaining 
high quality, budget issues also had to be considered. On 
the one hand, the income streams from  conferences had 
to be kept limited so as not to increase too much the cost 
for organizers and attendees. On the other hand, confer-
ences were becoming an important source for guarantee-
ing the capability of the Society to put new services in 
place. A good tradeoff could be reached only if the Soci-
ety could identify new highly attractive research lines that 
captured the interest of its old and new members (includ-
ing industrial ones) while providing new formats. So, in 
this period, attention toward making the Society able to 
monitor the growth of new research fields proactively was 
supported by the SPS Conferences Board and, in general, 
by the other governing boards. This activity led to results 
related to making plans to start new TCs and special in-
terest groups that were coupled with conference events 
following a  dedicated conference strategy. On the other 
side, a critical evaluation of experiments started in previ-
ous years was carried on, trying to efficiently learn from 
actions and, eventually, errors. The GlobalSIP conference 
is an example. The details here are not relevant to differ-
ent positions and opinions in evaluating GlobalSIP and 
the evaluation of whether the conference was significant 
or should have been be discontinued, but the end of the 
process is known. While GlobalSIP had merits in try-
ing to address an enlarged set of members and was the 
place to do experiments (for example, SigPort usage was 
started there), it was perceived that the results obtained 
in terms of attendee numbers and the enlargement of 
Society membership as well as added value to the Soci-
ety’s conference offerings did not allow its continuation. 
Moreover, lessons were learned about the difficulty to set 
up an efficient promotion and review process for a new 
conference to allow results to be collected in the short 
time that characterizes our days. Some solutions were at-
tempted to make the review process integrated with TC 
activities, but the high review workload perception in this 
domain was learned as a difficult obstacle. Reviews car-
ried on by TCs for ICASSP and ICIP in addition to TC 
workshops were already a very huge load, and so having 
a third flagship conference was a major overload. Despite 
the efforts of GlobalSIP, the conference organizers were 
impressive, and the experiments carried on were useful 
lessons for activities moved later to other SPS confer-
ences and workshops.

Human relationships
In this period, nothing of what happened in the following 
years was predictable, and the conference was a concept 
that could not be separated from traveling and meeting in 
person. So, the conference experience was mostly central 
despite some experiments on streaming plenary lectures 
and relevant moments for a virtual audience. For instance, 

ICIP 2017, in Beijing, China, was very important for So-
ciety networking/social and global outreach (Figure 2 is a 
snapshot of the banquet at ICIP 2017). Fully virtual meet-
ings were discussed but were theoretical, and no one could 
have forecast the speed at which the pandemic made them 
concrete and changed our behaviors. Meeting in person had 
some advantages for establishing personal contacts but also 
some issues. The duration of the SPS Conferences Board 
meeting in previous years was somehow legendary. Dur-
ing this period, there was a kind of competition between 
the Conferences Board and the SPS Publication Board, led 
by Thrasos Pappas, to arrive at reasonable durations while 
keeping the necessary discussion.

Also with conference organizers, the exchange of expe-
riences was very rich. Just one of them is recalled here 
regarding Andre’ Morin, who contributed to organizing a 
very successful ICIP meeting in Quebec in 2015. When 
we were informed that he passed some years later, his 
contribution was not forgotten in suggesting and realizing 
improvements to SPS conferences. In-person conferences 
concern meeting people and sometimes people quite dif-
ferent from typical attendees: someone may recall that at 
the Quebec conference, we had the opportunity to meet, in 
person, an iconic figure in our community. The unchanging 
woman from the Lena picture became a kind advanced-age 
Swedish mother who told her history. Someone said it was 
inappropriate and so on and so on. From the point of view 

FIGURE 2. The banquet at ICIP 2017, in Beijing.
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of the Conferences Board chair at that time, it was a human 
moment in our conference, reminding us that behind our 
papers and professional activities, there is life. The les-
son that was learned is that the way social events based 
on the history of a community like the SPS are chosen can 
generate different reactions at a conference. However, this 
 cannot limit the choices of organizers in highlighting dif-
ferent moments of our past. In this way, they can take care 
of the way events are presented and different sensibilities 
are considered. A good conference organizer has to bal-
ance the program among consolidated parts and social 
events to enrich the human experience at a conference. 
Morin, in that case, was able to do that. Who among older 
SPS guys does not remember Magdy Bayoumi dressed as 
a pharaoh on a camel under a Pyramid in Egypt or guid-
ing a jazz band in New Orleans? Behind the curtain, too, 
all the incredible and well-prepared work done by the SPS 
staff that, in this period, faced some changes, was enriched 
by the possibility to meet in person, for example, in the 
morning executive meetings of the Con-
ferences Board as well as in the extended 
ones. More in general, each in-person 
meeting with all the volunteers who 
were involved deserves a final big thank 
you to all conference organizers, volun-
teers, and Conferences Board members 
and the staff that contributed to the suc-
cess of SPS conferences in this period. 
So, human relationships were a crucial 
aspect at that point. Nevertheless, the Society would have 
to face different times.…

From 2018 to 2020: Really changing times,  
one way or another …
The three strategic cornerstones for this 2018–2020 
period were certainly 1) to increase the efficiency and 
effectiveness of the conference organization processes, 
2)  to upgrade the conference experiences for all attend-
ees, and 3) to effectively cherish inclusion and diversity 
beyond just words.

One of the surprising features of this period was 
the need to be flexible and adaptable to move many of 
the Society’s flagship conference dates and/or locations 
throughout this period, starting with the last-minute move 
of ICASSP 2018 from Seoul, South Korea, to Calgary, 
Canada, due to the growing tension in the Korean pen-
insula but then quickly continuing with rescheduling the 
dates of all following confirmed ICASSPs so they would 
not be held during Ramadan. Then, the COVID-19 “earth-
quake” took place, which moved all 2020 SPS events to 
virtual. These were real changes and challenges, during 
which the Society focused on keeping the interests and 
values of its members and communities at the forefront 
of all decisions made, with a focus on opportunities for 
creating a more equitable, diverse, and inclusive confer-
ence ecosystem.

Conference organization
To be able to effectively organize a successful conference, 
it was found critical to clearly define first what a “success-
ful conference” is. After much discussion, it was agreed by 
the SPS Conferences Board members that the key factors 
for a successful conference would be

 ■ participants’ satisfaction, measured with surveys and 
feedback

 ■ the involvement of students, young professionals, 
women, and industry

 ■ the number of participants and number of submissions
 ■ the impact of papers and number of IEEE Xplore 

downloads
 ■ innovative initiatives and new forms of interaction
 ■ financial health.

The financial factor was strategically included as the 
last one to signal to SPS members that healthy finances 
are critical but that certainly, attendees’ satisfaction and 
fulfillment are above everything.

A key development in this period was 
the completion and continuous refine-
ment of the SPS “Conference Organizer 
Guidelines” [1], built to play a key role 
in the relationship between the SPS and 
conference organizers for years to come. 
From the document, the SPS has created 
this set of guidelines for all SPS finan-
cially sponsored and cosponsored tech-
nical meetings, with the main purpose 

to help organizers create coherent conference and work-
shop experiences over the years for the attendees while 
also accommodating innovations, creativity, and diversity. 
Since its first edition, this document has been consistently 
improved and completed to address all SPS conference and 
workshop procedures and customs and has contributed to 
significantly reducing conference organizers’ entrance bar-
riers, especially for newcomers, with a welcoming reference 
document to ensure transparency of expectations. Since the 
organizers initially sign their agreement with these guide-
lines, this is the closest thing to a contract between the SPS 
and conference organizers.

Naturally, all conferences start with a proposal by the 
organizers, and preparing a proposal is a process that may be 
long and complex. Since this process must be also transpar-
ent and fair, the conference proposal submission instructions 
and the proposal review procedures have been reviewed and 
improved to offer a clearer pipeline. The proposal outline was 
updated to include key SPS values, such as engaging students 
and the local community and encouraging inclusive activi-
ties and events for all attendees. To effectively see beyond 
proposal submissions, it was approved, in this period, that all 
candidate sites would be visited at some appropriate stage by 
an SPS senior staff member and an SPS Conferences Board 
member to cocreate a detailed report to be given to the SPS 
Conferences Board before any site selection. This process 
has allowed having a much clearer idea of candidate sites’ 

While much attention 
had always been given to 
the before- and during-
conference periods, 
the same had not been 
happening with the 
postconference period.
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strengths and weaknesses and even the strength and dedica-
tion of an organizing committee.

To help the conference finances through greater spon-
sorship, a patron and exhibitor prospectus template has 
been created and a sponsorship sales support company con-
tracted to help build longer-term relationships with spon-
sors in a more proactive and time-stable way. This was an 
important move from the previous stage, where each orga-
nizing committee would restart the sponsorship gathering 
process, without much coherence over the years and thus 
without much stability and sustainability.

While much attention had always been given to the 
before- and during-conference periods, the same had not 
been happening with the postconference period, notably 
regarding automated and consistent con-
ference data collection to better inform 
decisions about future conferences and 
workshops. In fact, it often happened 
at many SPS management meetings that 
attendees asked questions about the sta-
tistics from previous conferences, and the 
reply was commonly “not available” or 
“not consistently reported.” Many deci-
sions and choices really depend on past statistics. How 
many students? How many young engineers? How many 
low-income countries’ participants? How many local par-
ticipants? How many students are at banquets? And the list 
is endless . . . . For this reason, it has been decided to start 
a more effective conference data collection process and 
adopt an appropriate management and query system to be 
able to answer the coming questions, benchmark perfor-
mance, and set targets.

Conference experience
It was often commented that the SPS flagship conference 
format was too static and not evolving as much as it should, 
maybe excluding the technological paraphernalia. In this 
period, the vision was again to upgrade the overall conference 
experience, starting from the submission and reviewing 
process and continuing to the interactions and connections 
among all participants at an event. At the core of this vision 
are the people, i.e., the paper submitters, the reviewers, the 
authors, the conference participants, the session chairs, 
the local people, and so on. And all these people should 
 communicate,  connect, interact, discuss, enjoy, and have 
fun in old and novel ways.

Again, the before-conference period deserved much 
attention, notably the reviewing process, which is always 
very critical, especially for the authors whose papers are 
rejected. The feedback from authors and attendees was that 
the SPS paper review process was largely considered “rigid” 
and nonerror resilient; moreover, the conference technical 
program chairs struggled to find enough reviewers as well 
as increase the quality of the reviews. At this stage, the key 
objectives were to increase the efficiency of the reviewing 
process (e.g., immediate rejects), the quality of the reviews, 

the involvement of the authors (e.g., rebuttals and reviewer 
discussions), the transparency of the entire reviewing pro-
cess, and the reviewers pool (notably, with younger people) 
and create a pipeline for new reviewers and more potential 
SPS members.

At conference time, a critical issue to surpassing “old 
style” experiences was the exploitation of the increasing 
amount of technological paraphernalia available beyond 
the individual usage of computers and mobile phones. This 
has taken two key directions, one related to hardware and 
the other to software. The best exploitation example of new 
hardware were the e-poster sessions at ICIP 2019, in Taipei, 
Taiwan, where the usual paper posters were substituted by 
large screens and the poster presenters could exploit many 

new forms of presentation and commu-
nication (see Figure 3). The key lesson  
was that it takes time for people to learn 
to use these new capabilities since most 
e-posters were still “old style” static 
images, but there were also many creative 
surprises. On the software front, a single 
SPS Events app was created for all SPS 
flagship conferences, which really makes 

attendees’ life much easier and is ecologically friendly 
since much paper program printing is avoided.

Ideally, SPS conferences should leave a positive mark 
by compensating for their carbon footprint. This led to 
the idea of organizing events with the local community, 
not only researchers, academics, and companies but also 
high-school students and teachers. This could involve 
bringing them to the conference venue but also taking top 
scientists attending the conference to the local schools. 
This initiative should have had its first blast at ICASSP 
2020, in Barcelona, Spain, but COVID-19 changed those 
plans. Naturally, in 2020, the COVID-19 pandemic totally 
changed, in weeks, the critical conference organization 
issues and the attendees’ experience, but this is a topic for 
a following section.

Diversity and inclusion
Diversity and inclusion were major goals in this period, 
and these goals assumed multiple facets. The first one to 

FIGURE 3. The e-poster session at ICIP 2019, in Taipei.

In 2020, the COVID-19 
pandemic totally changed, 
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conference organization 
issues and the attendees’ 
experience.
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mention could be geographical diversity. During this pe-
riod, the first SPS flagship conference happened in the Per-
sian Gulf area, i.e., ICIP 2020, in Abu Dhabi, United Arab 
Emirates (unfortunately moved to online due to COVID-19 
but returning in 2024). Moreover, the first SPS flagship 
conferences in India and Malaysia have been approved for 
ICASSP 2025 and ICIP 2023, respectively. The second goal 
to mention could be restrictions for SPS flagship confer-
ences now that all major religious holidays have been iden-
tified to avoid any time clash with these conferences out of 
respect for all faiths; several ICASSPs had to be resched-
uled to follow this new rule.

Another important inclusion direction was toward low-
income countries. To include more people from these areas 
of the world, discounts and travel grants 
have been defined; for example, authors 
from these countries now have very dis-
counted registration fees (e.g., US$210 
at ICIP 2022), and all people from these 
countries have symbolic tutorial fees 
(e.g., US$20 at ICIP 2022) and totally 
free virtual attendance. While the atten-
dance numbers from these countries are 
still low, there has been growing hope that these actions 
will facilitate increased participation in the future.

Finally, student participation opportunities have required 
major attention to make students feel more included in all 
conference functions and avoid a two-tier conference sensa-
tion. Students are the future of the Society. Although maybe 
not the most important, a very symbolic initiative was the 
inclusion in the SPS “Conference Organizer Guidelines” of 
the sentences “Although not mandatory, it is strongly rec-
ommended that the banquet is included in the registration 
fees for all types of attendees at no additional cost.… Ban-
quets do not have to be formal and expensive, and emphasis 
could be placed on creating an inclusive environment for 
all attendees.” Only a very low percentage of students usu-
ally participate in the conference banquets, thus creating 
a segregation impression. However, more initiatives have 
been taken to include students, notably, organizing student 
luncheons with top researchers, defining very low tutorial 
fees (e.g., US$20 at ICIP 2022), allocating travel funding 
for students and young professionals (also for workshops), 
and creating student cups, 5-min video clip contests, job 
fairs, and student research networking events.

The pandemic
While much brainstorming had been dedicated to virtual 
events and virtual participation, only small developments 
happened before March 2020, e.g., streaming plenaries and 
keynote talks on Facebook Live, and nobody was really 
ready for the landslide that happened with the emergence 
of the COVID-19 pandemic. The migration to fully virtual 
events was meteoric and total in a couple of months, and 
the impacts may last for a long time; it remains to be seen. 
What did not happen for decades happened in a few weeks, 

and, surprisingly, with the intense efforts of all involved 
and the amazing readiness of technology, the SPS flagship 
conferences entered a new era, with rather limited suffer-
ing. Naturally, the move to virtual raised many difficult 
issues, some more legal, e.g., what to do with the contracts 
related to the physical venues already contracted (ICASSP 
2020 was in May, just a couple of months after the pan-
demic began), others about the attendees’ experience, e.g., 
what application, presentation, and communication func-
tionalities to use for the virtual conference, and, finally, 
others more financial, e.g., what registration fees model 
to use for the virtual conferences. For the first SPS flag-
ship conference during COVID times, i.e., ICASSP 2020, 
in Barcelona, the decision was for fully recorded presen-

tations, including the keynotes, although 
with real-time questions at the end; this 
has changed over time, with more and 
more presentations happening in real 
time and recorded for later viewing, no-
tably, in different time zones. For all of 
2020, it was decided that nonauthor reg-
istrations would be totally free, which 
led to record registration numbers, nota-

bly, around 16,000 for ICASSP 2020 (rising from around 
3,500 at ICASSP 2019, in Brighton, United Kingdom). 
While it was great to have access to these new members of 
the community, it was soon clear that free registrations do 
not necessarily imply participation, and thus, the decision 
for 2021 and beyond was to have minimum registration 
fees for virtual participation.

After the shocking forced experience, the SPS started 
thinking about the post-COVID future, notably, how con-
ferences should be in the future after what was learned in 
2020. Clearly, virtual conferences allow remote participa-
tion and increase inclusion but also prevent the warm con-
nections that only physical conferences allow. What about 
hybrid conferences, allowing people to choose to be present 
or not, including authors? The impression was that many 
people would simply stay at home because they could and 
that the “amazing” atmosphere of past SPS flagship con-
ferences would never return. Are conferences really essen-
tial beyond journals if they do not produce physical human 
contact? And what about the technical discussions around a 
dinner table, with opinions from all around the world, with 
real laughs and real beer? These are some of the questions 
that the years to come will help to answer.… Overall, 2020 
was a year of forced change, but it allowed the SPS to show 
its strength, resilience, and commitment to an inclusive 
future. And that was great to see.

From 2021 to 2023: Toward a marketplace model
Against all odds, 2021 was still restricted by the pan-
demic. However, the SPS tried to use that to its advantage. 
ICASSP 2021 and ICIP 2021 were finally held virtually, 
in Toronto, Canada, and Anchorage, Alaska, respectively, 
and this helped the Society to keep on learning about the 

The migration to fully 
virtual events was meteoric 
and total in a couple of 
months, and the impacts 
may last for a long time; it 
remains to be seen.
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best virtual platforms and how to organize virtual techni-
cal programs. Not only must the virtual lecture and poster 
sessions offer the best experience to the attendees but the 
conference networking and social events should not be lost. 
The survey that the SPS is now regularly doing after each 
of its two flagship conferences helps to steer the organiza-
tion of future events. Clearly, people are longing to meet 
in person at the conferences, and 2022 seemed to slowly 
bring things back to normal in terms of COVID-19. In any 
case, the organizing committees are still 
working with plans A, B, and even C to 
adapt to the possibly changing situation. 
This was the case of ICASSP 2022, in 
Singapore, planned to be held mainly in 
person until a new pandemic outbreak 
appeared in China just two months be-
fore the conference. Once more, the SPS 
thanks its volunteers for the great job that they do when 
facing these complicated situations.

Despite the roller coaster that the organization of events 
has become, building on the achievements of the past years 
helps to continue offering attractive conferences of high qual-
ity.  Figure 4 describes the evolution of ICASSP in the past 10 
years and how the number of submitted papers and the ratio 
of the number of attendees versus submitted papers in the 

past three editions are the largest ever. The planned strategic 
cornerstones for this 2021–2023 period are 1) to stabilize the 
hybrid model, 2) to make the industry program and participa-
tion grow, and 3) to incorporate other kinds of submissions, 
which can enrich the conference papers. Since our conferenc-
es should be a powerful tool to help SPS membership grow, 
we will continue fostering initiatives that promote diversity 
and new services and liaise with other sister Societies and 
events. The vision for this period is that our flagship confer-

ences should be a bubbling marketplace 
with heterogeneity and a wide range of 
products to offer.

Hybrid conferences
The discussions that have been carried out 
within the SPS Conferences Board and 
some ad hoc meetings stated the positive 

aspects that the virtual component brings to our conferences: 
increasing the range of attendees that can participate (e.g., 
students and members of industry), promoting the green and 
sustainable aspect of our events, and allowing joint nonco-
located events, among others. For this reason, the SPS has 
intensively helped the organizing committees of our flag-
ship conferences to include this  component, even in an in-
person event. That has led to a central track, around which 
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a  conference is structured, that is held in an auditorium with 
real-time streamed activities all day long and during all the 
days of the conference (e.g., keynote talks and panels). The 
regular and special oral and poster sessions are still looking 
for their best format and depend very much on the organiz-
ing committee’s decisions and the conference venue’s capa-
bilities. The imaginative and good solutions that are devised 
then remain for the next editions. Importantly, the virtual 
platforms that can be used are well-known now, as is how to 
link them with the regular paper submission platforms, which 
helps very much in the whole process.

Authors’ participation is still an open topic for discus-
sion regarding whether they must attend in person or not. 
However, those that have already experienced going back 
to the in-person conferences feel happy with the experience 
and realize that it is indeed a very important aspect of our 
job as researchers. The spontaneity of in-person encounters 
cannot be replaced by any virtual tool so 
far—maybe when the metaverse comes, 
who knows, but let us live the present and 
midterm future, which is already difficult 
to predict. Also, among the authors, there 
is a feeling that the virtual component has 
brought in much work with all the mate-
rial that has to be submitted: papers, vid-
eos, slides, and posters (all of it in quite 
a short period of time). The SPS is still 
looking for ways to combine different 
kinds of participation so that it ends up with a win-win situ-
ation for all attendees.

Industry program and participation
The flavor of SPS conferences is mainly academic, and the 
events stand out because of the academic quality of their 
technical programs. However, the presence of industry lags 
a little bit behind that in other Societies. We assume that one 
of the main reasons is that there is no main supporting signal 
processing industry, as, for instance, is the case in communi-
cations and power electronics, but several industries. In any 
case, signal processing has become the “silent” core of many 
different industries, and we can play this in our favor, togeth-
er with the deep connection between signal processing and 
artificial intelligence. To help increase the participation of 
industry in our flagship conferences, we have defined some 
key performance indicators (KPIs) and set some thresholds 
to be met: 1) the number of sponsorships and exhibitors, 2) 
the size of the industry program, and 3) the number of at-
tendees and papers.

Taking the baton from the past VP for conferences, who 
put in place a patron and exhibitor prospectus template 
and promoted contracting with a sponsorship sales support 
company for ICASSP and ICIP, the SPS recently signed a 
multiyear contract with the company to build longer-term 
relationships. The KPIs were part of the contract. Also, there 
are several industry members of the Society that should reg-
ularly attend ICASSP and ICIP but do not. In addition, to 

share some of the motivations of the academic attendees, the 
Society should further work into its conferences other kinds 
of motivation that are more specific to industry members, 
such as recruiting (i.e., it is good to have direct contact with 
potential candidates) and stay up to date with latest trends, 
which is seen as an essential part of their job. They strongly 
appreciate that a conference deploys a specific industrial 
program with specific workshops, panels, special sessions, 
and keynotes. For this reason, in 2021 and 2022, the Society 
consolidated and enhanced the industrial program, espe-
cially regarding industry-driven keynotes, talks, tutorials, 
and workshops. Also, industrial forums and panels are good 
to showcase the industrial trends in the near, medium, and 
long terms. The more the sponsors get closer involvement 
in the elaboration of the conference program the better, and 
it is important that this be reflected in the patron prospec-
tus and planned from the very beginning. Closer involve-

ment of industry in Society activities 
must be achieved: the Signal Processing 
Cup, SPS Video and Imaging Processing 
Cup, and SPS Grand Challenges should 
not be exclusively organized by academic 
TCs. The Show and Tell Demonstration, 
for instance, is a good forum for quick 
presentations of new  products and tech-
nologies. These and other new activities 
should be envisaged by the Society and 
the Conferences Board, which has already 

incorporated in the conference guidelines the new structure 
that the conference organizing committees must have to be 
able to cope with the increasing number of activities and 
promote growth. One very good example of the new indus-
try-oriented activities is the Entrepreneurship Forum, which 
was successfully organized for the first time at ICASSP 
2022, in Singapore.

Finally, keeping the participation hybrid (both virtual and 
in person) is necessary to including our industry members, 
who may have more travel restrictions than in academia. 
Also, planning for alternative participation formats in a con-
ference that do not necessarily require a full paper can help. 
This leads to the next topic about incorporating other kinds 
of submissions, which can enrich the conference papers.

Enrich the types of conference submissions
The goal of our flagship conferences is to offer a vibrant 
marketplace that gives the possibility to interact and net-
work around the signal processing topic. To open the floor 
to admitting different types of conference paper submis-
sions and planning for alternative participation formats that 
do not necessarily require a full paper can help to advance 
in this direction. For example, workshops and sessions with 
short papers and extended abstracts targeting participants 
from industry have already begun to be implemented, at 
ICASSP 2022. Papers/abstracts may be part of the proceed-
ings but do not really need to be published in IEEE Xplore 
(mitigating the <50% acceptance ratio).

The spontaneity of in-
person encounters cannot 
be replaced by any virtual 
tool so far—maybe when 
the metaverse comes, 
who knows, but let us 
live the present and 
midterm future.
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Another avenue is that authors of papers published and 
accepted in SPS journals may present their work at ICASSP 
and ICIP in appropriate tracks. These papers will neither be 
reviewed nor included in the proceedings. It is high time to 
promote this alternative, which was a little bit hidden in the 
call for papers. In addition, at ICASSP 2023, for the first 
time, IEEE Open Journal of Signal Processing (OJSP) will 
provide a special track for longer submissions, with the same 
processing timeline as ICASSP. Accepted papers will be pub-
lished in OJSP and presented at the conference but will not be 
included in the conference proceedings. With this, the Soci-
ety begins its journey toward open access for conferences. 
This is a topic that has already taken many brainstorming 
sessions within the Board of Governors and that will continue 
to do so. In the absence of a disruptive and clear winning 
solution, the strategy is to try different alternatives that have 
previously been well discussed and build on them.

The discussions about how to further increase the quality 
of our conferences, at least within some specific tracks, are 
still open. In our opinion, this must be so and reflects the con-
tinuous aim for improvement and adaptation in our Society.

And much more …
Importantly, the SPS Conferences Board keeps track of dif-
ferent trials and discussions in the past so as not to repeat 
past actions that failed. However, it also keeps an eye on 
how the world and circumstances evolve. A brilliant idea 
in the past may not have succeeded because it did not come 
at the right time. The Conferences Board agreed that ICIP, 
much smaller in size than ICASSP, can be a good testbed 
for new ideas. This can also help the conference to revive in 
front of others that are currently doing extremely well and 
create a very strong competition.

Other original activities that are enriching our conferenc-
es are the series of educational courses that were initiated at 
ICASSP 2022 and the Promoting Diversity in Signal Process-
ing workshop (already in its fifth edition). The Society keeps 
having many open questions to debate around the key factors 
for a successful conference, which is very good, as it means 
that the SPS is continuously observing its competitors and 
searching for improvement. The increasing capabilities that 
have been gained in data analytics will help very much in 
shaping a good strategy. Also, the better advertisement tools 
that the Society has acquired in different social media rein-
forces the beacon role of our flagship conferences.

Conclusions
In these few pages, we have tried to show how SPS flagship 
conferences have become a platform to share the latest and 
innovative ideas with peers all around the world. As we have 
commented, the conferences are in a continuous adaptation 
process to create the best ecosystem in every moment to help 
science grow with the exchange of the top ideas. Diversity, 
inclusion, and quality are the ultimate goals, and new chang-
es will keep being introduced so that they become more and 
more a reality.
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John Edwards  

Let me begin by telling you that 1969 was a great year—a 
really, really, really great year.

It was the year of the Apollo 11 Moon landing, Wood-
stock, and the New York Mets winning the World Series. It was 
the year I took my mother and sister to see Hair on Broadway.

But all of that happened shortly after what made 1969 such 
a really great year. That was the day I visited the IEEE ‘69 
International Convention & Exhibition and, in the process, 
found my future career.

An important call
The phone rang. It was my best friend, Jonathan Bird, a junior 
at Brooklyn Technical High School.

“So, what’s up?” I asked.
“I’m going to the IEEE show tomorrow,” he said.
“The what show?” I replied.
“It’s a show for electrical engineers,” he explained. “All the 

big electronics companies will be showing their stuff there.”
My interest was piqued. Ever since visiting the 1964–

1965 World’s Fair, all things electronic had fascinated me. I 
was an avid Popular Electronics reader, eagerly devouring 
the latest news about developments in integrated circuits, 
computers, telecommunications, lasers, and so on. All in 
all, it was a great time to be a 14-year-old tech-crazed kid.

The idea of attending an event packed with news and pre-
sentations about the latest electronic breakthroughs sounded 
far more appealing than spending another dreary day at Junior 
High School 119 in Glendale, Queens.

“I want to go with you,” I told Jonathan.
“You’re too young,” he shot back. “They’re only admitting 

high school and college students.”
“I don’t care,” I answered. “I’m going with you.”
He sighed. It was something he did quite frequently when 

in my company.

Welcome to Wonderland
Bright and early the next morning, I met Jonathan outside my 
Queens, New York apartment. A bus and three subway rides 
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later we emerged into the light at Manhattan’s Columbus Cir-
cle. The New York Coliseum was directly in front of us. The 
International-style structure, opened in 1956, featured both a 
low building with an exhibition space and a 26-story office 
block. A sign outside declared: “Welcome to the IEEE Con-
vention and Exhibition” (Figure 1).

Jonathan and I entered the exhibition space’s foyer. My 
friend presented his school ID to one of a series of women 
positioned behind glass windows. As a student at Brooklyn 
Tech, New York City’s elite engineering school, he was 
immediately granted a pass.

Then, it was my turn. I approached the 
window looking completely flustered.

“Oh, no,” I groaned while rapidly pat-
ting my shirt, trouser, and jacket pockets. 
“I can’t find my ID! This is horrible!”

If I was on Broadway instead of Colum-
bus Circle, I probably would have been 
nominated for a 1969 Tony Award.

Jonathan sprang into action “I’ll vouch 
for him,” he told the lady. “I don’t want my friend to get in 
trouble. We’re supposed to write a report about our visit.”

The lady smiled, nodded, and handed me a pass. Jonathan 
looked at me and rolled his eyes, ever so slightly.

Hooray!!! I was in!!!

A different world
Walking onto any of the event’s four convention floors was 
like stepping though a portal into a future world. Virtually 
every major electronics manufacturer was represented—as 
well as many minor players—all hoping to gain attention 
for their innovations. The event attracted approximately 
600 exhibitors.

The exhibition had its own unique miniecosystem, quite separate 
from the world surrounding it. It was, in several ways, some-
thing of a throwback to earlier times. While the world outside 

of the Coliseum was enveloped in turmoil, 
protest, and revolution, IEEE ‘69 was a 
calm and regimented oasis. As the exhib-
its and technical sessions (there were 48 of 
those) looked toward the future, the attend-
ees and corporate representatives seemed 
blissfully oblivious to what was happening 
in the outside world. While the world was 
marching to the Beatles’  Helter Skelter, the 
engineers were listening to Henry Mancini. 

Of course, in an ironic twist of fate, it was the engineers who 
were the true revolutionaries, responsible for numerous tech-
nologies that changed the world forever.

Virtually all of the IEEE ‘69’s 60,000 attendees were 
men. Nearly all wore the uniform of the day: a dark suit 

with thin lapels, a white shirt, and a 
dark, not-too-wide necktie. Smoking 
was permitted just about everywhere; 
many engineers at the time smoked 
pipes. Women were generally relegated 
to support roles, dispensing admis-
sion passes, checking coats, and dem-
onstrating various devices, batteries, 
cables, and other products.

Certain exhibits resonate with 
me to this day. For some reason, I 
was fascinated by the Nixie readout 
tubes at the Texas Instruments booth. 
They seemed so futuristic and cool.  
I f igured that we would one day 
see these softly glowing little gems 
all over the place. What I didn’t 
know was that four years earlier 
engineers at RCA Laboratories had 
developed something called a liquid 
crystal display.

Hewlet t-Packa rd has a st rong 
presence at IEEE ‘69. I recall that 
t he  compa ny was  p romot i ng  i t s 
brand-new Model 5360 A comput-
ing counter, which could measure 
the distance from the Earth to the 
Moon within one foot of accuracy. 
William Hewlett himself was there 
to meet and greet both current and 
potential customers.FIGURE 1. 

Of course, in an ironic 
twist of fate, it was the 
engineers who were the 
true revolutionaries, 
responsible for numerous 
technologies that changed 
the world forever.



48 IEEE SIGNAL PROCESSING MAGAZINE   |   June 2023   |

The Motorola booth was a special treat. Since Jonathan 
and I were both avid radio experimenters, we questioned a 
friendly Motorola representative about his company’s lat-
est gear. He then asked us to wait a minute. He soon came 
back with a real Apollo space helmet, which he quickly 
clamped onto Jonathan’s head. When Jonathan spoke, a 
nearby speaker amplified his voice and he sounded like 
a genuine astronaut! The representative then removed the 
helmet from Jonathan’s head and placed it on me. Four 
months later, as I was watching the Apollo 11 Moon land-
ing, I thought to myself: “A few months ago I wore a helmet 
just like Neil Armstrong’s!”

The one thing Jonathan and I wanted 
to see most—an actual functioning com-
puter—we were never able to find. We 
searched all four exhibit floors to no avail. If 
there were any on-site computers, they were 
hidden to us. That’s actually not surprising, 
given the fact that even the era’s early mini-
computers, such as Digital Equipment Cor-
poration’s PDP-8 models, weighed somewhere between 80 and 
250 pounds—far from easily transportable.

The closest we ever came to encountering a real comput-
er was a Model 33 teletype that was positioned at one of the 
exhibit booths (which one, I can no longer remember). The 
primitive workstation was linked to a remote computer via a 
telephone line through an acoustic coupler.

This particular teletype allowed users to play a game 
that required entering numeric values in order to land a 
vehicle on the Moon. The actual gameplay was a question-
and-answer session, in which the game asked its user for 
the rocket fuel burn rate at each turn, which the user would 
then enter as a number from 0 to 200. Once the vehicle con-
tacted the lunar surface, the player was given a report on 
the vehicle’s landing speed and remaining fuel. My vehicle 
consistently crashed into the Moon. Even Motorola’s helmet 
wouldn’t have saved me.

After several hours, it was time to head home. Jonathan 
and I were burdened with so much product literature that we 
decided to hop on the courtesy shuttle bus to the New York 
Hilton, which brought us closer to the subway line leading back 
to Queens. Unfortunately, the bus was standing room only. 
Worse yet was the suffocating pipe and cigarette smoke. Still, 
we made it back to Queens safe and sound.

Life changing
As I previously noted, the IEEE ‘69 International Conven-
tion & Exhibition changed my life forever. In the years that 
followed, I continued to read every electronics magazine 
I could lay my hands on. I homebrewed projects, built kits, 

experimented with radio propagation, hooked an early fax 
machine to my ham radio to send dirty pictures across the 
United States, and even restored a Model 19 teletype (Bau-
dot, not ASCII) to communicate with other experimenters. 
I  wanted to become an electrical engineer but, alas, my 
math skills were just too poor to even consider the possibil-
ity. (I  could, however, send and receive Morse code at 20 
words per minute.)

So, I chose to do the next best thing. I decided to write 
about technology! Over the decades, I’ve written countless 
articles on just about every technology imaginable. In the 

pre-Internet days, I was a daily columnist 
for both the CompuServe and Prodigy 
services. I’ve also written for the New 
York Times, Washington Post, the Mas-
sachussetts Institution of Technology, 
CIO Magazine, Electronic Design, PC 
Week, MacWeek, and, of course, IEEE 
Signal Processing Magazine. It has been 
my honor to write about the engineers 

and scientists whose research has led to the interconnected 
world that now allows instant communication, has led to an 
endless number of  scientific and medical innovations, and 
places the world’s collected knowledge at our fingertips. 
I am blessed.

Jonathan also never became an electrical engineer, although 
he certainly possessed the necessary skills. Like me, he decid-
ed to seek a media career. I’m saddened to say, however, that he 
died tragically young in 1994, a victim of the AIDS epidemic. 
I think about him every day.

The IEEE ‘69 International Convention & Exhibition’s 
theme was “Unlocking the Future.” Well, it certainly helped 
to unlock mine.

Fast forward
Every so often, perhaps once or twice a year, I dream that I’m 
back at IEEE ‘69. In this recurring dream, I’m surrounded by 
engineers who are shouting, saying things like: “It’s impos-
sible!” “Let me see that!” “What’s that kid up to?”

As I hold the iPhone 14 Pro in my hand for everyone to 
see, a team of serious-looking men, headed by someone who 
bears a striking resemblance Efrem Zimbalist Jr., moves 
toward me, and…

Then I wake up.

Author
John Edwards (jedwards@johnedwardsmedia.com) is a tech-
nology writer based in Gilbert, AZ 85234 USA. Follow him 
on Twitter @TechJohnEdwards.
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S ignal processing (SP) excels at analyzing, processing, and 
inferring information defined over regular (first continu-
ous, later discrete) domains such as time or space. Indeed, 

the last 75 years have shown how SP has made an impact in 
areas such as communications, acoustics, sensing, image 
processing, and control, to name a few. With the digitaliza-
tion of the modern world and the increasing pervasiveness of 
data-collection mechanisms, information of interest in current 
applications oftentimes arises in non-Euclidean, irregular do-
mains. Graph SP (GSP) generalizes SP tasks to signals living 
on non-Euclidean domains whose structure can be captured by 
a weighted graph. Graphs are versatile, able to model irregu-
lar interactions, easy to interpret, and endowed with a corpus 
of mathematical results, rendering them natural candidates to 
serve as the basis for a theory of processing signals in more 
irregular domains.

The term graph signal processing was coined a decade ago 
in the seminal works of [1], [2], [3], and [4]. Since these papers 
were published, GSP-related problems have drawn significant 
attention, not only within the SP community [5] but also in 
machine learning (ML) venues, where research in graph-based 
learning has increased significantly [6]. Graph signals are well-
suited to model measurements/information/data associated 
with (indexed by) a set where 1) the elements of the set belong 
to the same class (regions of the cerebral cortex, members of 
a social network, weather stations across a continent); 2) there 
exists a relation (physical or functional) of proximity, influence, 
or association among the different elements of that set; and 3) 
the strength of such a relation among the pairs of elements is 
not homogeneous. In some scenarios, the supporting graph is 
a physical, technological, social, information, or biological net-
work where the links can be explicitly observed. In many other 
cases, the graph is implicit, capturing some notion of depen-
dence or similarity across nodes, and the links must be inferred 
from the data themselves. As a result, GSP is a broad frame-
work that encompasses and extends classical SP methods, tools, 
and algorithms to application domains of the modern techno-
logical world, including social, transportation,  communication, 
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and brain networks; recommender systems; financial engineer-
ing; distributed control; and learning. Although the theory 
and application domains of GSP continue to expand, GSP has 
become a technology with wide use. It is a research domain 
pursued by a broad community, the subject of not only many 
journal and conference articles, but also of textbooks [5], spe-
cial issues of different journals, symposia, workshops, and spe-
cial sessions at ICASSP and other SP conferences.

In this article, we provide an overview of the evolution of 
GSP, from its origins to the challenges ahead. The first half is 
devoted to reviewing the history of GSP and explaining how 
it gave rise to an encompassing framework that shares mul-
tiple similarities with SP, and especially digital SP (DSP). A 
key message is that GSP has been critical to develop novel and 
technically sound tools, theory, and algorithms that, by leverag-
ing analogies with and the insights of DSP, provide new ways 
to analyze, process, and learn from graph signals. In the second 
half, we shift focus to review the impact of GSP on other dis-
ciplines. First, we look at the use of GSP in data science prob-
lems, including graph learning and graph-based deep learning. 
Second, we discuss the impact of GSP on applications, includ-
ing neuroscience and image and video processing. We finally 
conclude with a brief discussion of the emerging and future 
directions of GSP.

The early roots
The roots of GSP can be traced to algebraic and spectral graph 
theory, harmonic analysis, numerical linear algebra, and spe-
cific applications of these ideas to areas such as data represen-
tations for high-dimensional data, pattern recognition, (fast) 
transforms, image processing, computer graphics, statistical 
physics, partial differential equations, semisupervised learn-
ing (SSL), and neuroscience. Algebraic graph theory [7] dates 
back to the 1700s, and spectral graph theory [8] dates back to 
the mid-1900s. They study mathematical properties of graphs 
and link the graph structure to the spectrum (eigenvalues and 
eigenvectors) of matrices related to the graph. However, they 
generally did not consider potential signals that could be liv-
ing on the graph.

In the late 1990s and early 2000s, graph-based methods for 
analyzing and processing data became more popular, indepen-
dently, in a number of disciplines, including computer graphics 
[9], image processing [10], graphical models in Bayesian statis-
tics [11], [12], dimensionality reduction [13], SSL [14], and neuro-
science (e.g., the detailed history included in [15]). For example, 
in computer graphics, Taubin utilized graph Laplacian eigen-
vectors to perform surface smoothing by applying a low-pass 
graph filter to functions defined on polyhedral surfaces [9], and 
later used similar ideas to compress polygonal meshes. In image 
processing, weighted graphs can be defined with edges being a 
function of pixel distance and intensity differences. Such semilo-
cal and nonlocal graphs were exploited for denoising (bilateral 
filtering), image smoothing, and image segmentation (e.g., in 
[10] and [16]). Graphical models [12]— in particular, undirected 
graphical models, also referred to as Markov random fields—
model data as a family of random variables (the vertices), with 

the graph edges capturing their probabilistic dependencies. 
Through the graph, these models sparsely encode complex 
probability distributions in high-dimensional spaces. Graphical 
 models have been widely used in Bayesian statistics and Bayes-
ian probabilistic approaches, kernel regression methods, statis-
tical learning, and statistical mechanics [17]. We return to SSL 
and neuroscience and their connections with GSP in the “SSL” 
and “Applications to Neuroscience” sections, respectively.

Also in the late 1990s, two new models were introduced 
for random networks (graphs) to model the structure of com-
plex engineered systems, going well beyond the classical 
Erdös–Rényi random graphs: real-world large networked sys-
tems exhibit small-world characteristics (the Watts–Strogatz 
model) and scale-free degree distributions (the Barabási–
Albert model). This led to a flurry of activity, usually referred 
to as network science, concerned with analyzing and design-
ing complex systems like telecommunication, power grid, and 
large-scale infrastructure networks [18]. Although the central 
focus of network science was on properties of the network and 
its nodes (e.g., centralities, shortest paths, and clustering coef-
ficients), network science researchers also leveraged graphs to 
explore the dynamics of processes such as percolation, traf-
fic flows, synchronization, and epidemic spread [18, Part 5], 
often adopting mean field approximations. For example, in the 
investigation of the susceptible-infected-susceptible epidemio-
logical model in scale-free graphs in [19], each vertex can be 
seen as having a 0/1 (susceptible/infected) signal residing on it. 
Advancements in network science have certainly informed the 
subsequent development of GSP.

In parallel, a stream of new methods for analyzing data on 
graphs were investigated. These methods tried specifically to 
combine 1) intuition and dictionary constructions for perform-
ing computational harmonic analysis on data on Euclidean 
domains with 2) generalizable ways to incorporate the structure 
of the underlying graph into the data transforms. For example, 
one of the first general wavelet constructions for signals on 
graphs was the spatial wavelet transform of [20], which was 
defined directly in the vertex domain. In the seminal work of 
Crovella and Kolaczyck [21], diffusion wavelets were construct-
ed by 1) creating a multiresolution of approximation spaces, 
each spanned by graph signals generated by diffusing a unit of 
energy outwards from each vertex for a fixed amount of time, 
and 2) computing orthogonal diffusion wavelets to serve as basis 
functions for the detail spaces that are the sequential orthogo-
nal complements of the approximation spaces. Spectral graph 
wavelets [1] traded off the orthogonality of diffusion wavelets 
for a simpler generative method for each wavelet atom: define 
a pattern in the graph spectral domain and localize that pattern 
to be centered at each vertex of the graph. Meanwhile, the alge-
braic SP approach [22], [23]  showed that classical SP can be 
captured by a triplet defined by a shift operator. Different shifts 
lead to different SP models and different Fourier transforms. 
In particular, it showed that a shift based on Chebyshev poly-
nomials, appropriate for lattice models like in images, leads to 
standard block transforms such as the discrete cosine transform 
(DCT) and  Karhunen–Loève transform (KLT), which can be 
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understood as Fourier transforms on certain graphs. Numer-
ous other types of multiresolution transforms and dictionaries 
for data residing on graphs, trees, and compact manifolds were 
investigated in the subsequent few years. These included lift-
ing and pyramid transforms, graph filter banks, tight spectral 
frames, vertex-frequency transforms that generalized the clas-
sical short-time Fourier transform, and learned dictionaries (see 
[24] and [25] for a more complete literature review and list of 
references). GSP arose from these different fields, coalescing 
multiple perspectives into a common framework and set of 
ideas. In the last decade, this unifying framework has evolved 
into a full-fledged theory and technology.

The theoretical underpinnings
Ten years ago, [1], [2], [3], and [4] introduced the field of GSP 
and established many of its foundations. Remarkably, these 
works approached the problem from two different perspectives. 
Inspired by graph theory and harmonic analysis, the authors of 
[1] and [2] use the graph Laplacian as the core of their theory, 
naturally generalizing concepts such as frequencies and filter 
banks to the graph domain. Differently, the authors of [3] and 
[4] follow an algebraic approach, under which the multiplica-
tion of a graph signal by the adjacency matrix of the supporting 
graph yields the most basic operation of shift for a graph signal. 
Based on this simple operation, more advanced tools such as 
filtering, graph Fourier transforms (GFTs), graph frequency, 
or total variation can be generalized to the vertex and spec-
tral graph domains. Rather than being considered competing 
approaches, these works brought complementary views and 
tools and, jointly, contributed to increasing the attention on the 
field. After introducing some common notations, this section 
reviews these two approaches and then explains how they were 
merged into an integrated framework that facilitated drawing 
links with classical SP and propelled the growth of GSP.

Basic definitions and notational conventions
The goal in GSP is to leverage SP and graph theory tools to 
analyze and process signals defined over a network domain, 
with notable examples including technological, social, gene, 
brain, knowledge, financial, marketing, and blog networks. 
In these setups, graphs are used to both index the data and 
represent relations/similarities/dependencies among the loca-
tions of the data. We denote the underlying weighted graph 
by ( , , ),G V E ~=  where { , , }N1V| f=  denotes the set of 
N graph vertices; E V V#1  denotes the set of graph edges; 
and : RE "~  is a weight function that assigns a real-valued 
weight to each edge, with a higher edge weight representing 
a stronger similarity or dependency between the two vertices 
connected by that edge. A graph with edge weights all equal 
to one is called unweighted. A graph signal contains informa-
tion associated with each vertex of the graph. For simplicity, we 
focus our discussion on scalar, real-valued graph signals (each 
signal is a mapping from V  to ),R  but the values associated 
with each node could be discrete, complex, or even vectors (e.g., 
when multiple features per node are observed). Each  scalar, 
real-valued graph signal can equivalently be represented as an 

N-dimensional vector [ , , ] ,x xx N1| f= <  with xi  (also written 
sometimes as [ ] )x i  representing the value of the signal at vertex 
i. An example of a graph signal is shown in Figure 1.

To gain some insight, consider the problem of studying 
Twitter patterns. Assume that we have N Twitter users: each 
vertex i V!  represents a user i, and each edge ( , )e i j E!=  
captures that two users i and j follow each other. The data, ,xi  
indexed by node i could, e.g., be the number of tweets that user 
i tweeted in a given time interval. In a second application, to 
understand traffic flow in cities, we can examine the number of 
pickups of for-hire vehicles (e.g., taxis, Uber or Lyft cars, and 
so on) over a given time period. The graph G  can be the city 
road map, with the vertices i V!  representing intersections, 
and the edges e E!  representing road segments between 
intersections. The data xi  at each vertex i might, e.g., be the 
number of pickups close to that intersection over the time peri-
od of interest. The graphs G  in such real-world applications 
can be modeled as undirected (if ( , ) ,i j E!  then ( , ) ),j i E!  
or directed (e.g., to capture one-way streets).

Classical SP signals such as audio and image signals that 
reside on Euclidean domains can also be viewed as graph 
signals. Consider for instance, finite-length discrete-time 1D 
signals, e.g., the N vertices of the graph are the time instances 

, , ,i N0 1f= -  with N being the window length. As the signal 
value xi 1+  at time i 1+  is usually closely related to the signal 
value xi  at the preceding time, there is a directed edge from ver-
tex i to vertex .i 1+  At ,i N 1= -  there are different options for 
the boundary conditions; here, we consider the periodic bound-
ary condition, which means that the time instant “next” to the 
terminal instant N 1-  is .i 0=  The resulting “time graph” is 
then a directed cycle Gdc  (see Figure 2). By similar reasoning, 
vertices in the image graph represent the pixels, and because 
the image brightness or color x ,i j  at pixel (i, j) is usually highly 
related to the brightness or colors of its four neighboring pixels, 
there are undirected edges from (i, j) to its neighboring pixels. 
The corresponding graph is then an undirected 2D lattice.

At the core of GSP are N N#  matrices that encode the 
graph’s topology. The most prominent are 1) the weighted 
adjacency matrix A, whose (i, j)-entry is the edge weight 

(( , ))i j~  if ( , )i j E!  and zero otherwise; 2) the combinato-
rial (or nonnormalized) graph Laplacian ,L D A|= -  where 

( )diagD A1=  is the diagonal matrix of vertex degrees (sums 
of the weights of the edges adjacent to each vertex) and 1 is an 
N 1#  vector of all ones; and 3) the normalized graph Lapla-
cian .L D LD( / ) ( / )1 2 1 2

norm|= - -  We elaborate on the role of these 
matrices in the next section.

The spectral approach for GSP
Classical Fourier analysis of a 1D signal decomposes the sig-
nal into a linear combination of complex exponential functions 
(continuous or discrete) at different frequencies, with increasing 
frequencies corresponding to higher rates of oscillation and ba-
sis functions that are less smooth. The spectral approach to GSP 
[1], [2] generalizes this classical Fourier analysis by  writing 
graph signals as linear combinations of a basis of graph signals 
with the property that the basis vectors can be (roughly) ordered 
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according to how fast they oscillate across the graph, or, related, 
how smooth they are with respect to the underlying graph struc-
ture. By “smooth” in this context, we mean that the values of 
the graph signal at each pair of neighboring vertices are similar.

The operator that captures this notion of smoothness with 
respect to the underlying (undirected) graph is the graph 
Laplacian L. It is a discrete difference operator as we have

[ ] ( ) ( )A x x A x xLx , ,i i j i j i j i j
jj

N

1 Ni

= - = -
!=

//

where Ni  is the neighborhood of node i and A ,i j  is the (i, j)-
entry of the adjacency matrix A. Because L  is a real symmet-
ric matrix, it has a set of orthonormal eigenvectors { }v N

0
1

, ,=
-  

and a set of real nonnegative eigenvalues { } .N
0
1m, ,=
-  Assuming a 

connected graph, it can further be shown that there is only one 
eigenvalue zero, e.g., ,00m =  with corresponding eigenvector 

/ .N1v0 =  In matrix form, we obtain ( ) ,diagL V Vm= <  
with [ , , ]V v vN0 1f= -  and [ , , ] .N

T
0 1fm m m= -

Importantly, the graph Laplacian can also be viewed as a 
graph extension of the time-domain Laplacian operator / .t2 22 2  
Just as the 1D complex exponentials—the eigenfunctions of 
the time-domain Laplacian operator—capture a notion of fre-
quency, we can interpret the graph Laplacian eigenvectors as 
graph frequency vectors, with the associated graph Laplacian 
eigenvalues capturing a notion of the rate of oscillation [2].

The Laplacian operator introduces a measure of smooth-
ness for a graph signal ,x  through the graph Laplacian qua-
dratic form

 ( )A x xx Lx ,
( , )

i j i j
i j

2

E

= -<

!

/  (1)

which penalizes large differences between signal values at 
strongly connected vertices. Because ,v Lv m=<

, , ,  it is then clear 
from (1) that the larger the graph frequency ,m,  the less smooth 
(or more variable) the graph Laplacian eigenvector .v,  So, with 
the indexing convention ,0 N0 1 1g1 # #m m m= -  the graph 
frequency vectors { }v N

0
1

, ,=
-  are ordered according to increasing 

variability (see Figure 1). Using the Laplacian eigenvectors as 
the basis, we can now define a GFT as .V<  It transforms a graph 
signal x into its frequency components as .V xx = <t

Graph filters can then be interpreted as operators that mod-
ify the different frequency components of a signal x individu-
ally. That is, the graph filter operation can be represented in the 
graph Fourier domain by :R RH "  so that [ ] ( ) [ ] .xy H m=, , ,t t  
In most cases, the spectral function H  (oftentimes referred to 
as a kernel) is set to a prespecified analytical form (typically 
parametric) that promotes certain properties in the output sig-
nals [e.g., rectangular kernels promote smoothness and remove 
noise (see Figure 1)]. However, nonparametric approaches 
can also be used. Equally as important, Shuman et al. [2] also 
illustrate how graph filters can be used to interpolate missing 
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FIGURE 1. (a) An example of a graph with a color-coded graph signal on top. (b) The signal in the graph frequency domain and in red the frequency 
response of a potential low-pass graph filter. (c) The filtered graph signal. (d) The first three eigenvectors of the graph Laplacian ordered with decreasing 
smoothness (increasing eigenvalue). 



53IEEE SIGNAL PROCESSING MAGAZINE   |   June 2023   |

 values, and to design signal dictionaries whose atoms concen-
trate their energy around a few frequencies or vertices, high-
lighting their relevance in a number of applications.

The algebraic approach for GSP
In classical SP, convolution is a key building block pres-
ent in many algorithms, including filtering, sampling, and 
 interpolation. In defining convolution and filtering, the time 
shift, that is, the unit delay that transforms a signal into a de-
layed version of itself, plays a critical role. The output of a lin-
ear time-invariant filter is a weighted linear combination of 
delayed versions of the input. Similarly, the discrete Fourier 
transform (DFT) can be understood as the transformation that 
diagonalizes every linear time-invariant filter and provides an 
alternative description for signals and filters.

In extending these ideas to GSP, the two key contributions 
of [3] and [4] are 1) highlighting the relevance of defining a 
“graph-aware” operator that plays the role of the “most basic 
operation” to be performed on a signal x defined over a graph 

;G  and 2) setting this operation as ,Ax  i.e., the multiplication 
of the graph signal x by the adjacency matrix A of .G  The 
motivation for the latter choice is twofold. First, A is a simple 
(parsimonious and linear) operator that combines the values 
of x in a manner that accounts for the local connectivity of .G  
Second, when particularized to time-varying signals defined 
over the directed cycle ,Gdc  using A xdc  is equivalent to the 
classical unit delay, i.e., [ ] [ ] .A x xi i1dc =+

How can this basic, graph-aware operator be leveraged to 
design 1) linear graph filters that are applied to a graph signal 
to generate another graph signal and 2) 
linear transforms that provide an alter-
native representation for a graph sig-
nal? In classical SP, the basic, nontrivial 
operation applied to a signal is the unit 
delay (time shift); in other words, the 
simplest filter is the time-shift filter .z 1-  
Because graphs are finite, we consider 
DSP with finite signals, and, for sim-
plicity, with periodic signal extensions. 
Generic linear filters are then polyno-
mials of this basic operator of the form 

( ) ,p z p p z p z ( )N
0 1

1
1

1g= + + +- - -  
with z l-  being the consecutive appli-
cation of the operator z 1-  to a time 
signal l times. DSP polynomial filters 
are shift invariant in the sense that 

( ) ( ) .z p z p z z1 1$ $=- -

Hence, to address the first ques-
tion, [3] sets the simplest signal 
operation in GSP as multiplication 
by the adjacency matrix A and, sub-
sequently, defines graph filters as 
(matrix) polynomials of the form 

( ) .p p p pA I A A( )
N

N
0 1 1

1g= + + + -  
It is easy to see that polynomial fil-
ters are A invariant, in the sense that 

( ) ( ) .p pA A A A$ $=  Apart from the theoretical motivation, 
the polynomial definition exhibits a number of advantages. 
When applied to a graph signal x, the operation Ax can be 
understood as a local linear combination of the signal values at 
one-hop neighbors. Similarly, A x2  is a local linear combina-
tion of Ax, reaching values that are in the two-hop neighbor-
hood. From this point of view, a graph filter ( )p A  represented 
by a polynomial of order L is mixing values that are at most L 
hops away, with the polynomial coefficients { }pl l

L
0=  represent-

ing the strength given to each of the neighborhoods. Another 
advantage is that if A is set to Adc  (the graph representing the 
support of classical time signals), the graph polynomial defini-
tion ( )p Adc  reduces to the classical time-shift definition ( )p z 1-  
so that graph filters become linear time-invariant filters.

To address the second question, [3] defines the GFT as the 
linear transform that diagonalizes these graph filters of the 
form ( ).p A  Letting ( )diagA V V 1m= -  be the eigendecom-
position of the (possibly directed) adjacency matrix A, then 

( ) ( ( ) ) ( (diag( ))p p pdiagA V V V V1 1m m= =- -  (note that we  
use V 1-  now instead of V<  because the eigenvectors are not 
necessarily orthonormal as for the Laplacian). In other words, 
matrix polynomials can be understood as operators that 
transform the input by 1) multiplying it by the matrix ,V 1-   
2)  applying a diagonal operator ( ( )),p diag m  and 3) transform-
ing the result back to the vertex domain with a multiplication 
by V. The GFT of a graph signal and the signal spectral repre-
sentation is then set as the multiplication by ,V 1-  and the fre-
quency response of a filter is found by calculating ( ( ))p diag m  
(similar to the spectral approach description in the previous 
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section). From the GFT of the signal, common SP concepts can 
now be defined in GSP [4], including ordering graph frequen-
cies from low and high graph frequencies, or designing low- 
and high-pass graph filters. Figure 2 shows the generalization 
of the time domain to a more general graph domain. The appli-
cations in [3] to data prediction, graph signal compression, data 
classification, and customer behavior prediction for service 
providers, and in [4] to filter design and malfunction detection 
in sensor networks show the breadth of application domains.

The benefits of a joint framework
Although having different origins, the approaches in [1] and 
[2], and in [3] and [4] bring complementary perspectives. The 
work in [1] and [2] relies on the graph Laplacian to capture 
the structure of ,G  uses its eigendecomposition to character-
ize graph signals and define filtering operations, and draws 
clear links with existing graph-based techniques in a number 
of applications. In [3] and [4], the focus is on the shift opera-
tion in the vertex domain, postulating the use of the adjacency 
matrix as the building block to design GSP algorithms, and 
unveiling a number of similarities with classical SP. Although 
some early works mixed the features of [1] and [2], and of [3] 
and [4] (e.g., the use of polynomials based on the Laplacian 
matrix), the publication of these four papers and related works 
led to the emergence of works that combine both approaches 
under a common framework. One way to do so is to define 
a generic “graph-shift operator” (GSO) that plays a dual role: 
1) it can be viewed as the most basic operation applied to a 
graph signal, and 2) it codifies the structure of the graph in a 
more generic way than L or A so that it can be used to tackle 
a broader range of setups. Under this framework, the linear 
GSO S RN N! #  has been set to different adjacency matrices 
(e.g., one and two hops), different graph Laplacians (e.g., com-
binatorial, normalized, and random walk), the precision matrix 
of a Gaussian–Markov random field, or even combinations of 
those. Based on the eigendecomposition of this operator, given 
by ( ) ,diagS V V 1m= -  linear graph filtering can be equiva-
lently understood as an operator that is linear and orthogonal 
(diagonal) in the frequency domain defined by ,V 1-  or as the 
multiplication by a matrix that is a linear combination of suc-
cessive applications (powers) of the GSO S:

 ( ) ( ) ( ) hdiag orH S V V H S Sh l
l

l

N
1

0

1

= =-

=

-
t /  (2)

where the ( )H S  notation is used to emphasize the dependence 
on the GSO S. The first definition in (2) focuses on the frequen-
cy domain, with the filter parameters being the N-dimensional 
frequency response [ , , ] .h hh N0 1f= <

-
t t t  The second defini-

tion in (2) focuses on the vertex domain, with the parameters of 
the filter being the N filter taps [ , , ] .h hh N0 1f= <

-  Although 
we focus on degree N – 1 polynomials, thanks to the Cayley–
Hamilton theorem, the definition in (2) can represent a matrix 
polynomial of any degree [3]. With these models at hand, the 
literature promptly addressed tasks such as prediction, classi-
fication, compression, filter identification, and filter design in 

graph/network contexts [3], [26], [27]. The particular solution 
obtained for any of these tasks depends on the GSO at hand as 
well as the assumptions on the graph filter. For example, if the 
goal is to estimate the graph-based linear mapping from a set 
of input–output pairs collected in matrices [ , , ]X x xM1 f=  
and [ , , ],Y y yM1 f=  one requires M N=  input–output pairs 
if no structure is assumed for H, and a single M 1=  pair if 
one assumes that H is a graph filter. Furthermore, defining the 
counterparts of classical finite-impulse response (FIR) and 
infinite-impulse response (IIR) filters as ( ) bH S Sl

L
l

l
0
1

FIR R= =
-  

and ( ) ( ) ,aH S Sl
L

l
l

0
1 1

IIR R= =
- -  respectively, identifying such 

filters from input–output observations is feasible, even if only 
a subset (with cardinality larger than 2 L) of the signal values 
is observed [27]. Additionally, using the definitions in (2), it is 
not difficult to show that any cascade/parallel/feedback con-
nection of graph filters can also be written as a graph filter, 
opening the door to make and exploit connections between 
graph-network processes and classical tools in control.

A natural next step is to use (2) to model certain proper-
ties of classes of graph signals of interest. To be more specific, 
consider that we model a graph signal x RN!  from a class 
of interest as ( ) ,x H S z=  with z being a hidden seed signal 
and ( )H S  a generative graph filter that “transfers” some of the 
properties of S to x. Although mathematically simple, mod-
eling graph signals as ( )x H S z=  has proven to be fruitful. 
A typical approach is to assume some parsimonious struc-
ture on either z, the filter ( ),H S  or both, and then analyze the 
impact of those assumptions on the properties of x. Standard 
assumptions have included ( )H S  being a band-limited graph 
filter so that x is graph-band limited [28], ( )H S  being low pass 
so that x is smooth [2], [29], [30], z being a white signal so 
that x is graph stationary [31], [32], or z being sparse so that 
x is a diffused graph signal [33], as well as combinations of 
those. More importantly, the combination of the generative 
model ( )x H S z=  and one or more of the previous structural 
assumptions have been leveraged to successfully generalize a 
number of estimation and learning tasks to the graph domain. 
Early examples investigated in the literature included signal 
denoising, sampling and interpolation, input identification, 
blind deconvolution, dictionary design, SSL, classification, 
and the generalization of stationarity to graph domains (see, 
e.g., [24] for a detailed review). Although covering all of these 
tasks goes beyond the scope of this article, we next discuss 
three illustrative milestones: 1) sampling and interpolation, 2) 
source identification and blind deconvolution, and 3) statistical 
descriptions of random graph signals.

We start with a simple sampling and interpolation setup that, 
due to its practical relevance, received early attention from mul-
tiple research groups [34]. Consider the sampling set M V3  
with cardinality ,M N#  and define the selection matrix 

{ , }0 1 M N
M !U #  as the M rows of the N N#  identity matrix 

indexed by the set .M  The sampled signal x xMM| U=  collects 
the values of the graph signal x at the vertex set .M  The goal is 
to use ,xM  along with S, to recover x, leveraging the structure of 
the graph. As the problem is ill-posed, we need to assume and 
enforce some structure on x. Two widely adopted approaches 
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are to 1) assume that x is K-band-limited, i.e., it is in the span 
of the first K eigenvectors of S, for some ,K N1  or 2) assume 
that the signal x is smooth with respect to the underlying graph, 
which can be generically modeled as the norm of )(x H S x-  
being small, where ( )H S  is a low-pass filter tuned to promote 
a particular notion of smoothness. We denote the subspace of 
K-band-limited signals by ( ) { }.for allV V RX K K

K| !b b=  
The statement that ( )x VX K!  is equivalent to saying that x 
is generated via a graph filter with [ , ] .1 0h K N K= < <<

-
t  These 

two alternative assumptions lead to the following optimization 
problems for interpolation, respectively:
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(3)

with the weight a  controlling the trade-off between minimiz-
ing the smoothness of x)  and how similar x)  and x are for the 
nodes in .M  For band-limited signals, if M K$  and ( )VKMU  
is full rank, the signal x can be identified from its samples xM  via 

( )x V V xK K MMU= @  [28]. Although this is also true for time sig-
nals, other popular results in classical SP, such as ideal low-pass fil-
ters being the optimal interpolators or regularly spaced sampling 
being optimal, do not hold true for the graph domain due to the lack of 
regularity in .G  Regarding the second optimization problem in (3), 
the solution is ( ( ( ) ( )) .H S H Sx I x1

M M MM aU U U= + -) < < <-  
In this case, we can interpret xMMU

<  as a zero-padded 
graph signal that is smoothly diffused through the graph by 
( ( ( ) ( )) .H S H SI 1

MM aU U + -< < -

Using the model ,( )x H S z=  source identification and 
blind deconvolution have also been generalized to the graph 
setting [33]. In both, the signal z is assumed to be sparse. For 
source identification, given a sampled version of x, the goal is 
to identify the locations and nonzero values of z, which can 
be viewed as source nodes whose inputs are diffused through-
out the network represented by S. For blind deconvolution, the 
goal is to use x to identify both the sparse input z and the gen-
erating filter ,( )H S  with a classical assumption being that the 
coefficients h are sparse, or that the filter has a parsimonious 
FIR/IIR structure. Inspired by those works, generalizations 
were also investigated for demixing setups where the aggrega-
tion of multiple signals is observed (e.g., the sum of several 
network processes, each with different sources and dynamics).

Our last example to illustrate the benefits of a common 
GSP framework is the statistical description of random graph 
signals. Characterizing random processes is a challenging task 
even for regular time-varying signals, with stationarity models 
excelling at finding a sweet spot between practical relevance 
and analytical tractability. With this in mind, multiple efforts 
were carried out to generalize the definition of stationarity to 
graph signals [31], [32]. The key step was to say that a zero-
mean random graph signal x is stationary in a normal GSO S 
if it can be modeled as ( ) ,x H S z=  with z being white. This is 
equivalent to saying that the covariance matrix C xxEx = <6 @ 
can be written as a polynomial of the GSO S, illustrating the 
relationship between the underlying graph and the statisti-

cal properties of the graph signal, and establishing meaning-
ful links with Gaussian–Markov random fields that assume 

.S C 1
x= -  With this definition, counterparts to concepts and 

tools such as the power spectral density, periodogram, Wiener 
filter, and autoregressive moving average models were devel-
oped [31]. These developments provide new ways to design 
graph-based covariance estimators and denoise graph signals 
as well as a rigorous framework to better model, understand, 
and control random processes residing on a graph.

We close this section by highlighting that, although some 
instances of the problems discussed had been investigated 
well before the GSP framework was put forth (e.g., denois-
ing based on smooth priors given by powers of the Laplacian, 
or source identification based on graph-diffusion processes), 
those early works were mostly disconnected and focused on 
particular setups. The advent of GSP and use of a common 
language and theoretical framework served a number of pur-
poses: 1) facilitating the identification of connections between 
and differences among existing works, 2) bringing differ-
ent research communities together, 3) enabling the design of 
more complex processing architectures that use early works 
as building blocks, 4) providing a new set of tools for graph 
signals based on the generalization of classical SP schemes 
to the graph domain, and 5) aiding the development of novel, 
theoretically grounded solutions to graph-based problems that 
had been solved in a heuristic manner.

The impact of GSP on data science
GSP has transformed how the SP community deals with irreg-
ular geometric data; however, it has also contributed to areas 
that go beyond SP, having a significant impact on data science-
related disciplines. To illustrate this, we next review several of 
the data science problems where GSP-based approaches have 
made significant contributions.

Graph learning
The field of GSP was originally conceived with a given graph 
(G  or S) in mind. Such a graph could originate from a physi-
cal network, such as transportation, communication, social, or 
structural brain networks. However, in many applications, the 
graph is an implicit object that describes relationships or levels 
of association among the variables. In some cases, the links 
of those graphs can be based on expert domain knowledge 
(e.g., activation properties in protein-to-protein networks), 
but in many other cases, the graph must be inferred from the 
data themselves. Examples include graphs for image process-
ing where the edges are defined based on both pixel distance 
and intensity differences, a k-nearest neighbor graph for SSL 
where edges connect data points with similar sets of features, 
or correlation graphs for functional brain networks. In those 
cases, the problem to solve can be formulated as “given a col-
lection of M graph signals [ , , ] ,X x x RM

N M
1 f != #  find an 

N N#  sparse graph matrix S describing the relations among 
the nodes of the graph.” Clearly, such a problem is severely 
ill-posed, and models used to relate the properties of the graph 
and the signals are key to address it in a meaningful way.
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Learning a graph from data is a topic on its own, with roots 
in statistics, network science, and ML (see [11] and references 
therein). Initial approaches focused on the information associ-
ated with each node separately, so that the existence of the 
link (i, j) in the graph was decided based only on the ith and 
jth row of X. Contemporary (more advanced) approaches 
look at the problem as finding a mapping from X to S, with 
graphical lasso (GL) being the most prominent example. GL 
is tailored for Gaussian–Markov random fields and sets the 
graph to a sparsified version of the precision matrix so that 

( )( / )M1S XX 1. < -  [11]. The contribution of GSP to the prob-
lem of graph learning [30], [35] falls into this second class 
of approaches, where the more sophisticated (spectral and/
or polynomial) relationships between the signals and the 
graph can be fully leveraged. One cluster of early GSP works 
focused on learning a graph S that made the signals in X 
smooth with respect to the learned graph [29]. If smoothness is 
promoted using a Laplacian-based total-variation regularizer 

,x Lxm
M

m m1R <
=  the formulation leads to a kernel-ridge regres-

sion problem with the pseudoinverse of L as the kernel, and 
meaningful links with GL can be established [35]. A second 
set of GSP-based topology inference methods model the data 
X as resulting from a diffusion process over the sought graph 
S through a graph filter. The key questions when modeling 
the observations as )(x H S zm m=  are then the assumptions 
(if any) about the diffusing filter ( )H S  and the input signals 

.zm  Assuming the inputs zm  to be white, which is tantamount 
to assuming that the signals xm  are stationary in S, leads to a 
model where the covariance (precision) matrix of the observa-
tions is a polynomial of the sought GSO S, all having the same 
eigenvectors. This not only provides a common umbrella to 
several existing graph-learning methods but also a new (spec-
tral and/or polynomial) way to address graph estimation [36], 
[37]. Indeed, the fact that GSP offers a well-understood frame-
work for modeling graph signals has propelled the inves-
tigation of multiple generalizations of the aforementioned 
methods, tackling, e.g., directed graphs, causal structure iden-
tification, presence of hidden nodes whose signals are never 
observed, dynamic networks, multilayer graphs, and nonlin-
ear models of interaction. The interested reader is referred to 
[30] and the references therein for more details.

Network science
As discussed in the previous section, advancements in network 
science informed subsequent developments in GSP. It is now 
also the case that GSP techniques have been used to address 
network science problems such as clustering and community 
mining. We mention three examples here. First, in [38], spec-
tral graph wavelets are utilized to develop a new, fast, multi-
scale community mining protocol. Second, by graph-spectral 
filtering random graph signals, feature vectors can be effi-
ciently constructed for each vertex in a manner such that the 
distances between vertices based on these feature vectors re-
semble the distances based on standard spectral clustering fea-
ture vectors. In [39], a detailed account is provided of how that 
approach and other new sampling and interpolation methods 

developed for GSP can be used to accelerate spectral clustering 
by avoiding k-means. Third, [40] uses spectral graph wavelets 
to learn structural embeddings that help identify vertices that 
have similar structural roles in the network, even though they 
may be distant in the graph.

SSL
The goal of SSL is to utilize a combination of labeled and unla-
beled data to predict the labels of the unlabeled data points. The 
labels may be discrete (semisupervised classification) or con-
tinuous (semisupervised regression). Many of the graph-based 
SSL methods (e.g., [14]) investigated by the ML community in 
the early 2000s constructed an undirected, weighted-similarity 
graph, with each vertex representing one data point (either la-
beled or unlabeled), and then diffused the known labels across 
the graph to infer the labels at the unlabeled vertices. This ap-
proach can also be thought of as compelling the vector of la-
bels to be smooth with respect to the underlying graph. Math-
ematically, this results in optimization problems with at least 
two terms: a fitting term that ensures that the vector of labels 
exactly or approximately matches the known labels on the ver-
tices corresponding to the labeled data points, and a regulariza-
tion term of the form ( )x H S x<  for some (symmetric) GSO S  
and (low-pass) graph filter ( )H S  that enforces global smooth-
ness of the signal [41] (as discussed in the “Graph Neural Net-
works” section).

Rather than enforcing global smoothness of the labels with 
respect to the underlying graph, another GSP approach to SSL 
is to encourage the labels to be piecewise smooth with respect 
to the graph by modeling them as a sparse linear combination 
of graph wavelet atoms [42]. Regularization problems resulting 
from this approach feature the same fitting term as mentioned 
previously, but the additional term in the objective function 
captures the sparsity prior through the norm (or mixed norm) 
of the coefficients used to synthesize the labels as a linear com-
bination of the graph wavelets. Finally, in GSP parlance, SSL is 
intimately related to graph signal interpolation so that most of 
the results regarding the sampling and reconstruction of (band-
limited) graph signals, can be (and have been) applied to SSL.

Graph neural networks
Neural networks (NNs) are nonlinear data processing archi-
tectures composed of multiple layers, each of which combines 
(mixes) the inputs linearly via matrix multiplication and then 
applies a scalar nonlinear function to each of the entries of the 
output. The values of the mixing matrices { } L

1H, ,=  are consid-
ered the parameters of the architecture. To avoid an excess of 
parameters, a standard approach is to impose some parsimoni-
ous structure on the mixing matrices (e.g., Toeplitz, low-rank, 
and sparse), giving rise to different families of NNs. Given the 
success of NNs—and convolutional NNs in particular—in 
processing regular data such as speech and images, a natural 
question is how best to generalize these architectures to data 
defined over irregular graph domains. In this context, the ML 
learning community investigated graph NNs that incorporate 
the graph (G  or S) into NN architectures in different ways [6], 
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[43]. GSP offers a principled way to address this question, pos-
tulating that the matrices { } L

1H, ,=  have the form of a graph fil-
ter { ( )} .H S L

1, ,=  This offers both a flexible way to incorporate 
the graph (with the selection of the GSO S being application 
dependent) and also provides a range of options for parame-
terizing the graph filter (e.g., polynomial, rational, and diffu-
sion filters). Similarly, a number of generalizations and novel 
architectures that leverage GSP have been proposed, includ-
ing pooling schemes based on sampling over graphs, graph-
recurrent NNs, architectures defined over product graphs, and 
NNs based on graphon filters [44]. GSP has not only provided 
a common framework to better understand the contributions of 
and links between many of the existing works but has also fa-
cilitated novel contributions on subjects such as transferability, 
robustness, or sensitivity with respect to the graph [45].

Graph-time processing
In many applications, a time series, as opposed to a scalar 
value, is observed at each node of the graph .G  If the length 
of each time series is T, the data at hand can be arranged in 
the form of a matrix [ , , ] ,X x x RT

N T
1 f != #  which can be 

viewed as a collection of N time series (one per node of the 
graph), a collection of T graph signals, or as a single signal 

( )vec X RNT!  that varies across both time and the nodes of 
the graph .G  The first approaches to handle time-varying graph 
signals were based on product graphs that combine a graph of 
the vertices with a graph for the time domain (e.g., a directed 
cycle graph Gdc ) to obtain a single larger graph G Gdc#  with 
NT nodes [46], [47]. This interpretation allows for the use of 
standard GSP tools such as the GFT transform and graph fil-
ters, with the joint GFT being the Kronecker product of the 
original GFT V 1-  and the DFT matrix ,FH  and the joint GSO 
some chosen product (e.g., Kronecker, Cartesian, and strong) 
of the respective GSOs. Indeed, the joint spectrum of the time-
varying graph signal ( )vec X  can be analyzed this way, and 
joint, graph-time filters can be adopted for their denoising or 
interpolation. In their most general form, those filters need not 
be separable over the graph and time domains, thereby increas-
ing their modeling and processing potential.

Later, vector autoregressive (VAR) processes were consid-
ered for graph-time processing. A VAR models a vector process 
by expressing the current vector as a matrix-weighted version of 
past vectors plus some innovation, i.e., .x A x et p

P
p t p t1R= += -  

Considering that the vectors we are handling are graph sig-
nals, the underlying graph structure can be incorporated in 
such VAR models in different ways, leading to different GSP 
extensions. One direction is to replace the matrix weights by 
graph filters, i.e., ( ),A H Sp p=  leading to graph VAR process-
es [48]. In such models, the graph filter can be implemented 
in the graph frequency domain or as a polynomial of the GSO 
in the vertex domain. Furthermore, causal models have been 
assumed where the polynomial order of the graph filter cannot 
be larger than the time delay on which the filter operates [49]. 
Another extension of VAR models also considers the inter-
action between the different nodes of the current vector, i.e., 

,x A x A x et t p
P

p t p t0 1R= + += -  where A0  has a zero diago-

nal. It further enforces sparsity on all of the matrix weights. 
In such structural VAR processes [50], the matrix weights can 
be viewed as graph-adjacency matrices that link the current 
data on a node with past data on the same node as well as with 
current and past data on neighboring nodes. Extensions to non-
linear versions have also been considered.

The value of GSP in science and  
engineering applications
Not surprisingly, GSP methods have been applied to engineer-
ing networks where a clear definition of the graph follows from a 
physical network. These include communication networks (e.g., 
developing distributed schemes to estimate the channels), smart 
grids, power networks, (e.g., designing distributed resource al-
location algorithms for power flow), water networks, and trans-
portation networks (e.g., developing graph-based architectures 
to predict traffic delay). Similarly, GSP has also contributed to 
applications where the network is not explicitly observable but 
can be inferred from additional information, such as social net-
works, meteorological prediction, genetics, and financial engi-
neering. Although all of the previous examples are meaningful 
and relevant, here we briefly highlight the two areas with the 
largest and most consistent GSP activity over the past decade: 
neuroscience and image and video processing.

Applications to neuroscience
Graphs have a long history in neuroscience because they can 
be used to represent different relationships and pairwise con-
nections between regions of the brain, taking each region to 
be a vertex [15]. An anatomical brain graph captures struc-
tural connections between the regions, as measured, e.g., via 
fiber tracts in white matter captured through diffusion mag-
netic resonance imaging (MRI). A functional brain graph, on 
the other hand, aims to capture pairwise interdependencies 
between activity that is measured in the different brain re-
gions. Identifying the functional brain graph has been studied 
extensively for different reasons and with different modali-
ties, the most common of which is functional MRI (fMRI). 
Often, such studies also involve the estimation of dynamic 
graphs [51], [52]. During a sequence of task and rest periods, 
it has, for instance, been shown that on- and off-task func-
tional brain graphs differ substantially [51]. Recent work also 
demonstrates that dynamics in the functional brain graph 
even exist during resting-state fMRI, with meaningful cor-
relations with electroencephalograph, demographic, and be-
havioral data [52].

Interestingly, most of the graph-based approaches in neu-
roscience consist of first identifying a brain graph and then 
using graph-theoretical and network science tools to analyze 
its properties. From this point of view, GSP tools can be (and 
have been) leveraged for learning brain graphs [53]. However, 
GSP really shines when it comes to analyzing how the mea-
sured activity pattern—the brain signal—behaves in rela-
tion to a brain graph (either anatomical or functional, related 
to one or multiple subjects). In other words, GSP provides 
a technology to merge the brain function, contained in the 
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brain signal, with the brain graph (see [53] and references 
therein). Specifically, the GFT has been used to analyze cog-
nitive behavior. For example, [54] shows that that there is a 
relationship between the energy of the high-frequency con-
tent of an fMRI signal and the attention-switching ability of 
an individual. There is further research from the same group 
that states that, when learning a task, the correlations between 
the learning rate and the energies of the low-/high-frequency 
content of an fMRI signal change with the exposure time, i.e., 
they depend on how familiar we are with the task. In addi-
tion to the GFT, graph wavelets and Slepians have been used 
to reveal localized frequency content in the brain [53], and 
graph filters have been used as diffusion operators to model 
disease progression in dementia. Although these results dem-
onstrate the potential GSP has for neuroscience, we believe 
this pairing is still in its infancy, and that there is plenty of 
room for exploration.

Applications to image and video processing
As noted earlier, widely used techniques in image and video 
processing, including transforms such as the DCT and the 
KLT, segmentation methods, and image filtering can be in-
terpreted from a GSP perspective [55]. In recent years, the 
emergence of a broader understanding of GSP has led to a 
further evolution of how graph-based approaches are used for 
image processing. As an example, although the DCT or asym-
metric discrete sine transform are formed by the eigenvectors 
of path graphs with equal edge weights, extensions have been 
proposed where graph edges with lower weights can be in-
troduced in between pixels corresponding to image contours 
[56]. In these approaches, as in input-dependent image filter-
ing [57], the image structure is first analyzed (e.g., contours 
detected), and then transforms adapted to the image charac-
teristics are selected, with the choice of transform sent as side 
information.

A particularly promising application of GSP methods is to 
point cloud processing and compression. Each point in a point 
cloud is defined by its coordinates in 3D space and has associ-
ated with it an attribute (e.g., color or reflectance). Although 
points are in a Euclidean domain, their positions, on the sur-
faces of the objects in the scene, are irregular and make it natu-
ral to develop a graph-based processing approach. Transforms 
have been proposed that leverage or are closely related to the 
GFT of a point cloud graph [58]. These methods are funda-
mental algorithms for geometry-based point cloud compres-
sion. Additionally, point cloud processing has become a major 
application domain for graph ML, with applications in areas 
such as denoising [59].

The future ahead
The focus of this article has been on reviewing the early results 
and growth of GSP, with an eye not only on the SP commu-
nity but also the applications and data science problems that 
have benefited from GSP. We close by discussing some of the 
emerging directions and open problems that we believe will 
shape the future of the field.

One emerging area in the field of GSP is dynamic graphs; 
more specially, how to estimate them, and how to process 
time-varying graph signals residing on them. Graphs are rarely 
static; think, for instance, about social networks with new users 
or changing connections, or functional brain networks deter-
mined by a specific task that is carried out at a particular time 
instant. As a result, GSP tools, theory, and algorithms need 
to be extended to such scenarios. There is already quite some 
work on graph topology identification for dynamic graphs, 
but most of these methods link consecutive graphs in the cost 
function, making the problems computationally challenging 
[30], [50]. Adaptive methods (of the correction-only or pre-
diction-correction type) try to tackle this issue, but tracking 
rates are still low. Processing signals residing on time-varying 
graphs have not been studied in depth, and this is clearly an 
area where many opportunities arise.

Extending GSP to higher-order graphs is another important 
future direction. Some applications are characterized by a graph 
domain where more than two nodes can interact; think, for 
instance, about a coauthorship network where groups of coau-
thors who collaborated on a paper are linked together, or about 
movie graphs in recommender systems, where movies starring 
the same actor form a group. Such graphs where an edge can 
join more than two nodes are called higher-order graphs. Popu-
lar abstractions of higher-order graphs are simplicial complexes 
and cell complexes. A simplicial/cell complex is a collection 
of subsets of the set of nodes satisfying certain properties. 
Whereas in a simplicial complex, the subsets satisfy the subset 
inclusion property (e.g., there needs to be links among each pair 
of the three coauthors of a paper), in a cell complex, they do 
not. However, both types of complexes share a similar recur-
sive relationship between the higher-order Laplacians, leading 
to a hierarchical processing architecture that can process node 
signals over edges, edge signals over triangles/polygons (for a 
simplicial/cell complex), and so on. A less restrictive represen-
tation of a higher-order graph is a hypergraph ( , , ),H V E ~=  
where ~ is a function that assigns a weight to each hyperedge 
in .E  Hyperedges can connect more than two vertices in .V  
Some recent overviews on higher-order networks, with focuses 
on GSP and network science, respectively, can be found in [60] 
and [61]. There are still many open issues in higher-order GSP, 
including the exploration of connections to adjacent fields such 
as topological data analysis and computational geometry.

Many other open problems—extending GSP to include 
uncertainty in the signals and graphs, design of exact and 
approximate Bayesian (recursive) estimators able to track 
variations across nodes and time, developing GSP models for 
categorical data, generalizing GSP results to continuous mani-
fold (geometric) data, incorporating GSP tools into reinforce-
ment learning and spatiotemporal control, and so on—are also 
expected to play important roles in the future of the discipline. 
If the first years of GSP combined theoretical developments 
with practical applications by placing a stronger focus on the 
former, we expect that the coming years will see an increased 
emphasis on applications, along with important efforts on 
learning and statistical schemes.
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T he Bio Image and Signal Processing (BISP) Technical 
Committee (TC) of the IEEE Signal Processing Society 
(SPS) promotes activities within the broad technical field 

of biomedical image and signal processing. Areas of interest 
include medical and biological imaging, digital pathology, 
molecular imaging, microscopy, and associated computational 
imaging, image analysis, and image-guided treatment, along-
side physiological signal processing, computational biology, 
and bioinformatics. 

Introduction
BISP has 40 members and covers a wide range of Editors In-
formation Classification Scheme, including CIS-MI: medical 
imaging; BIO-MIA: medical image analysis; BIO-BI: bio-
logical imaging; BIO: biomedical signal processing; BIO-BCI: 
brain/human-computer interfaces; and BIO-INFR: bioinfor-
matics. BISP plays a central role in the organization of the 
IEEE International Symposium on Biomedical Imaging (ISBI) 
and contributes to the technical sessions at the ICASSP and 
the ICIP. In this article, we provide a brief history of the TC, 
review the technological and methodological contributions its 
community delivered, and highlight promising new directions 
we anticipate.

Historical context
Until 2002, the signal processing activities related to biomedi-
cal imaging were overseen by the Image and Multidimen-
sional Digital Signal Processing Committee of the SPS and 
typically presented in topical sessions at ICIP and ICASSP. 
The SPS also cosponsored IEEE Transactions on Medical 
Imaging. Yet, at the turn of the century, the importance of im-
aging in medicine and biology was becoming increasingly ap-
parent. At the same time, advanced signal processing played 
an ever increasing role in the reconstruction and analysis of 
the vast volume of images produced. This realization was 
reinforced by the creation of the National Institute of Bio-
imaging and  Bioengineering (NIBIB) by the U.S. National In-
stitutes of Health (NIH) and U.S. Congress in December 2000 
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as an agency  solely  dedicated to the advancement of imag-
ing  technology and bioengineering. The latter was an official 
recognition of the crucial role of engineering in biomedical 
research and of the necessity to fund such research activities. 
This motivated the SPS and IEEE Engineering in Medicine 
and Biology Society (EMBS) to join forces and demonstrate 
leadership in biomedical imaging research. 

Accordingly, it was decided to launch a new regular 
meeting on biomedical imaging: the ISBI (Figure 1), in close 
collaboration with NIBIB. The task of organizing this con-
ference was given to Michael Unser (SPS representative) and 
Zhi-Pei Liang (EMBS representative). The fact that Prof. 
Unser had spent the larger part of his career at the NIH 
facilitated the interaction with NIBIB, which committed to 
supporting the first edition of ISBI that took place in Wash-
ington, DC, USA, in July 2002. The unique aspect of ISBI 
was to cover the whole spectrum and range of imaging, from 
nano (electron and optical microscopy) to macro (medical 
imaging modalities) [1].

Creation of a dedicated TC
With the creation of ISBI and its establishment as the IEEE 
flagship conference in biomedical imaging, the next step 
was to put in place a structure to promote the conference 
and ensure its scientific quality. Since Prof. Unser with his 
team had formulated the vision for ISBI, he was instructed to 
form the SPS BISP TC and to make suggestions for its initial 
membership. In addition to its strategic role in bioimaging, 
BISP was given the mission to oversee the SPS activities in 
biomedical signal processing (e.g., the analysis of physiolog-
ical signals) and bioinformatics—in short, to be responsible 
for all signal processing activities in medicine and biology 
and to maintain a liaison with its sister TC in EMBS, the 
Technical Community on Biomedical Imaging and Image 
Processing. Since the inception of the TC, BISP members 
have also actively participated in cross-Society activities, 

such as the IEEE Life Science Technical Community and 
the IEEE Brain Technical Community.

Workshops and conferences
The inaugural ISBI was held between 7 and 10 July 2002, at 
the Ritz-Carlton Hotel, Washington, DC. The meeting was 
organized jointly by the SPS and the EMBS. Significant sup-
port was provided by both the NIH and NIBIB (US$40,000 in 
grants and approximately 50 paid registrants). The conference 
was a huge success, providing a venue for interdisciplinary ex-
change with researchers from both medical and biological im-
aging areas. It was also well attended by NIH representatives. 
Dr. Elias Zerhouni gave the opening address as the then newly 
appointed NIH director. This attracted many observers, includ-
ing members of the press. Dr. Roderic Pettigrew also delivered 
a speech—the very first in his new function as the director of 
NIBIB. Both directors expressed a strong interest in the confer-
ence and commented on the need to strengthen the links be-
tween the engineering and biomedical research communities.

ISBI 2002 had two parts to the scientific program: 1) the 
contributed papers reviewed by the technical program 
committee and 2) the invited papers. Out of 355 submitted 
papers, 73 were accepted for oral presentation and 142 for 
poster presentation. The invited program consisted of 10 
special sessions that were organized by leading researchers 
in the field.

Despite a very active and growing community, BISP mem-
bership has increased only moderately, yet the TC has always 
strived for a well-balanced representation across the broad 
range of subfields it covers. A key task for BISP members was 
to ensure that papers submitted to ISBI (or to dedicated tracks 
at ICASSP and ICIP) would benefit from the availability of 
a highly qualified pool of reviewers and editors. BISP mem-
bers also participated in the many activities related to ISBI as 
members of the organizing committee. Since 2006, ISBI has 
been held regularly as an annual four-day conference. Figure 2 
summarizes with a word cloud the keywords from the keynote 
titles since ISBI’s inception. Outstanding clinical and technical 
speakers delivered their visions for the field, relevant trends, 
or challenges ahead. Among our distinguished speakers, there 
were Nobel Prize winners and top NIH officers. 

In 2022, ISBI was held for the first time as a fully hybrid 
conference in Kolkata, India, with every session having both 
physical and online speakers and audiences. Out of 785 sub-
mitted papers, 309 were accepted. In addition to the regular 
paper sessions, there were five special sessions, five plenary 
talks, six challenges, and six tutorials. In addition to ISBI, 
BISP has been an active contributor to ICASSP since 2006, 
with the number of submitted papers increasing from 100 in 
2006 to 222 in 2020.

Biomedical image and signal acquisition  
across scales
Biomedical data come in many shapes and forms. BISP focus-
es on digital images and signals, which can be automatically 
processed and analyzed by advanced computational methods. 

FIGURE 1. The original ISBI logo designed by Annette Unser (graphic artist 
and sister of the founding chair), with the eye projecting a distinctive 
vision for ISBI. Observers have suggested that the central motif illustrates 
the Fourier slice theorem, or for the more pessimistic ones, the typical 
artifacts of the filtered back-projection reconstruction algorithm. 
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FIGURE 2. A word cloud with the most frequent keywords from the titles of all the ISBI keynotes in the past 
20 years. Clinicians, Nobel Prize winners, and NIH officials have given these talks, among other contributors. 

To study biological processes in health and disease, many im-
ages and signal acquisition techniques have been developed in 
the past century, reflecting the fact that biological phenomena 
occur at different spatial and temporal scales (Figure 3). Before 
discussing methodological advances, we survey some of the 
most prominent modalities for molecular and cellular imaging, 
tissue imaging, anatomical and functional medical imaging, 
neuroimaging, physiological signal recording, and several data 
types in bioinformatics.

Molecular and cellular imaging
Molecular and cellular imaging has undergone multiple 
revolutions in the past three decades, moving from a mainly 
qualitative to a mostly quantitative field thanks to advances in 
molecular probes as well as imaging modalities [2], [3], [4]. 
With the advent of the green fluorescent protein, pioneered by 
Osamu Shimomura, Martin Chalfie, and Roger Y. Tsien (No-
bel Prize in Chemistry, 2008), microscopy has become one of 
the key tools in biological research [3]. Fluorescence microsco-
py became a fast-growing field to study 
(quantitatively and often within a high-
throughput content setup) processes 
and organelles within living cells and 
organisms. More recently, a vast leap 
has been made with the invention of 
superresolution techniques, based on 
seminal work by Eric Betzig, Stefan W. 
Hell, and William E. Moerner (Nobel 
Prize in Chemistry, 2014). 

Another recent development is 
selective plane illumination (light sheet) 
microscopy, which allows long-term 
biological studies of living organisms 
with rapid acquisition, high resolution, 
and minimal phototoxicity. Classical 
image and signal processing methods 

as well as modern deep learning-based methods are increas-
ingly used not only for reconstruction and deconvolution of the 
data produced by advanced microscopy imaging modalities 
but also for enabling downstream tasks such as segmentation, 
classification, tracing, and tracking [4], [5], [6]. Fluorescence 
microscopy has enabled the study of dynamic processes within 
cells and complements structural and static imaging modali-
ties, such as scanning probe microscopy, electron microscopy 
(Nobel Prize in Physics, 1986), and cryo-electron microscopy 
(Nobel Prize in Chemistry, 2017), which have become part of 
the vast arsenal of tools for the life sciences. In recent years, 
several new journals or sections in established publications, 
e.g., Biological Imaging, Frontiers in Bioinformatics, and Cell 
Reports Methods, have been launched to host the increasing 
number of publications in this domain.

Tissue imaging
Microscopy can also be employed to study biological phenom-
ena at the tissue level. Rather than imaging individual cells 
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FIGURE 3. Examples of the many data acquisition modalities in biomedical image and signal processing operating at various spatial scales. BFM, bright-field 
microscopy; CT, computed tomography; ECG, electrocardiography; EEG, electroencephalography; EM: electromagnetic; EMG, electromyography; FCM, flow 
cytometry; FM, fluorescence microscopy; GE, gene expression; MA, microarray; MRI, magnetic resonance imaging; US, ultrasound; WSI, whole-slide imaging. 
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(molecular/cellular imaging) for basic research or anatomical 
structures and entire organs (medical imaging) for clinical di-
agnostics, the imaging of tissue slides prepared from biopsies 
enables characterizing and grading disease processes ex vivo 
as revealed by abnormal cell arrangements and tissue architec-
tures. This is especially important in researching and diagnos-
ing pathologies, notably the many types of cancer (the field of 
oncology), known to manifest themselves first at the cell and 
tissue level (histopathology). Recent advances in digital whole-
slide imaging (WSI) systems (sometimes referred to as virtual 
microscopy) have created unprecedented opportunities for 
computer-aided diagnosis in histopathology. Both image and 
signal processing play a prominent role in histopathological 
image analysis, especially for breast cancer, prostate cancer, 
lung cancer, tumor pathology in many other forms of cancer, 
and cancer prognosis. 

Review papers have summarized and commented on 
the challenges and opportunities in this domain [7], [8]. 
Typical tasks include the detection and segmentation of 
cell nuclei, glands, and lymphocytes and computing various 
quantitative morphological features for classification. This, 
in turn, requires effective techniques for image normaliza-
tion as well as feature selection and dimensionality reduc-
tion. Analysis of the spatial arrangements of tissues is often 
facilitated by graph-based representation and topological 
modeling. The challenges in histopathological image analy-
sis are not only due to the high complexities of the image 
structures but also to the typically large image sizes, on the 
order of tens of thousands by tens of thousands of pixels, at 
multiple magnifications. 

Traditionally, tissue classification has been performed 
using handcrafted features and machine learning methods, 
such as support vector machines and random forests. Still, 
there is now growing evidence that deep artificial neural net-
works (NNs) provide fast and reliable image analysis on a par 
with seasoned pathologists and can serve as a synergistic tool 
for the latter to improve accuracy and throughput. However, 
the full adoption of deep learning methods in pathology is 
hindered by the lack of large and reliably annotated image 
cohorts documenting the large diversity of diseases and the 
high variability of disease traits, calling for efficient automat-
ed annotation methods.

Medical imaging
Medical imaging refers to the imaging techniques and pro-
cesses to gain insights into the interior of a body for clinical 
diagnosis or medical intervention as well as visual represen-
tations of the function of organs or tissues. Medical imag-
ing can be divided into structural or anatomical imaging and 
functional or physiological imaging. Many medical imaging 
techniques have been invented since the discovery of X-rays 
by Wilhelm Conrad Röntgen in 1895, which form the ba-
sis of projection X-rays and computed tomography (CT). In 
1946, Bloch and Purcell (Nobel Prize in Physics, 1952) in-
dependently discovered nuclear magnetic resonance, which 
formed the basis of MRI (Paul Lauterbur and Sir Peter Man-

sfield in the 1970s, Nobel Prize in Physiology or Medicine, 
2003). MRI developed into a platform technology with many 
specialized techniques, providing insights into anatomy, 
perfusion, diffusion, and deformation. Ultrasound (US) was 
used in medicine since World War II, but it was not until the 
late 1970s that US imaging was popularized as a clinical 
imaging modality. 

In 1963, David Kuhl and Roy Edwards introduced emis-
sion reconstruction tomography, a method that later became 
single-photon emission CT (SPECT). Sir Godfrey Hounsfield 
(Nobel Prize in Physiology or Medicine, 1979) developed the 
first prototype of a CT scanner in 1963, thanks to the avail-
ability of modern computers to solve the complex image recon-
struction problems that ensued. Michael Hoffman, Michel 
Ter-Pogossian, and Michael E. Phelps built the first positron 
emission tomography (PET) camera in 1974. Underpinning 
these techniques, there are considerable signal and image pro-
cessing problems, ranging from image reconstruction, image 
deconvolution, image denoising and restoration, image trans-
formation, and multimodal image coregistration. Over the last 
three to four decades, several signal processing developments 
had major impacts on medical imaging. For example, wavelets 
and splines played a major role in medical image interpola-
tion, denoising, and filtering. Mutual information and other 
information-theoretic metrics revolutionized multimodal 
image registration. Compressed sensing (CS) provided a novel 
approach to find solutions to underdetermined linear equations 
with a major impact on image reconstruction from projec-
tions (CT), from k-space (MRI), or from sensors (US), and, 
of course, the latest developments of deep learning and their 
impact across the board.

Neuroimaging: From images to connectomes
Another flourishing outlet for biomedical signal and image 
processing has been the processing of structural and functional 
MRI (fMRI) data [9]. The concept of establishing connectivity 
between brain regions has been fundamental in many emerg-
ing methodologies [10] (Figure 4). Structural connectivity is 
defined by the strength of interregional axonal fiber pathways 
that can be revealed using tractography methods applied to dif-
fusion-weighted MRI (dMRI) data. Functional connectivity re-
lates to the statistical interdependency between two time series 
of blood oxygenation level-dependent (BOLD) activity. When 
established for all possible pairs of regions, defined by a brain 
atlas, this leads to the structural and functional connectomes, 
respectively. While hemodynamic imaging has been the most 
commonly used modality for constructing the functional con-
nectome, neurophysiological signals such as magneto/electro-
encephalography (M/EEG) have also been adopted thanks to 
their high temporal resolution. 

Both model-based and data-driven methods have been devel-
oped to quantify functional connectivity, including multivari-
ate autoregressive models, graphical models, phase synchrony, 
and information-theoretic metrics. Functional connectivity is 
also intimately related to blind source separation. This, in turn, 
relies on decomposing the data matrix into  components driven 
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by maximizing covariance [using techniques such as principal 
component analysis, singular value decomposition (SVD), or 
higher order SVD] or statistical independence (using indepen-
dent component analysis), which has become part of the pipe-
line in fMRI software suites. During the past decade, dynamic 
functional connectivity has been introduced to acknowledge 
the changing patterns of cofluctuations, either by sliding-win-
dow functional connectivity, instantaneous activation patterns, 
or autoregressive models.

The resulting connectomes are commonly represented by 
graphs and analyzed to reveal organizational principles using, 
for instance, local clustering coefficients, efficiency, small-
worldness, centrality, and phenotype behavior and disorder. 
These approaches have been applied to other species’ connec-
tomes obtained using different modalities, leading to a new 
field, network neuroscience, which further branched out to 
machine learning, information theory, and computational neu-
roscience. Finally, the emergence of graph signal processing 
has found its way into the neuroimaging field [11], providing 
a way to combine brain structure (i.e., a graph defined by the 
structural connectome) and brain function (i.e., graph signals 
obtained by fMRI snapshots of brain activity).

Physiological signal processing (M/EEG, 
electromyography, and electrocardiography)
With the advent of wearable sensors, physiological signals 
are collected for various applications and are central to 

multiple new technologies, including brain-computer inter-
facing/human-machine interfacing (HMI), neurorehabilita-
tion, and neuroprosthetics, in addition to medical diagnosis 
and monitoring [12]. The most employed physiological sig-
nals include electromyography (EMG), respiration, speech, 
heart rate variability, photoplethysmography (PPG), elec-
trocardiography (ECG), and M/EEG. Some prominent ap-
plication areas that routinely rely on physiological signals 
include emotion recognition, autonomous driving, mental 
health, and assistive technologies. For example, physiologi-
cal changes such as heart rate, skin conductance, and PPG 
signals are monitored for measuring human emotions as 
they are more reliable and harder to alter compared to ex-
plicit behaviors such as facial expressions and speech. 

Similarly, the design of HMI systems requires the con-
sistent and accurate decoding of motor intent with minimal 
training and calibration. The multimodal high-density sens-
ing technology coupled with the nonstationary and nonlin-
ear nature of biological signals requires the development of 
innovative signal processing and machine learning tech-
niques to process, decompose, and decode these signals. 
Some methodologies employed in this area of research 
include blind source separation, time-frequency analysis, 
multimodal data fusion, supervised (or semisupervised) 
learning, and deep learning. Different tasks, such as event 
detection, prediction, and diagnosis, have been addressed 
using these tools.
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FIGURE 4. Structural and functional connectomes play a key role in representing relationships between brain regions. (a) From diffusion-weighted MRI 
(dMRI), the orientation of axonal bundles in white matter can be extracted and processed by tractography to obtain the strength of structural connectiv-
ity between all pairs of regions. (b) Functional MRI (fMRI) provides a series of volumes where the blood oxygenation level-dependent (BOLD) signal is 
related to neuronal activity. Time series analysis exists in large diversity, but the functional connectome that reflects the statistical interdependencies 
between pairs of time series is one of them. 
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Bioinformatics
Since the turn of the century, major advances in molecular 
biology, along with advances in genomic data acquisition 
 technologies, led to the growth of biological data generated 
and shared by the scientific community; e.g., The Cancer Ge-
nome Atlas (TCGA). These data bring with themselves sig-
nificant challenges in the identification of gene expression 
mechanisms; the determination of proteins encoded by the 
genes; understanding how these interact, i.e., gene regulatory 
networks; and marker identification.

BISP has contributed to this area by introducing a new line 
of research: genomic and proteomic signal processing [13]. 
While biomolecular sequence analysis has been addressed by 
computer scientists, physicists, and mathematicians, it was only 
at the turn of the century that signal processing started to play 
a role in this area. Genomic and proteomic data can be mod-
eled as noisy, continuous, or discrete signals that represent the 
molecular structure and activities in cells. The high dimension-
ality, variability, and complexity of these data require the devel-
opment of new signal processing methodologies that effectively 
deal with these challenges. By mapping the character strings 
corresponding to gene sequences into numerical sequences, 
signal processing offers a set of tools for solving highly relevant 
problems. For example, the magnitude and the phase of proper-
ly defined Fourier transforms can be used to predict important 
properties of protein-coding regions in DNA. 

Similarly, concepts from digital filtering can be employed 
to analyze the mapping of DNA into proteins and the inter-
dependence of two sequences. These and other signal pro-
cessing methodologies, such as frequency domain analysis, 
high-dimensional data analysis, CS, and network inference, 
have played important roles in the advancement of this field. 
Genomic and proteomic signal processing both have had a 
substantial impact on different application areas, including 
sequence analysis, microarray analysis, structure identifica-
tion, and regulatory networks.

From 2005 to 2013, the IEEE International Workshop on 
Genomic Signal Processing and Statistics (GENSiPS) was 
organized annually and sponsored by the SPS. These work-
shops covered topics related to high-dimensional genomic data 
analysis, gene regulatory network inference, marker identifica-
tion, drug screening, and proteomics.

Methodological advances in biomedical image 
and signal processing
The field of biomedical image and signal processing has seen 
major methodological advances not only in how data are re-
corded, stored, and transmitted but also in how they are best 
represented, processed, analyzed, and modeled, depending on 
the application domain. Many paradigms have been proposed 
in recent decades by various schools of thought, resulting in 
a wide range of theories and methods for challenging prob-
lems, such as image and signal restoration, reconstruction, de-
tection, segmentation, classification, pattern recognition, and 
statistical analysis, as documented in numerous textbooks and 
reviews. Given the limited space in this article, we only briefly 

discuss some of the most impactful developments in recent 
years, including methods for computational imaging and deep 
learning-based image and signal analysis and efforts to stimu-
late reproducible research.

Biomedical computational imaging
Most biomedical imaging modalities have a strong computa-
tional component as they systematically rely on signal process-
ing to reconstruct the images from the raw imaging data. The 
data can take the form of 1) 2D projections of a 3D object, as 
in X-ray tomography, PET, and cryo-electron microscopy; 2) a 
series of blurred 2D slices of a specimen, as in fluorescence mi-
croscopy; or 3) samples of the Fourier transform of an object, as 
in MRI and optical diffraction tomography. By capitalizing on 
the knowledge of the imaging physics (linear forward model), 
the reconstruction task can then be formulated as an inverse 
problem. Until recently, classical imaging (MRI and CT) relied 
on a direct inversion of this forward model. This is achieved, for 
instance, by inverse Fourier transformation in MRI (with uni-
form sampling in k-space) or by inverse radon transformation 
(the celebrated filtered back projection algorithm) in CT. This 
works well when the measurements are sufficiently numerous 
and diverse and when the noise is negligible. 

Besides the streamlining of the reconstruction process itself 
(improved nonuniform fast Fourier transform, optimization of 
sampling parameters, etc.), the earlier involvement of the sig-
nal processing community was to combat the effect of noise 
with the help of advanced statistical methods. One notable 
example of such success is the method of ordered subsets in 
PET and SPECT [15]. Another fruitful approach inspired by 
Wiener filtering is to inject prior information in a stochastic 
model (e.g., generalized Gaussian in a transformed domain), 
which makes a direct link between maximum a posteriori 
(MAP) reconstruction and regularization/energy minimiza-
tion techniques [16]. 

The more significant revolution in imaging came with CS 
with theorists [17], [18] and then experimentalists [19], [20] 
showing the feasibility of image reconstruction from a reduced 
set of measurements. A milestone in this line of research was 
the development of efficient minimization methods under spar-
sity constraints, in particular the (fast) iterative soft threshold-
ing algorithm and alternating direction method of multipliers 
[21]. The main benefit of CS is to enable faster imaging, which 
reduces not only cost but also radiation exposure (in the case 
of X-ray or PET/SPECT). This has led to a major revolution in 
MRI, with fast (CS-based) imaging protocols now offered by 
most vendors of MRI technology. While CS kept SPS research-
ers busy from 2005 to 2017, another wave then overtook the 
field—the incorporation of NNs in the image reconstruction 
pipeline. This led to further significant improvement in image 
quality (Figure 5), especially in extreme scenarios, e.g., low 
signal-to-noise ratio (SNR) and CS [14]. 

While image reconstruction based on convolutional NNs 
(CNNs) still has shortcomings—CNNs are poorly understood 
and can behave erratically (lack of stability and hallucina-
tion)—they demonstrate the potential for better  reconstruction 
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quality [22]. It is noteworthy that it took signal processing 
pioneers less than a year to tune their new CNN-based meth-
ods to the point where they would outperform sparsity-based 
methods for CS in public imaging challenges by the same mar-
gin (typically >4 dB) that the latter had achieved over classi-
cal reconstruction during a whole decade of intense research 
activity. CNNs and learning-based techniques are presently 
at the center of attention of the research community. Recent 
trends include the development of more sophisticated iterative 
reconstruction schemes that rely on CNNs to regularize the 
solution—as enabled by the plug-and-play framework [23]—
as well as the use of deep learning for the resolution of more 
challenging nonlinear inverse problems such as diffuse optical 
tomography [24] and diffraction tomography.

Deep learning in biomedical image  
and signal processing
Traditionally, methods for image and signal processing have 
been based on carefully designed mathematical models of the 

phenomena and anomalies of interest and their translation 
into efficient rules-based computational algorithms. Illustra-
tive examples of this are mathematical point-spread func-
tion models of widefield or confocal microscopes based on 
physical (optical) principles, serving as the basis for various 
image restoration methods (in particular, deconvolution) [25] 
and object detection methods (such as single-molecule local-
ization) [26]. However, as in many other fields, the demand 
for new and better methods from practitioners in biology and 
medical diagnostics outstrips the supply of researchers and 
developers in image and signal processing. That is, there are 
many more biologists and physicians in the world looking for 
tools to facilitate their data processing workflows than there 
are scientists and engineers looking to develop mathematical 
models and image/signal processing algorithms specifically 
for biomedical applications. 

Moreover, especially in the biomedical field, many image 
and signal analysis tasks are notoriously difficult to model 
mathematically due to the complex nature of the problem, 

(a) (b) (c) (d)

FIGURE 5. A comparison of tomographic reconstruction algorithms for CS with a reduction of the number of views by seven. (a) Ground truth (high-quality 
reconstruction from 1,000 views). (b) Conventional reconstruction (filtered back projection) from a subset of 143 views. (c) CS reconstruction using total 
variation regularization. (d) CS reconstruction using a CNN (FBPConvNet). The middle panel displays the image residuals with the same contrast. The mag-
nified images in the lower panel represent the corresponding region of interest overlaid in (a). (a) Ground truth. (b) Signal-to-noise ratio (SNR) = 24.06 dB. 
(c) SNR = 29.06 dB. (d) SNR = 35.38 dB. (Source: The figure is adapted from [14].) 
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the high ambiguity of the data, and the subjectivity of human 
experts who define the gold standards for interpreting the data. 
Thus, as imaging and measurement devices improved over the 
years and the number of potentially automated data processing 
tasks grew, the need for more generic, data-driven, and learn-
ing-based methods also increased.

In the past decade, the rapidly growing availability of 
large datasets, powerful computing capabilities, and open-
access software libraries and frameworks has accelerated 
the development and adoption of machine learning and deep 
learning methods in biomedical image and signal process-
ing [6], [27], [28], [29]. These methods show increasingly 
superior performance in benchmarking studies for various 
tasks, including reconstruction, restoration, detection, seg-
mentation, classification, and tracking. In particular, deep 
learning of artificial NNs has become a popular approach 
for solving data analysis problems where multimodal, multi-
dimensional, and multiparametric datasets need to be jointly 
processed, posing a clear challenge to traditional analysis 
methods. For the processing of biomedical images, CNNs in 
particular have become mainstream, a prominent example of 
this being the U-Net architecture [30], of which many vari-
ants exist for various tasks and applications, such as segmen-
tation (Figure 6). 

For biomedical signal processing, especially for dealing 
with time series, recurrent NNs such as the long short-term 
memory unit have seen widespread adoption. However, despite 
promising results, many challenges remain to be addressed 

before deep learning solutions can be integrated with full 
 confidence and accountability into the workflows of bio-
medical practitioners, such as developing ways to incorporate 
expert knowledge and improving the explainability and gen-
eralizability of the models (see the discussion of future direc-
tions in the last section).

Reproducible research, open access, and code
Reproducing the results presented in a research work can be 
very challenging. For a computational algorithm, details such 
as the exact dataset, initialization or termination procedures, 
and precise parameter values are often omitted in the publi-
cation for various reasons. This makes it difficult, if not im-
possible, for someone else to obtain the same results [32]. In 
the early 2000s, the need to boost research by implementing 
reproducible research practices became apparent. Vandewalle 
et al. [32] published a seminal manuscript in IEEE Signal 
Processing Magazine in 2009, which defines reproducible re-
search as follows:

“A research work is called reproducible if all informa-
tion relevant to the work, including, but not limited to 
text, data, and code, is made available, so that an inde-
pendent researcher can reproduce the results.” 

The authors also distinguish six levels of reproducibility, from 
Level 5 (an independent researcher can easily reproduce re-
sults with at most 15 min of user effort, requiring only standard 
freely available tools—C compiler, etc.) to Level 0 (an inde-
pendent researcher cannot reproduce results).

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 6. Examples of cell segmentation using deep NNs in diverse types of microscopy images. From (a) to (h), the images were captured using bright-
field microscopy, phase-contrast microscopy (2×), differential interference contrast microscopy, and fluorescence microscopy (4×) and contain distinct 
types of cells in different spatial arrangements (densities and confluences). The segmentation results are the overlaid colored cell contours (arbitrary 
colors). These results were produced using a single deep learning framework with a U-Net-like macro-architecture consisting of various layers/blocks 
whose microarchitectures were optimized automatically using a neural architecture search approach [31]. The examples illustrate the power of deep 
learning and the level of automation that can be achieved nowadays in optimizing image segmentation results without requiring expert user input, other 
than manual annotations, to learn from. 
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The issue of reproducibility has been raised many times in 
the past few decades. In the 1980s, there was a growing aware-
ness of poor building on the previous work of others [33]. Pub-
lished algorithms were frequently evaluated with only select 
data and ad hoc metrics. The comparison of algorithms and 
software performance was difficult. In the 1990s, the first 
benchmark initiative in biomedical imaging, the Retrospec-
tive Image Registration Experiment, appeared at Vanderbilt 
University [34]. We needed to wait until the early 2010s for 
bioimaging reference datasets and challenges (benchmarks 
associated with competitions) to appear. ISBI 2012 in Barce-
lona was the first edition of the symposium to hold challenges 
on the following topics: 
1) particle tracking [35]
2) segmentation of neuronal structures in electromagnetic 

(EM) stacks
3) vessel segmentation in the lung [36]
4) cardiac delayed-enhancement magnetic resonance image 

segmentation 
5) high angular resolution diffusion imaging
6) Challenge US: Biometric Measurements from Fetal 

Ultrasound Images. 
At ISBI 2015, Prof. Ronneberger’s team won the Cell Track-
ing Challenge (third edition) [37] and the dental X-ray im-
age segmentation challenge with their U-Net [30]. Figure 7 

shows a word cloud of the challenge titles over the years; 
detection, images, and tracking occupy a prominent place 
in the cloud.

In the bioimaging community, the push for reproducibility 
led to several open software platforms, such as Cell Profiler 
(https://cellprofiler.org/), Fiji (https://fiji.sc/), and Icy (https://
icy.bioimageanalysis.org/). They were made available to the 
community in the early 2000s to share the then state-of-the-art 
analytical methods, which are now used for integrated deep 
learning framework deployment [38].

Finally, imaging challenges foster collaboration between 
institutions and continents. Since 2012, more than 60 challeng-
es have been organized, led by multiple institutions. Of these, 
31 were organized by European institutions, 12 by organiza-
tions in the Americas, 10 by Asia or Oceania, and six involved 
cross-continental collaboration from the Americas, Asia, and 
Europe. These collaborations drove our community to learn 
from the strengths and pitfalls [39] in organizing challenges 
and interpreting their results [40] and thus developed best-
practice guidelines for transparent reporting [41].

Future directions
Advanced technologies for capturing biomedical images and 
signals have made a growing and lasting positive impact 
on clinical diagnostics and therapeutics, medical research, 

FIGURE 7. The ISBI is the premier scientific venue for the BISP TC. Since 2012, our community has organized more than 60 challenges, where open 
datasets, well-specified tasks, and evaluation metrics have been made available for multiple groups to participate, compete, and learn from each other. 
Challenges have covered many imaging modalities and scales, image computing tasks, and organ systems.

https://cellprofiler.org/
https://icy.bioimageanalysis.org/
https://icy.bioimageanalysis.org/
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and life sciences. They will continue to help improve our 
 understanding of the conditions underlying human health and 
how to prevent and treat disease. Modern biomedical image 
and signal acquisition systems are based on a wide range of 
physical phenomena (electricity, magnetism, light, sound, 
force, etc.) capable of providing complementary information 
about the anatomical and functional properties of the human 
body and living organisms in general. Also, the sensitivity, 
resolution, and quality of these systems have improved dra-
matically over the years to the point where automated image 
and signal processing are now indispensable in virtually all 
clinical and biomedical research applications. 

At this point in time, unlike in the past 
century, the chances of discovering totally 
new physical principles that could ultimately 
be used in biomedical practice have dimin-
ished, yet the challenges of fully exploiting 
existing technologies are far from having 
been solved. One of the main problems for 
the image and signal processing community 
in the years ahead will be to develop effec-
tive methods for data fusion and integration 
[42] to maximize the potential of multimodal and correlative 
imaging as well as combining imaging and nonimaging (e.g., 
“omics”) data. This requires finding solutions to dealing with 
the fundamentally different nature of different data sources 
and the inevitable imbalances in the data but also with the 
huge volumes (terabytes and no doubt soon petabytes) of mul-
timodal datasets.

Despite being comparatively young, the BISP community 
has already seen and contributed to major paradigm shifts in 
biomedical image and signal processing. Still, in addition to 
the data challenges mentioned previously, many fundamental 
technical challenges remain. Examples include some of the 
problems caused by the increasing emphasis on learning-based 
approaches. For starters, these approaches are typically very 
data hungry, while the human and time resources to produce 
high-quality annotated datasets are usually severely limited, 
especially in the biomedical domain, not to mention addition-
al limiting factors due to privacy regulations. This requires 
the development of semi/unsupervised learning approaches, 
data modeling and simulation methods that can generate high-
fidelity ground-truth data for training, and ways to integrate 
expert domain knowledge into the learning framework. 

Furthermore, even if sufficient annotated data can be col-
lected to train a machine or deep learning-based method for a 
given application, the resulting model is considered a black box 
in the eyes of practitioners, who remain fully accountable for 
any decisions based on the model’s predictions. Hence, there 
is a great need for explainable and interpretable machine and 
deep learning solutions. This is a fantastic opportunity for BISP 
researchers, many of whom traditionally are used to develop-
ing mathematical models based on sound physical principles, 
which by design are much more explainable and interpretable. 
Another challenge stemming from limited training data is the 
typically poor generalizability of the learned models. While 

organized competitions in the field have done a great service 
by providing public datasets and benchmarks, it is now well 
known that models based on them do not always work on pri-
vate datasets. This calls for continuing efforts to make public 
datasets less selective and more representative.

Given these and many other open challenges, the BISP 
TC will continue to play an important role in developing ever 
more advanced image and signal processing methodologies 
underpinning the next-generation technologies needed to 
improve the efficacy of biomedical practice and research. In 
this endeavor, we believe future advances will come not only 
from continuing research efforts but also from innovations in 

education and how we train the next genera-
tion of scientists and engineers in our field. 
Clearly, biomedical image and signal pro-
cessing has become increasingly multidis-
ciplinary, requiring a deep understanding 
of not only the mathematics and algorithms 
of how to model and process digital imag-
es and signals but also of the underlying 
physical principles and limitations of data 
acquisition using various systems; the bio-

medical knowledge to properly interpret the data; the data sci-
ence and informatics expertise to handle large datasets; and 
the experimental and statistical know-how to validate methods 
thoroughly. To this end, we envision the BISP TC strengthen-
ing ties with the relevant bodies in the respective disciplines 
and becoming more multidisciplinary in the future.
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Multimedia signal processing (MMSP) refers to processing 
of signals from multiple media—speech, audio, images, 
text, graphics, point clouds, etc.—often jointly. This ar-

ticle reviews the history of MMSP and, in parallel, the history of 
the MMSP Technical Committee (TC), with a focus on the last 
three decades (Figure 1).

Introduction

Overview of the MMSP TC
The MMSP TC of the IEEE Signal Processing Society (SPS) 
promotes the advancement of MMSP technology. The TC was 
formed in 1996. The scope of the TC includes joint process-
ing/representation of audio–visual and multimodal informa-
tion, fusion/fission of sensor information or multimodal data, 
integration of media, art, and multimedia technology, and 
analysis and feature extraction of multimodal data. Other key 
areas encompass virtual reality and 3D imaging, multimedia 
communications and networking, human–machine interface 
and interaction, visual and auditory quality assessment, mul-
timedia databases, and digital libraries. In this context, the TC 
also serves as an incubator of technologies that lie in the gaps 
between traditional areas. Each year, the MMSP TC organizes 
the IEEE International Workshop on Multimedia Signal Pro-
cessing, which attracts researchers from the SPS and related 
communities that work on multimedia topics. The workshop 
typically receives around 150 paper submissions and has more 
than 100 attendees from all over the world.

Historical context: the 1980s
Technological developments in the 1980s lay the foundation 
for the modern multimedia industry. The first CD appeared 
on the market in 1982 [1]. Personal computers gradually be-
came more affordable throughout the decade and made their 
way into many homes. Video games, whose first prototypes 
appeared a few decades earlier, reached the level of popular-
ity that made the gaming industry a notable segment of the 
tech sector. The first digital video coding standards, H.120 [2] 
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1990

2000

2010

2020

Multimedia Signal  Processing 

1980’s: First Digital Media
Standards (CD, H.120,
H.261) and WWW

1991: WWW Open to Public, 
2G (GSM) Cellular
Communications 

1992: JPEG, MPEG-1, MP3

1993: First Movie Streaming
and First Live Streaming
Over the Internet

1996: MPEG-2/H.262
1997: Commercial On-Demand

Streaming (VXtreme 
and RealNetworks) 

1998: Digital Terrestrial TV
1999: MPEG-4

2000: JPEG2000

2001: 3G Cellular
Communications

2002: ABR Over HTTP
2004: MPEG-4 AVC/H.264

2005: YouTube Launched
2006: Amazon Unbox Launched

Google Buys YouTube

2007: Netflix and Hulu Streaming

2009: First 4G Cellular
Service Launched in
Norway and Sweden

2009: Apple Introduces HTTP
Live Streaming; Also
Multi-View Coding 
(MVC) Extension of
H.264/AVC Released

2011: MPEG-DASH
2012: AlexNet Wins ILSVRC
2013: HEVC
2014: Amazon Echo Launched
2015: IMT-2020 Standard

Requirements for 5G
Communications

2016: HEVC-SCC

2018: Waymo Launches First
Fully Autonomous Taxi
Service in Phoenix, AZ

2020: VVC and MPEG-PCC
2021: MPEG-7 Part 17: Neural

Network Compression

Multimedia Signal Processing
Technical Committee

1996: MMSP TC Formed

1997: First MMSP Workshop (Princeton, NJ)

1998: Second MMSP Workshop (Redondo Beach, CA)
1999: IEEE Transactions on Multimedia Launched

2000: First ICME Conference
(New York, NY)

2001: MMSP (Cannes, Fra.)

2002: ICME (Lausanne)
2003: ICME (Baltimore)
2004: MMSP (Siena, Italy)
2005: ICME (Amsterdam)
2006: MMSP (Victoria, BC)
2007: ICME (Beijing)
2008: MMSP (Cairns,

Australia), ICME
(Hannover)

2009: MMSP (Rio de Janeiro)
ICME (New York)

2010: ICME Introduces
Double-Blind Review,
15% Acceptance for Orals,
30% Overall

2013: ICME (San Jose, CA) 
2014: MMSP (Banff, AB)

ICME (Chengdu)

2015: MMSP (Xiamen)
ICME (Turin, Italy)

2017: MMSP (Luton, UK)
ICME (Hong Kong)

2019: MMSP (Kuala Lumpur)
ICME (Shanghai)

2020: First Virtual ICME and MMSP Workshop

FIGURE 1. MMSP timeline. See Table 1 for acronym definitions. ABR: adaptive bit rate; SCC: screen content coding. 
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and H.261 [3], and the first media platform World Wide Web 
(WWW, or simply the Web) [4] were developed in the 1980s, 
setting the stage for subsequent technological breakthroughs. 
To help the reader navigate the article, 
Table 1 gives a list of acronyms and their 
definitions, while Table 2 summarizes the 
multimedia standards mentioned in the text.

Developments in the last 
three decades

The 1990s
The 1990s were the decade of great mile-
stones for digital multimedia. The Web 
was publicly released in 1991. As the first 
platform that enabled worldwide sharing 
of multimedia documents, combining text, 
images, graphics, audio, and video, it has 
since transformed the way we work, learn, 
shop, travel, keep in touch, and virtually all other aspects of 
our lives. Another pivotal event in 1991 was the launch of 
2G cellular communications based on the global system for 

mobile communications (GSM) standard in Finland. Besides 
voice communications, 2G systems enabled short message 
service text messages, which later evolved to multimedia mes-

saging service messages and lay the foun-
dation for the myriad of today’s messaging 
services. Cellular communications have 
had an equally transformational effect on 
our lives, providing the infrastructure over 
which much of today’s multimedia content 
is being shared.

The first widely used multimedia stan-
dards were released in 1992. The Joint Pho-
tographic Experts Group (JPEG) published 
Part 1 of the JPEG image coding standard 
[5], the most popular image coding stan-
dard to date. The Moving Picture Experts 
Group (MPEG) issued MPEG-1 [6], the 
audio–visual coding standard that formed 
the basis of video CD and early digital cable 

and satellite TV. The standard also introduced MPEG-1 audio 
layer III [7], more commonly known as MP3, a widely popular 
audio format for music sharing.

Table 1. Acronyms and their definitions in alphabetical order.

Acronym Definition

AAC Advanced audio coding

AOM Alliance for open media

AVC Advanced video coding

CD Compact disc

CDVS Compact descriptors for visual search

DASH Dynamic adaptive streaming over HTTP

DVD Digital video disc

GSM Global system for mobile communications

HDTV High-definition television

HEVC High-efficiency video coding

HTTP Hypertext transfer protocol

ICME International Conference on Multimedia & Expo

JPEG Joint Photographic Experts Group

Lidar Light detection and ranging

MMS Multimedia messaging service

MP3 MPEG-1 audio layer III

MPEG Moving Picture Experts Group

MVC Multiview video coding

P2P Peer-to-peer communications

PCC Point cloud compression

RGB+D Red, green, blue plus depth

SMS Short message service

VCM Video coding for machines

V VC Versatile video coding

W W W World wide web

Table 2. Select multimedia standards in chronological order  
of their release.

Standard Description
Initial 
Release

H.120 First digital video coding standard 1984

H.261 Video coding standard, targeted mainly at 
video telephony

1988

JPEG First digital image coding standard 1992

MPEG-1 Audiovisual coding standard 1992

MPEG-2 Audiovisual coding standard 1996

MPEG-2 Part 2 
(H.262)

Video coding standard 1996

MPEG-4 Audiovisual coding standard 1999

JPEG2000 A wavelet-based image coding standard 2000

MPEG-4 Part 10 
(H.264/AVC)

Video coding standard 2004

MVC Multiview video coding, amendment to 
MPEG-4 Part 10 (H.264/AVC)

2009

MPEG-DASH MPEG dynamic adaptive streaming over 
HTTP, a video streaming standard

2011

MPEG-H Part 2 
(H.265/HEVC)

Video coding standard 2013

3D-HEVC HEVC-based coding standard for  
3D video

2015

HEVC-SCC HEVC-based coding standard for screen 
content video

2016

MPEG-I Part 3 
(H.266/V VC)

Video coding standard 2020

MPEG-PCC Point cloud compression standard 2020

MPEG-7 Part 17 A standard for compression of neural 
 network models

2021

The scope of the TC 
includes joint processing/
representation of audio–
visual and multimodal 
information, fusion/fission 
of sensor information 
or multimodal data, 
integration of media, 
art, and multimedia 
technology, and analysis 
and feature extraction of 
multimodal data.
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The year 1993 was a big year for video streaming. On 
22 May, the movie called Wax or the Discovery of Television 
Among the Bees became the first movie to be streamed online, 
at half the standard definition resolution and a frame rate of 
only two frames per second. The first live streaming over the 
Internet occurred on 24 June 1993. This was a performance 
by the band called Severe Tire Damage, streamed from the 
Xerox Palo Alto Research Center [9]. The video resolution was 
only 152 × 76, the frame rate only 8 to 12 
frames per second, and the audio quality no 
better than a telephone call, but it could be 
seen as far as Australia [10]. It was a histor-
ic event that demonstrated the potential of 
streaming technology and stimulated much 
research and development in the decades 
to follow. Propelled by this success, Severe 
Tire Damage opened for the Rolling Stones 
in the second live streaming of a musical 
event over the Internet on 18 November 
1994 [11].

In 1994, DirecTV launched the first 
commercial digital satellite TV service in 
the United States. This marked the beginning of the transi-
tion of TV from analog to digital, which continued with the 
introduction of digital cable TV in 1996 and digital terrestrial 
TV in 1998. MPEG-2 was released in 1996 [6]. It was a very 
popular coding standard that was used in DVDs, digital TV, 
and HDTV. Its Part 7, advanced audio coding, was released 
in 1997.

As the Internet reached more users through the 1990s, with 
increased capacity and higher bit rates, the battle for streaming 
over the Internet would heat up, especially in the second part of 
the decade [12]. The big players in this area were Progressive 
Networks (which became RealNetworks in 1997) and Micro-
soft, along with a number of startups, including Vivo, Xing, 
VDOnet, and VXtreme. Among them, they are responsible for 
a number of firsts, including the first audio streaming service 
(RealAudio, 1995), first live audio webcast of a sports game 
(Seattle Mariners versus New York Yankees, RealNetworks, 
1995), first commercial on-demand video streaming (RealNet-
works and VXtreme, 1997), as well as the most popular media 
players of the time.

Amid all of these developments, the MMSP TC was 
formed in 1996, under the leadership of the first TC chair, 
Tsuhan Chen. The TC organized its first workshop, the 
MMSP Workshop, in June 1997 in Princeton, New Jersey. 
The workshop attracted 95 papers, including eight demonstra-
tions. The next two workshops were held in Redondo Beach, 
California, (1998) and Copenhagen, Denmark (1999). The 
second TC chair (1999–2001) was K. J. Ray Liu, the 2022 
IEEE president.

Because of the interdisciplinary nature of multimedia, the 
MMSP TC has collaborated with other TCs within the IEEE 
SPS and other IEEE societies since its inception. A notable 
result of such collaboration was the launch of the IEEE Trans-
actions on Multimedia in 1999. With an impact factor of 8.18, 

the journal is now considered among the top publication ven-
ues in the field of multimedia.

The 2000s
If the 1990s demonstrated the potential of multimedia technol-
ogies, the 2000s were the decade when the technology reached 
the level of maturity that made it not only commercially viable, 
but highly successful. This was aided by the development of 

3G cellular communications, first commer-
cially launched in 2001 by NTT DoCoMo 
in Japan. In addition, new ideas emerged 
both from industry and academia. One of 
these ideas was peer-to-peer (P2P) file shar-
ing, pioneered by Napster.

Napster initially launched in 1999 and 
quickly became a very popular platform for 
MP3 audio file sharing, especially among 
college students. It was soon sued over 
copyright infringement [13] and had to shut 
down in 2001. Despite its brief existence, 
Napster left a lasting legacy in the multi-
media world. Its P2P distribution paradigm 

generated enormous interest in the research community and 
became popular not only as a way to share files, but also in 
media streaming. At the same time, the music industry saw 
the potential for distributing content in digital form without 
physical media, which lay the foundation for subsequent online 
music stores, such as iTunes, and products such as iPod.

At the turn of the millennium, the MMSP TC was also busy 
launching new initiatives. The International Conference on 
Multimedia and Expo (ICME) was launched as a collaboration 
with the sister TCs in the IEEE Circuits and Systems, Com-
munications, and Computer Societies. The first edition of the 
conference was held in New York in July–August 2000, and 
attracted over 400 papers. Since then, the ICME has established 
itself as a flagship IEEE conference in the field of multimedia: 
it has a rank of A according to the Computing, Research, and 
Education Association of Australia rankings and is among the 
top 10 venues (among both journals and conferences) in the 
field of multimedia, according to Google Scholar metrics.

An important milestone at the turn of the millennium was 
the standardization of JPEG2000 [14]. This was the first cod-
ing standard based on wavelets [15]. JPEG2000 introduced 
tools for resolution- and quality-scalable coding and decoding, 
region-of-interest coding, precise rate control, and a number 
of other features that made it suitable for high-quality imag-
ing applications. A related image coding approach, called 
ICER, is used for encoding and sending back images from the 
Mars rovers [16]. In 2004, Motion JPEG2000, an extension of 
JPEG2000 to video, was adopted for digital cinema applica-
tions in the film industry.

Another major milestone was the development of the 
MPEG-4 Part 10 advanced video coding (AVC) standard, bet-
ter known as H.264/AVC [17], in 2003. One of the main motiva-
tions behind H.246/AVC was to support various network-based 
video services, such as video streaming to heterogeneous 

As the first platform that 
enabled worldwide sharing 
of multimedia documents, 
combining text, images, 
graphics, audio, and video, 
it has since transformed 
the way we work, learn, 
shop, travel, keep in 
touch, and virtually all 
other aspects of our lives.
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clients. Hence, scalability also played an important role, and 
was materialized through the scalable extension of H.264/AVC 
[18], which enabled video coding and decoding at a number of 
resolutions, frame rates, and qualities to support a wide variety 
of client devices. H.264/AVC is used in Blu-ray discs and is 
still the most common format in online video streaming.

Although online video existed in various forms even in the 
1990s, the first major video streaming service, YouTube, was 
launched in 2005, fueled by the develop-
ment of H.264/AVC. YouTube allowed users 
to upload their own videos, which can then 
be searched and streamed to a wide audi-
ence. This quickly made YouTube very 
popular, leading to its purchase by Google 
for US$1.65 billion in 2006, less than a 
year after its official launch. Commercial 
streaming services appeared around the 
same time. Amazon Unbox (now Amazon 
Prime video) launched in 2006, followed 
by Netflix and Hulu streaming services 
in 2007. As the customers’ home Internet 
service speeds improved, the popularity of 
streaming services grew, and streaming now accounts for more 
viewing time than cable TV in the U.S. market. These stream-
ing services, and many more that have followed since, became 
successful businesses, some even launching their own produc-
tion studios to create exclusive content.

While certain forms of online games existed as far back 
as the 1970s, the era of massively multiplayer online gaming 
started in 2000s with the wider availability of fast Internet 
service. Gaming consoles such as Microsoft Xbox, Sony Play-
Station, Nintendo, and Wii gradually became more popular, 
interfacing with cloud gaming platforms like Xbox Live and 
PlayStation Network. Increased interactivity in games and 
consoles’ specialized hardware also incentivized the develop-
ment of more sophisticated game controllers, like Microsoft 
Kinect, which would have a major impact on both gaming and 
MMSP research in the following decade.

The 2000s also saw the birth of social media, with the 
founding of LinkedIn in 2002, Facebook in 2004, and Twit-
ter in 2006. A phenomenon that took the world by storm, 
social media allowed users to upload their own media con-
tent and share it with a circle of friends or a wider audience. 
Social media has since transformed marketing and market 
research, recruitment, the news industry, and many other 
aspects of our lives. It has also facilitated phenomena like 
trending, influencing, fake news, etc. On the technical side, 
the immense amount of user-supplied content ushered in 
the era of Big Data and set the stage for further technical 
developments in the coming decades. As an example, user-
supplied photos and associated tags enabled Facebook to 
create a highly successful facial recognition system, which 
launched in 2010 but has since been scaled back due to ethi-
cal and privacy concerns.

The end of the decade was equally exciting in terms of 
technological developments. The 4G cellular service was first 

launched in Norway and Sweden in 2009. With increased bit 
rates offered to the users, the demand for online media and 
streaming services will rapidly increase in the next decade. The 
same year, Apple introduced HTTP live Sstreaming, which is 
currently the most popular streaming format. Also, the multi-
view video coding extension of H.264/AVC was introduced.

In the meantime, the MMSP TC was busy building up the 
MMSP community and organizing related events. MMSP 

Workshops took place in Cannes, France 
(2001); St. Thomas, U.S. Virgin Islands 
(2002); Siena, Italy (2004); Shanghai, China 
(2005), Victoria, BC, Canada (2006); Cha-
nia, Greece (2007); Cairns, QLD, Australia 
(2008); and Rio de Janeiro, Brazil (2009). 
ICME conferences took place in New York, 
NY, USA (2000); Tokyo, Japan (2001); Lau-
sanne, Switzerland (2002); Baltimore, MD, 
USA (2003); Taipei, Taiwan (2004); Amster-
dam, The Netherlands (2005); Toronto, ON, 
Canada (2006); Beijing, China (2007); Han-
nover, Germany (2008); and again in New 
York, NY, USA (2009). During this period, 

MMSP TC chairs were K.-J. Ray Liu (1999–2001), John. A. 
Sørensen (2002–2003), Yu Hen Hu (2004–2005), Ingemar J. 
Cox (2006–2007), and Anthony Vetro (2008–2009).

The 2010s
During this decade, 4G communications spread throughout 
the world, increasing the demand for online media. Mobile 
screen resolutions increased sufficiently so that users could 
watch full HD video on their devices. Interactive media also 
became more popular; people could now have a reasonable 
videoconference on the go.

In 2011, MPEG dynamic adaptive streaming over HTTP 
(DASH) became an international standard. MPEG-DASH 
and related technologies, like Apple’s HTTP live streaming, 
provided an incentive to consumer electronics companies to 
incorporate streaming apps into their devices, which in turn 
gave a boost to the streaming industry. Smart TVs and stream-
ing devices like Apple TV, Amazon Fire TV, Roku, and many 
others, gradually started supplementing and then replacing tra-
ditional cable and satellite TV services.

Another type of application that became popular in the 
2010s is mobile visual search [19], where users could take a 
photo of an object or a location and then retrieve additional 
information about it, possibly in the form of augmented reality. 
Audio search apps like Shazam were already established by 
that time, but an efficient mobile visual search required a good 
camera and sufficiently powerful hardware for fast feature 
extraction. All of it came together during the early 2010s. The 
MPEG compact descriptors for visual search standard [20] was 
released in 2015 and provided an interoperable way to com-
press and transmit visual features that facilitate image search 
and matching. While most multimedia compression standards 
code data for human consumption, this is a rare example of a 
standard for visual data coding for machine use, namely visual 

JPEG2000 introduced 
tools for resolution- and 
quality-scalable coding 
and decoding, region-of-
interest coding, precise 
rate control, and a 
number of other features 
that made it suitable 
for high-quality imaging 
applications.
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search; the trend of coding for machines is becoming very 
popular at the time of the writing of this article.

The 2010s were a decade when immersive technologies took 
a big step forward. This was facilitated by improvements in 
sensing and display technologies over the years, but also com-
puting infrastructure needed to process the increased amount 
of data required for a high-quality immersive experience. 
Representative technologies for 3D visual 
immersion include multiview video, red, 
green, blue plus depth (RGB+D), and point 
clouds, while audio counterparts include 
ambisonics and wave field synthesis.  Haptic 
technologies also moved forward, finding 
new applications in wearable devices.

Another major event of the 2010s was a 
sharp rise in the popularity of deep learning 
with neural networks. Although the benefits 
of learning with many-layered models were 
already known in the 1960’s [21] and the 
term deep learning dates back to the 1980s [22], it was the 
success of deep neural networks in acoustic modeling [23] and 
image classification [24], as well as the availability of large 
data sets and powerful computing infrastructure, that sparked 
the renewed interest in the topic, and subsequently transformed 
many technical fields, including MMSP. This is in part due to 
the ability of deep neural networks to effectively model rela-
tionships in multimodal data [25].

Among the emerging applications that were greatly facili-
tated by deep learning is autonomous driving, where multiple 
sensors—cameras, lidar, radar, microphones—collect infor-
mation from the vehicle’s surroundings to help it navigate the 
road. Processing signals from multiple modalities has tra-
ditionally been challenging. However, with the help of deep 
models, one can learn the complex relationships between 
different modalities from data, to enable their joint processing 
and analysis. In 2018, Waymo launched the first autonomous 
taxi service in Phoenix, Arizona. Another artificial intelli-
gence (AI)/deep learning-driven trend is that of “smart” sen-
sors and devices, such as smart speakers and cameras, whose 
capabilities have gone beyond capture and low-level pro-
cessing of signals toward understanding and interaction with 
their environment.

On the video coding front, a major milestone was the 2013 
release of the high-efficiency video coding (HEVC) standard, 
also known as H.265 or MPEG-H Part 2. Beside the usual 50% 
coding efficiency gain over the predecessor (H.264/AVC), it 
was targeted at higher resolutions and allowed for higher bit-
depth, thus facilitating high dynamic range display. It is cur-
rently the second most-widely used video coding format, after 
H.264/AVC. Despite the high adoption of standard codecs 
in various industries, especially by hardware developers, the 
research community felt that there is a strong need for royalty-
free codecs. Hence, the Alliance for Open Media (AOM) was 
formed in 2015, with the goal of developing royalty-free video 
coding technology whose performance would be comparable 
to that of standard video codecs. Starting with Google’s VP9 

video codec, initially mainly used on YouTube, AOM released 
the AOMedia video 1 (AV1) video coding format in 2018. Roy-
alty-free coding formats like VP9 and AV1 tend to be better 
supported in web browsers and streaming apps compared to 
standard coding formats.

Major revamping of the ICME conference took place dur-
ing the 2010s. First, in 2010, ICME introduced double-blind 

review process, a departure from tradition-
al single-blind review that is still common 
in signal processing. Moreover, the target 
acceptance rate was set to 30%, with the 
top 15% percent of papers being selected 
for oral presentation. Starting with 2012, 
ICME Workshops, which were introduced 
in 2009 to provide more focused satellite 
events and to foster new and emerging top-
ics, have been published in separate pro-
ceedings. These innovations, and of course 
the hard work of many volunteers, helped 

the ICME become what it is today: a flagship IEEE confer-
ence in multimedia.

Besides the ICME, the MMSP TC has also been organizing 
MMSP Workshops, which took place in Saint Malo, France 
(2010); Hangzhou, China (2011); Banff, AB, Canada (2012); 
Pula, Italy (2013); Jakarta, Indonesia (2014); Xiamen, China 
(2015); Montréal, QC, Canada (2016); Luton, United Kingdom 
(2017); Vancouver, BC, Canada (2018); and Kuala Lumpur, 
Malaysia (2019). ICME conferences were held in Singapore 
(2010); Barcelona, Spain (2011); Melbourne, VIC, Australia 
(2012); San Jose, California, USA (2013); Chengdu, China 
(2014); Turin, Italy (2015); Seattle, Washington, USA (2016); 
Hong Kong (2017); San Diego, California, USA (2018); and 
Shanghai, China (2019). During this decade, the MMSP TC 
was chaired by Philip Chou (2010–2011), Oscar Au (2012–
2013), Dinei Florencio (2014–2015), Enrico Magli (2016–
2017), and Frédéric Dufaux (2018–2019).

The 2020s
The current decade started with an event that impacted the 
world in many ways: the COVID-19 pandemic. As people 
retreated to their homes and started working remotely, the 
importance of multimedia suddenly grew. The demand for 
streaming services spiked, and videoconferencing became 
the norm for business meetings and presentations, educa-
tion, and simply socializing and keeping in touch with friends 
and family. Before the pandemic, multimedia technology was 
mostly driven by entertainment. Now, it has become part of 
the infrastructure of our society. Even as the pandemic-related 
restrictions get removed, the concepts of remote work and col-
laboration are staying.

Although the decade is still young, several important tech-
nological milestones have already occurred. The latest video 
coding standard, versatile video coding (VVC) [26], also 
known as H.266 or MPEG-I Part 3, was released in 2020. 
Besides the usual improvement in compression efficiency over 
its predecessor, VVC was developed to support a broad set 

As the customers’ home 
Internet service speeds 
improved, the popularity 
of streaming services 
grew, and streaming now 
accounts for more viewing 
time than cable TV in the 
U.S. market.
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of resolutions, up to 16 K, a variety of color formats, as well 
as 360° video. Another important standard released in 2020 
was MPEG point cloud compression (PCC). Targeting appli-
cations like augmented, virtual, and mixed reality, MPEG 
PCC provides compression technology for video-based and 
geometry-based PCC [27]. A related stan-
dard that is still being developed is JPEG 
Pleno [28], whose goal is to provide com-
pression support for plenoptic imaging 
modalities, such as light fields, holography, 
and point clouds.

As noted earlier, learning-based technol-
ogies are playing an increasingly impor-
tant role in many areas, including MMSP. 
But the benefit is mutual. In 2021, MPEG  
released a standard for neural network compression (MPEG-7 
Part 17), whose purpose is to enable compression of neural 
network models for efficient storage and transport. While 
its purpose is to compress networks rather than multime-
dia  signals, the standard was built upon the knowledge 
base developed over the years in image and video com-
pression. Neural network compression is useful in feder-
ated learning, where model weights need to be transmitted 
between the clients and the server during the network 
training process.

Broader technological trends, such as the deployment of 
5G communication systems, the growing Internet of Things, 
and advances in AI, are opening up possibilities for “smart” 
homes, buildings, factories, and cities. In applications like 
these, automation is a necessity, since the amount of data 
captured and communicated is far too much for humans 
to take note of. For example, most of the video captured 
by surveillance cameras will never be seen by humans, 
only “seen” by machines. As a result, several standardiza-
tion efforts have been initiated to create media compres-
sion formats suitable for machine use, or combined human 
and machine use. One of these is JPEG AI [29], whose goal 
is to develop learning-based compression technology that 
supports conventional image decoding as well as a number 
of image processing and machine vision tasks. The other 
is MPEG video coding for machines [30], which targets 
both machine-only and human–machine tasks. Comple-
tion of these standards will facilitate improved efficiency 
of many technologies already in use, such as video moni-
toring, autonomous navigation, and multimedia database 
management, and create fertile ground for new and yet-to-be- 
imagined applications.

Due to the pandemic, MMSP TC activities in the 2020s 
have mostly been virtual so far. MMSP workshops took place 
virtually in Tampere, Finland in 2020, again in Tampere, 
Finland, as a hybrid event in 2021, and virtually in Shanghai, 
China, in 2022. ICME was a virtual event in London, United 
Kingdom, in 2020, and in Shenzhen, China, in 2021, and was 
organized as a hybrid event in Taipei, Taiwan, in 2022. During 
this period, MMSP TC chairs were Marta Mrak (2020–2021) 
and Ivan Bajić (2022–2023).

Conclusions
Starting as a mostly entertainment-driven technology, MMSP 
has come a long way to become a part of the very fabric of our 
society. It has enabled highly successful businesses, provided 
critical infrastructure at the time of need, and reached virtu-

ally everyone in some form or another. The 
MMSP TC has been a part of that story over 
the last two and a half decades.

So what does the future of MMSP look 
like? As the saying goes, “making predictions 
is difficult, especially about the future.” In the 
near term, the trends are clear: data-driven 
approaches in the form of AI/deep learning 
are pushing the boundaries of what is pos-
sible with multimedia signals, and laying 

the foundation for the next generation of multimedia applica-
tions, products, and services. Beyond that, who knows: perhaps 
quantum multimedia?
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In this article, a general introduction to the area of sensor ar-
ray and multichannel signal processing is provided, including 
associated activities of the IEEE Signal Processing Society 

(SPS) Sensor Array and Multichannel (SAM) Technical Com-
mittee (TC). The main technological advances in five SAM 
subareas made in the past 25 years are then presented in detail, 
including beamforming, direction-of-arrival (DOA) estimation, 
sensor location optimization, target/source localization based on 
sensor arrays, and multiple-input multiple-output (MIMO) ar-
rays. Six recent developments are also provided at the end to 
indicate possible promising directions for future SAM research, 
which are graph signal processing (GSP) for sensor networks; 
tensor-based array signal processing, quaternion-valued array 
signal processing, 1-bit and noncoherent sensor array signal 
processing, machine learning and artificial intelligence (AI) for 
sensor arrays; and array signal processing for next-generation 
communication systems.

Introduction
Sensor array and multichannel signal processing has a long 
history, with typical research topics including beamform-
ing and DOA estimation at its early stage and corresponding 
representative algorithms, including the Capon beamformer/
linearly constrained minimum variance (LCMV) beamformer 
and the MUSIC/ESPRIT algorithms [1], [2], [3], [4], [5]. The 
past 25 years have seen an explosive growth of research ac-
tivities in this area, and significant progress has been made 
in a wide range of theoretical and application areas of sensor 
array and multichannel signal processing. Although, tradition-
ally, the areas’ applications have been mainly limited to the 
defense sector, such as radar and sonar, today, we can see their 
impact in everyday life, including beamforming for ultrasound 
imaging, synthetic aperture radar for remote sensing, vehicular 
radar (ultrasound and electromagnetic) for autonomous driv-
ing, microphone arrays for human-machine interfaces (a good 
example is the Amazon Echo), and MIMO antenna arrays for 
Wi-Fi and mobile communications standards (IEEE 802.11n, 
IEEE 802.11ac, 3G, WiMax, and LTE).
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As a result, the sensor array and multichannel signal pro-
cessing research area has expanded significantly in the past 
years, as reflected by the scope of the SPS SAM TC. The 
SAM TC, formed in 2000, aims to promote activities within 
the technical fields of sensor array processing and multichan-
nel statistical signal processing [6], including beamforming 
and space-time adaptive processing; DOA estimation; source 
separation; target detection; localization and tracking; MIMO 
signal processing; array processing for radar, sonar, and com-
munications; and many other applications of multisensor and 
synthetic aperture systems, as indicated by the list of editors’ 
information classification schemes covered by the TC (https://
signalprocessingsociety.org/community-involvement/sensor 
-array-and-multichannel/edics).

The SAM TC organizes two biennial workshops dedicated 
to the SAM research area: the IEEE International Workshop 
on Computational Advances in Multisensor Adaptive Process-
ing (CAMSAP), organized in December every odd-numbered 
year since 2005, and the IEEE Sensor Array and Multichan-
nel Signal Processing Workshop, organized in June/July every 
even-numbered year since 2002, each accepting 100–200 
research papers. Due to the COVID-19 pandemic, CAMSAP 
2021, originally scheduled for December 2021, in Costa Rica, 
was postponed to December 2023. The next SAM workshop 
(SAM 2024) will be held in the United States, with two possible 
venues: Oregon State University, Corvallis, OR, and Skamania 
Lodge, Stevenson, WA. Moreover, at each year’s ICASSP con-
ference, the SAM track also receives about 100–200 regular 
submissions. Currently, there is also the Synthetic Aperture 
Technical Working Group, which resides under the SAM TC, 
with the goal of “supporting the maturation of the theoretical 
framework and the associated empirical techniques that under-
pin the estimation of parameters of propagating waves through 
various media using synthetic apertures.”

In this article, as it is not possible to give an exhaustive list 
of all the advances made in the SAM area, we focus on five 
major topics and introduce the corresponding progress made 
in tackling their respective technical challenges: beamforming 
[including robust adaptive beamforming and frequency-invari-
ant beamforming (FIB)], DOA estimation (including sparsity-
based and underdetermined DOA estimation), sensor location 
optimization, target/source localization based on sensor arrays, 
and MIMO arrays (including MIMO radar and MIMO for 
wireless communications). The first two are classic SAM top-
ics from the very beginning of SAM research, as mentioned 
earlier, while the latter three were studied systematically only 
in the past decades. Then, six new developments in the SAM 
area are presented to give an indication about possible future 
research directions, including GSP for sensor networks, tensor-
based array signal processing, quaternion-valued array signal 
processing, 1-bit and noncoherent sensor array signal process-
ing, machine learning and AI for sensor arrays, and array sig-
nal processing for next-generation communication systems.

This article is structured as follows. The five main tech-
nological advances are introduced in detail in the “Main 
 Technological Advances in the SAM Area” section, followed 

by the six new developments in the “New Developments in the 
SAM Area” section and some concluding remarks in the “Con-
cluding Remarks” section.

Main technological advances in the SAM area
In this section, advances made in the five major SAM research 
topics in the past 25 years are presented, including beamform-
ing, DOA estimation, sensor location optimization, target/
source localization based on sensor arrays, and MIMO arrays.

Beamforming
Beamforming is a classic sensor array signal processing prob-
lem and a core SAM topic [1], [2], [3], [4], [5], and it has been 
studied extensively at least for a century. It can be classified 
into narrowband and wideband beamforming according to the 
relative bandwidth of the signals, adaptive and fixed beam-
forming according to its relationship with the received data, 
and analog and digital beamforming according to its circuits 
implementation. In the past 25 years, three main developments 
have been achieved, including robust adaptive beamforming 
[7], FIB [5], and hybrid beamforming [8], which is a combi-
nation of digital and analog beamforming techniques. In this 
section, we discuss the first two in detail and leave the topic of 
hybrid beamforming to the section about MIMO arrays.

Robust adaptive beamforming
In general, for the narrowband case, for an M-sensor array with 
K impinging signals, the received array signals can be formu-
lated into the following form:

 ( ) ( ) ( )t t tx As n= +  (1)

where ( ) [ ( ), , ( )]t x t x tx M
T

1 f=  is the received signal vector, 
A is the steering matrix consisting of K steering vectors ( )a i  
corresponding to the K source signals [i  represents the angle 
of arrival (AOA) of an arbitrary impinging signal], and ( )tn  is 
the noise vector.

Then, the beamformer output y(t) is given by an instan-
taneous linear combination of the received spatial samples 

( ),x tm  as follows:

 ( ) ( ) ( )y t x t w tw xm
m

M

m
H

1

= =)

=

/  (2)

where wm  is the weight coefficient for the mth received sensor 
signal, with the weight vector [ , , ] .w ww M

T
1 f=

The Capon beamformer, which can be considered a spe-
cial case of the more general LCMV beamformer [1], [2], [3], 
[4], [5], can achieve effective adaptive beamforming when the 
DOA angle 0i  of the desired signal is exactly known, and the 
following is the standard formulation:

 ( )min 1subject tow Rw w a
w

H H
0i =  (3)

where { ( ) ( )}E t tR x xH=  is the covariance matrix and ( )a 0i  
is the steering vector of the array at .0i  In practice, since R is 
usually not available, as an approximation, it is replaced by the 
sample covariance matrix ,Rt  which is obtained through the 
finite number of data samples.
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However, the Capon beamformer is very sensitive to model 
mismatch errors, such as DOA error for the desired signal, 
mutual coupling, general array manifold errors, and finite 
sample effects in covariance matrix estimation, and therefore, 
various robust adaptive beamforming techniques have been 
developed [7]. One well-known technique is diagonal loading, 
with the weight vector expressed as ( ) ( ),R I a1

0a p i+ -t  with 
a  being a constant, p  the diagonal loading factor, and I the 
identity matrix.

One prominent development in this area in the past 25 years 
is the worst-case-based robust adaptive beamformer [9], where, 
instead of constraining the beamformer response to be unity at 
the desired signal direction, the response is forced to exceed 
unity within an uncertainty set of steering vectors, which can 
be expressed as

 
A

A

,  

( ) ,

min 1subject tow Rw w a a

a a a e e
w

H H

0

6$ !

; < <#i f= = +

t u u

u u" ,  
(4)

where au  is the possible actual steering vector of the desired 
signal corresponding to the presumed steering vector A( ),a 0i  
is the full set that au  belongs to, and e is the steering vector er-
ror, with its norm bounded by .f  The problem is then converted 
to the following form using the worst-case optimization:
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+

=

t
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(5)

where {·}Im  denotes the imaginary part of its argument. Since 
the signal-to-interference-plus-noise ratio (SINR) of the beam-
former output will not change by rotating the weight vector, an 
alternative formulation can be derived as

 ( )min Re 1subject tow Rw w a w
w

H H
0 $ < <i f +t " ,  (6)

where {·}Re  takes the real part of its argument.
Both the Capon beamformer and the worst-case robust 

beamformer require estimation of the covariance matrix R, 
and it is a challenging task when only a small number of snap-
shots is available; one solution to the problem is the family of 
iterative adaptive approach-based methods [10], which can still 
work for the extreme case with only one snapshot.

Another notable contribution for robust adaptive beamform-
ing is based on interference covariance matrix reconstruction 
and steering vector estimation [11], which has attracted much 
attention recently, with follow-up works focusing on different 
ways of reconstructing either or both of the covariance matri-
ces corresponding to the desired signal and interference plus 
noise, separately.

Frequency-invariant beamforming
For wideband arrays, different from the data model in (1), the 
received array signals are expressed in the form of convolution 
(represented by )*  [5]:

 ( ) ( ) ( )t t tx s nA *= +u  (7)

where the (m, k)th element of the matrix Au  is given by 
( ),t ,m kd x-  with ,m kx  being the time delay of the kth imping-

ing signal at the mth sensor compared to some reference point.
As a result, wideband beamforming is achieved through a 

series of tapped delay lines (TDLs) or finite-impulse response/
infinite-impulse response filters in its discrete form [5]. For 
wideband beamformers, in general, the beamwidth will 
increase with the decrease of frequency since the relative aper-
ture of the array becomes smaller for lower frequencies, and 
therefore, one unique problem for wideband beamforming is 
how to design a beamformer with a frequency-invariant beam 
response or beam pattern.

To achieve a frequency-independent beam response, many 
methods were proposed in the past, and one typical solution 
is harmonic nesting, where, for a number of frequency bands, 
different subarrays with appropriate aperture and sensor spac-
ing are operated [4]. In a design proposed in [12], each sensor 
in the array is followed by its own primary filter, and the out-
puts of these primary filters share a common secondary filter 
to form the final output; although the design for a 1D array is 
relatively simple due to the dilation property of the primary 
filters, for 2D and 3D arrays, this property is not guaranteed, 
which makes the general design case very complicated. In [5] 
and [13], based on a simple Fourier transform relationship, a 
systematic and consistent approach was developed to design 
fixed frequency-invariant beamformers for 1D, 2D, and 3D 
arrays and for both continuous and discrete apertures.

Furthermore, a series of least-squares-based frequency-
invariant beamformer design methods were proposed with 
closed-form solutions and applicable to arbitrary array geom-
etries [5]. In its very basic form, given the desired beam pat-
tern ( , )Pd iX  (X is the normalized frequency) and designed 
response ( , )P iX  (a quadratic function of the beamforming 
weight vector w) over the frequency range of interest IX  and 
the range of the angle of interest ,H  the design is to minimize 
the following cost function:

 
( , ) ( , )

( ) ( , ) ( , )

P P d

P P d d1

r d r
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(8)

where the first part is the traditional cost function for a least-
squares-based design over one reference frequency ;rX  the 
second part is the term for measuring the difference between 
the response of the designed beamformer and its response at 
the reference frequency rX  over the full range of the angle 
of interest, i.e., the frequency variation of the response; and 
a  trades these off. Note that the first part of the cost func-
tion is calculated only at the reference frequency, not the whole 

,IX and the reason is that, if the response is frequency invari-
ant, then as long as at one single frequency ( )rX  the designed 
response is close to the desired one, the whole response will 
also be close to it. A design example for a frequency-invariant 
beamformer, over the normalized frequency range [ . , ],0 3r r  
based on a uniform linear array (ULA) of 10 sensors and a 
TDL length of 20 is shown in Figure 1.
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The preceding FIB design techniques can be employed 
to design a FIB network, where multiple frequency-invariant 
beamformers pointing to different directions are placed in 
parallel to transform the wideband array signal processing 
problem into a narrowband one so that traditional narrowband 
beamforming and DOA estimation solutions can be applied 
directly to the output of the FIB network [5]; the second part 
of the cost function in (8) can also be incorporated into the 
adaptive beamforming process to realize adaptive FIB directly 
instead of relying on the FIB network [14].

Note that the TDL-based wideband beamforming structure 
could be replaced by the sensor delay line (SDL)-based struc-
ture [5], [15], where multiple sensors are placed behind the 
original array sensors in place of the delay lines for effective 
wideband beamforming; such an SDL-based structure may 
prove to be very important for the coming terahertz (THz) and 
sub-THz communication systems, where the delays required 
for effective wideband beamforming/beam steering may be 
too short to be implemented in practice.

DOA estimation
DOA estimation is another core SAM research area. Originally, 
it was realized by various beamforming algorithms in its sim-
plest form, such as the Butler matrix, the Capon beamformer, 
and the LCMV beamformer, and then more advanced super-
resolution solutions were developed under the classic subspace 
framework. In the past 25 years, inspired by developments of 
compressive sensing (CS) [16], two important advances in this 
area are the sparsity-based DOA estimation framework [17], 
[18], which, unlike the subspace-based framework, can deal 
with coherent sources directly, and the underdetermined DOA 
estimation approach based on various signal properties (such 
as noncircularity and non-Gaussianity) and the coarray con-
cept (both sum and difference coarrays) [17], [19], [20], [21]. 
(Here, “underdetermined” means that the number of signals is 
larger than or equal to the number of physical sensors.) 

Sparsity-based DOA estimation
To introduce the basic idea for sparsity-based DOA estima-
tion, consider the following discrete version of the continuous 
model in (1):

 [ ] [ ] [ ]i i ix As n= +  (9)

where [ ]ix  is the array data vector for the ith snapshot, [ ]is  is 
the source signal vector, and [ ]in  is the noise vector.

For the ith snapshot, to exploit the spatial sparsity property 
of the source signals, a search grid of Kg ( )K Kg &  potential 
incident angles , ,, ,g g K0 1gfi i -  is first generated, and an over-
complete representation of A is then constructed, given by

 ( ) ( ), , ( ) .A a a, ,g g g K0 1gfi i i= -6 @  (10)

Here, ( )A gi  is independent of the actual source directions 
.ki  We also construct a K 1g #  column vector [ ],isg  with each 

entry representing a potential source at the corresponding 
angle. Then, the model, from the perspective of sparse signal 
reconstruction, becomes

 [ ] ( ) [ ] [ ].i i ix A s ng gi= +  (11)

Now the sparsity-based DOA estimation for a single snap-
shot can be formulated as

 
[ ]

[ ] ( ) [ ]
min i

i isubject to
s
x A sg

0

2

g

g #i f-
 (12)

where 0$< <  is the 0,  norm to promote sparsity in [ ] .isg  Loca-
tions of the nonzero entries in the resultant [ ]isg  represent the 
corresponding DOA estimation results.

Since the 0,  norm is nonconvex, in practice, it is normally 
replaced by the 1,  norm as an approximation. Finally, the 
sparsity-based DOA estimation for a single snapshot is formu-
lated as

 
[ ]

[ ] ( ) [ ]
min i

i isubject to
s
x A sg

1

2

g

g #i f-
 (13)

where 1$< <  is the 1,  norm.
When multiple data snapshots are available, we could per-

form DOA estimation by (12) for each snapshot i separately. 
However, a more effective approach is to jointly estimate the 
DOAs of the impinging signals across multiple snapshots by 
employing the group sparsity concept since they all have the 
same spatial support.

Denote [ [ ], , [ ]],P0 1X x xf= -  where P is the number 
of snapshots. Similarly, we can define [ [ ], , [ ]]P0 1S s sf= -  
and [ [ ], , [ ]] .P0 1N n nf= -  Then, the signal model for mul-
tiple snapshots can be obtained by

 .AS NX = +  (14)

To introduce spatial sparsity, similar to the single-snapshot 
case, we construct [ [ ], , [ ]]s s P0 1Sg g gf= -  and use the row 
vector , k K0 1s ,k g gg g # # -  to represent the k thg  row of the 
matrix :Sg

 ( ) .X A S Ng gi= + r  (15)
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FIGURE 1. A frequency-invariant beamformer.
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Then, a new K 1g #  column vector is generated by comput-
ing the 2,  norm of each row in ,Sg  expressed as

 ., , ,s s ss , , , K
T

0 2 2 1 21g g g g gf< < < < < <= -t 6 @  (16)

Finally, the problem for multiple snapshots can be formu-
lated as

 
( )

min

subject to

s

X A Sg F

1S
g

g

g

#i f-

t
 

(17)

where F$< <  represents the Frobenius norm and s 1gt  is also 
called the ,2 1,  norm of the matrix .Sg  Locations of the nonzero 
entries of the resultant column vector sgt  are, then, the corre-
sponding estimation results.

One problem with the preceding group sparsity-based for-
mulation is its high computational complexity, especially when 
a large number of snapshots P is available. To reduce the com-
plexity, we can perform singular value decomposition (SVD) 
to X and project the data to a lower-dimension signal space, 
leading to the so-called 1, -SVD method [22], or use the cova-
riance matrix of the data to form a virtual array directly [23].

Underdetermined DOA estimation
For underdetermined DOA estimation, although it can be 
achieved by exploiting the non-Gaussianity, noncircularity, 
and nonstationarity of the signals, the most important develop-
ment is through constructing various sparse array structures 
for virtual coarray generation, such as coprime arrays, nested 
arrays, and their numerous extensions [24], [25], [26].

For second-order statistics-based coarray generation, one 
common step is to vectorize the covariance matrix of the phys-
ical sparse array. Consider the covariance matrix

 [ ] [ ] ( ) ( )i iER x x a a IH
k k

H
k

k

K

n N
2

1

2
xx v i i v= = +

=

" , /  (18)

where k
2v  is the power of the kth impinging signal and ki  is 

its AOA.
By vectorizing ,Rxx  we obtain a virtual array model

 ( )vecz R A s iNn
2

xx 2i v= = +u u u" ,  (19)

where ( ) ( ) ( ), , aA a K1 fi i i=u u u6 @ is the equivalent virtual 
steering matrix, with ( ) ( ) ( )a aa k k k7i i i= )u  being the corre-
sponding steering vector (,  denotes the Kronecker product); 

, ,s K
T

1
2 2fv v=u 6 @  is the equivalent source signals; and iN2u  is 

obtained by vectorizing .IN

In the preceding virtual array model, although there are 
repeated entries in ,Rxx  the number of virtual sensors corre-
sponding to the difference coarray is much more than that of 
the physical sensors, and the equivalent source signals share 
the same spatial support with the original impinging signals. 
The virtual model in (19) is similar to the single-snapshot array 
model, and sparsity-based DOA estimation methods such as 
that in (13) can be applied here.

Instead of employing a sparse array, it is possible to extend 
the coarray concept to different frequencies, where a sin-
gle ULA can be used with two continuous-wave signals of 
coprime or other different frequencies, and to the wideband 
case through frequency decomposition and employing mul-
tiple frequency pairs [17].

The group sparsity concept employed for the multiple-snap-
shot case can be applied to general underdetermined and over-
determined wideband DOA estimation [17]; as in traditional 
wideband DOA estimation, focusing can also be employed 
for sparsity-based wideband DOA estimation to simplify 
the problem to a single reference frequency. One interesting 
observation about the wideband case is that the sensor spac-
ing can be larger than half the wavelength corresponding to 
the highest frequency of the signal, without causing the spa-
tial aliasing problem; on the contrary, an improved estimation 
performance can be achieved for a larger spacing, due to an 
increased aperture.

Figure 2 gives a real experimental result based on an 
eight-microphone coprime array for estimating the directions 
of 10 speech signals, with a bandwidth from 5 to 10 kHz and 
sampling frequency of 20 kHz [27].
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Sensor location optimization
In many applications, the array’s geometrical layout is as-
sumed to be fixed and given in advance. However, it is  possible 
to change the geometrical layout of the array, including the ad-
jacent sensor spacing, and these additional spatial degrees of 
freedom (DOF) can be exploited to improve the performance 
in terms of beamforming, DOA estimation, or both. For the 
beamforming side, given the nonconvex nature of the optimi-
zation problem, traditionally, it is solved by genetic algorithms, 
simulated annealing, and similar approaches [28]. With the 
development of CS and the sparsity maximization framework, 
a new CS-based framework with a theoretically optimum so-
lution (given the convex nature of the formulated problem) 
has been developed for sensor location optimization for fixed 
beamforming [29], followed by further work in adaptive beam-
forming [30], [31], with robustness against various array model 
errors considered, too. For the DOA estimation side, the main 
efforts have been focused on the coarray design to increase the 
DOF for underdetermined DOA estimation. As mentioned in 
the previous section, coprime arrays and nested arrays are two 
representative array structures [24], [25], based on which nu-
merous second-order and fourth-order (and even higher) coar-
ray construction methods have been developed. In this part, 
we focus on the sparse array design problem for beamforming.

To illustrate how the design works, consider a narrowband 
linear array structure consisting of M omnidirectional sen-
sors, where the distance from the first sensor to subsequent 
sensors is denoted as ,dm  for , , , ,m M1 2 f=  with ,d 01 =  i.e., 
the distance from the first sensor to itself. The output of the 
beamformer is a weighted sum of the received signals, and the 
weighting coefficients are denoted by wm  and , , , ,m M1 2 f=  
which are placed together into the weighting vector w. Then, 
the sparsity-based design for sensor location optimization can 
be described as follows.

First, consider the array geometry being a grid of poten-
tial active antenna locations. In this instance, dM  is the maxi-

mum  aperture of the array, and the values of ,dm  for m = 
, , , ,M2 11 f -  are selected to give a uniform grid, with M 

being a very large number so that the spacing between adja-
cent antennas is very small. Through selecting the minimum 
number of nonzero-valued weight coefficients to generate a 
beam response close to the desired one, a sparse array design 
result is obtained. In other words, if a weight coefficient is zero 
valued, the corresponding sensor will be inactive and therefore 
can be removed, leading to a sparse or nonuniformly spaced 
sensor array.

Mathematically, it is formulated as a constrained -norm1,  
minimization problem

 min w 1  (20)

 subject to p w Ar
H

2 # f-  (21)

where pr  is the vector holding the desired beam responses at 
the sampled angular range of interest; A is the steering matrix 
corresponding to those angles, with w AH  representing the de-
signed beam responses; and f  is the allowed error between 
the designed and desired beam responses. The minimization 
of the 1,  norm of the weight vector helps to promote sparsity 
in the weight vector, and the reweighted -norm1,  minimization 
could be used instead to have a closer approximation to the 
ideal -norm0,  minimization problem, where smaller weighting 
terms are added to the larger elements of the weight vector w 
so that smaller values in w are penalized more and become 
closer to zero after minimization [32].

A broadside main beam design example is provided in 
 Figure 3, where the sensor locations are optimized over an 
overall aperture of ,d 10M m=  which is split into 181 poten-
tial sensor locations ( ).M 181=  It can be seen that the resul-
tant weight vector is sparse, with only 12 nonzero-valued  
coefficients, leading to a sparse array of 12 sensors, and com-
pared to the beam pattern of a standard 12-sensor ULA with 
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half-wavelength spacing, the sparse array has a similar main 
beamwidth but a much lower sidelobe level.

Various constraints can be added to the preceding formu-
lation to deal with more complicated application scenarios. 
For example, in the preceding formulation, the steering vec-
tor of the array is assumed to be known exactly, which may 
not be true due to various possible model perturbations, 
such as errors in sensor locations, mutual 
coupling, and discrepancies in individual 
sensor responses; then, robust designs can 
be achieved by applying a norm-bounded 
error constraint to the weight vector. In 
another case, it has been assumed that the 
sensors in the array are of zero size; how-
ever, this is not true in the real world, and 
various size constraints can be added to 
the design, and some postprocessing methods can be intro-
duced to make sure the minimum spacing between adjacent 
sensors in the result is larger than the size of the sensor. 
Based on the concept of group sparsity, the design can also 
be extended to the wideband case with TDLs [29].

Target/source localization based on sensor arrays
This is another important problem in array signal processing, 
and significant progress has been made in this area in the past 
25 years. Typical solutions include those based on the received 
signal strength [33]; those based on distance-related measure-
ments, such as the time of arrival [34]; and those based on 
the AOA/DOA [35], [36]. The last is also called bearing-only 
localization, and it is an attractive candidate since synchroni-
zation among the distributed platforms is not required, and it 
can be used in both active and passive sensing networks and 
adopted in a wide range of applications, including multistatic 
radar, distributed massive MIMO, and wireless sensor net-
works. There are normally two steps in this bearing-only local-
ization: the first is applying existing DOA estimation methods 
to find the AOAs at all distributed sensor arrays, while the 

second is to find intersections of those estimated AOAs to 
localize the sources, and the maximum likelihood estimator 
has been adopted to minimize the total least-squares errors of 
the noise-corrupted angle measurements among all distributed 
sensor arrays. However, the performance of such a two-step 
localization approach is dependent on the accuracies of angle 
measurements obtained at all platforms, and even one bad 

AOA estimation result can lead to a serious 
performance degradation.

To tackle the shortcomings of the two-
step approach, we could jointly process the 
collected information across the observa-
tion platforms in lieu of fusing the separate 
angle estimation results at all platforms. 
One recent advance in this direction is a 
group sparsity-based one-step approach 

[37], where a common spatial sparsity support corresponding 
to all distributed sensor arrays is enforced, leading to a better 
estimation performance, which also avoids the possible pairing 
and ambiguity problems associated with the two-step AOA-
based solution.

To show how this idea works, we consider a distributed nar-
rowband sensor array network with M subarrays and K targets, 
as illustrated in Figure 4, where ( , )U x ym m m  and ( , )T x yk T Tk k  
represent locations of the receiver platform and the kth target, 
respectively. For each receiver, a linear subarray with Lm  sen-
sors is employed.

For each target located at ( , ),T x yk T Tk k  a unique incident 
angle ,m ki  relative to the mth subarray can be obtained. With-
out loss of generality, a square area of interest in the Cartesian 
coordinate system is divided into a K Kx y#  grid, with Kx  and 
Ky  being the number of grid points along the x-axis and the 
y-axis, respectively. Here, ( , )G x yk kx y  represents the location 
of the ( , )k k thx y  search grid, and the signal originating from 
the possible source located at ( , )G x yk kx y  will arrive at the mth 
subarray, with a DOA angle ( , ).k km

g
x yi  Since ( , )x yk kx y  is com-

mon to all subarrays and a source located at ( , )G x yk kx y  will 
appear to come from the same location with respect to all sub-
arrays, we can apply the group sparsity concept to all subar-
rays’ source data.

For example, for the mth subarray, corresponding to the 
data model in (14), we can have the multiple-snapshot model as

 X A S Nm m m m= +  (22)

with , , , .m M1 2 f=  Applying the sparsity-based approach, 
we can construct the following overcomplete data model:

 X A S Nm m
g

m
g

m= +  (23)

where Am
g  is the overcomplete steering matrix corresponding 

to the K Kx y  potential signal directions ( , )k km
g

x yi  and Sm
g  is 

the potential source matrix. If there is no source located at a 
particular position ( , ),G x yk kx y  then the corresponding row of 
Sm

g  will be zero valued for all , , , .m M1 2 f=  We can place all 
the matrices Sm

g  together to form a new matrix ,Sg  as follows:

y

U1 (x1, y1) U2 (x2, y2)

o

UM (xM, yM)

Tk (xTk, yTk)

The k th Target

x

φM,k

φ2,k
φ1,k

FIGURE 4. A general target/source localization model based on distributed 
sensor arrays [37].

One unique problem for 
wideband beamforming is 
how to design a beamformer 
with a frequency-invariant 
beam response or beam 
pattern.
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 , , , .S S S Sg g g
M
g

1 2 f= 6 @  (24)

Then, the group sparsity-based localization problem can 
be formulated by minimizing the ,2 1,  norm of ,Sg  subject to 
limiting the overall reconstruction error for all subarrays to a 
small value. One main advantage of the group sparsity-based 
approach for direct target localization is that the different sub-
arrays are not required to be synchronized and can work on 
different frequencies, the statistical properties of the sources 
can be different for different subarrays, and sensor numbers, 
rotation angles, and corresponding source signals of different 
subarrays do not need to be the same (as long as they come 
from the same set of target locations). This group sparsity-
based one-step direct localization idea can be extended to the 
wideband, the underdetermined case, or both without diffi-
culty [37].

Figure 5 displays a simulation result for underdetermined 
wideband localization, where the normalized signal frequen-
cy band is from .0 75r  to ,r  and there are six subarrays and 
five targets, with each subarray being a four-sensor minimum 
redundancy array [4].

MIMO arrays
MIMO, which is, by its multichannel implementation at both 
the transmitter and the receiver, a natural fit within the SAM 
portfolio, represents another significant development in ar-
ray signal processing in the past 25 years. There are mainly 
two totally different directions. One is MIMO radar, which 
exploits the orthogonality of the transmitted waveforms to 
increase the DOF of the system to improve the resolution 
and capacity of the array [38], [39], [40], which will play an 
important part in 4D auto radar imaging in addition to tradi-
tional radar detection applications. Note that nonorthogonal 
waveforms can also be employed for MIMO radar [41]. The 
other one is MIMO for wireless communications to exploit the 
spatial diversity of the channel to improve the performance 
and, in particular, the capacity of the communication system 
[42]. While MIMO has already been in use for both Wi-Fi and 
4G communication systems, its new evolution, the so-called 
massive MIMO, or ultramassive MIMO (UM-MIMO), will 
play a crucial role in next-generation communication systems 
and beyond [43].

MIMO radar
In a MIMO radar, multiple transmit antennas emit orthogo-
nal waveforms and multiple receive antennas, then receive the 
echoes reflected by the targets. Antennas of the MIMO radar 
can be widely separated [38] and colocated [39], [40], with the 
latter more widely studied. For the case with colocated anten-
nas, the transmitting side and the receiving side can be located 
either at the same site or far away from each other.

Consider a colocated narrowband MIMO radar system 
where the transmit and receive antennas are located at the 
same place. The transmitted multiple orthogonal waveforms 
are then reflected back by K present targets and received by 
the receive array. After matched filter processing, the output 

signal vector [ ]ix  at the receiver at the ith snapshot can be 
expressed as

 
[ ] ( ) ( ) [ ] [ ]

[ ( ) ( ), , ( ) ( )] [ ] [ ]
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(25)

where ki  is the DOA of the kth target; ( )at ki  and ( )ar ki  are 
the steering vectors of the transmit and receive arrays, respec-
tively; and [ ] ,b i ek k

j f i2 kc= r  with kc  being the complex-valued 
reflection coefficient of the kth target and fk  being the Doppler 
frequency for moving targets.

It can be seen that with the MIMO radar configuration, a 
virtual array with a significantly increased aperture has been 
created due to the effect of the Kronecker product in (25). 
For example, if both the transmit array and receive array are 
three-sensor ULAs with a spacing of d and 3d, respectively, 
the newly generated virtual ULA will consist of nine virtual 
sensors. In this way, by exploiting waveform diversity, a virtual 
array with a much larger aperture and significantly increased 
DOF is formed using a small number of physical sensors, pro-
viding enhanced spatial resolution, higher target detection 
capacity, and better performance.

MIMO for wireless communications
On the other hand, MIMO for wireless communications is a 
huge research area, and numerous techniques have been devel-
oped centered around this concept, such as space-time coding, 
MIMO beamforming, spatial multiplexing, and spatial modu-
lation. Today, an element of MIMO can be found in most of 
the publications in wireless communications. It is impossible 
to list all the important advances in the area, and in this sec-
tion, we focus only on MIMO beamforming, which is playing 
an increasingly important role in the implementation of MIMO 
communication systems.

As well known by the array signal processing community 
and also presented in the “Beamforming” section, traditionally, 
beamforming is designed for line-of-sight (LOS) transmission 
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and reception, and physically, a beam will be formed in the 
process, pointing to different directions around the array sys-
tem. However, in MIMO beamforming, due to a very strong 
multipath effect, the result of beamforming between the trans-
mitter and receiver will not necessarily form a beam in space 
but, rather, an overall enhanced signal 
transmission link between them. Decades 
of research in MIMO beamforming have 
pushed the boundaries of beamforming 
well beyond the technology’s traditional 
meaning, and today, any process achieving 
enhancement of the desired signal while 
reducing the effect of interference can be 
considered beamforming. However, with 
the introduction of massive MIMO and millimeter-wave (mm-
wave) communications in 5G and beyond, the LOS case is 
becoming more and more important again in MIMO beam-
forming, and one interesting development in this context is the 
hybrid beamforming structure proposed for massive MIMO 
systems [8].

Hybrid beamforming is a combination of analog beam-
forming and digital beamforming. Ideally, beamforming could 
be implemented completely in the digital domain for maxi-
mum flexibility and adaptability; however, for extremely large 
arrays, as in the case of massive/UM-MIMO, the extremely 
high cost associated with the large number of high-speed ana-
log-to-digital converters (ADCs)/digital-to-analog converters 
(DACs) and the high-level power consumption will render it 
practically infeasible. For hybrid beamforming in the receive 
mode, analog beamforming is performed first to reduce the 
number of analog channels, which are then converted into digi-
tal via a reduced number of ADCs, and after that, digital beam-
forming can be performed; for the transmit mode, the process 
is simply reversed. There are many hybrid beamforming struc-
tures proposed in the literature, and one representative is the 
subaperture-based hybrid beamformer. An interesting recent 
development in this area is a new class of multibeam multi-
plexing designs, where the number of analog coefficients is the 
same as the number of antennas, independent of the number of 
parallel independent user beams generated, while the number 
of subarrays is the same as the number of beams; interested 
readers can refer to [44] and [45] for details.

New developments in the SAM area
In the era of AI, multi-sensor-based systems and techniques 
are ubiquitous and will play an even greater role in the future. 
As a result, there has been an exponential increase in research 
activities in the SAM area in the past few years, and in the fol-
lowing, we introduce some new developments that may well 
indicate promising future research directions.

GSP for sensor networks
GSP is an emerging new mathematical tool for analysis of data 
resident on a largely irregular network of either physical or vir-
tual sensor nodes, where the regular network can be consid-
ered a special case [46], [47]. Examples for the physical sensor 

network include traffic networks, brain neural networks, and 
energy consumption sensor networks, while for the virtual one, 
a good example is social networks. In connection with classic 
signal processing, basic concepts, such as frequency, and oper-
ations, such as shift/delay and filtering, have been introduced. 

However, there is still no unified framework 
for GSP, and it is still an open problem to 
find the best representations of a graph sig-
nal. However, this has not stopped the wide 
application of GSP, and it has been shown 
to be a powerful data analysis tool provid-
ing new insights into the studied problems; 
for example, brain signals can be mapped 
to a graph network to analyze cognitive be-

havior of the brain. Application of GSP to traditional sensor 
array signal processing problems, such as direction finding and 
target localization, is an emerging but somewhat open area, as 
traditional sensor arrays and networks normally have a regular 
structure, and traditional sensor array signal processing tools 
have been extremely successful in tackling those associated 
problems. It is not clear yet whether GSP can bring any advan-
tage to the traditional sensor array signal processing problems 
or not.

Tensor-based array signal processing
Tensors are extensions of matrices to higher dimensions and 
have been widely employed for multidimensional data analy-
sis and processing with the aid of tensor decomposition tools 
and algorithms. Many sensor array signals and data can be 
transformed into a multidimensional form and viewed direct-
ly as a multidimensional structure [48], [49]. For example, the 
narrowband data received by a rectangular array and multiple 
subarrays are 3D, the data received by a wideband linear ar-
ray can be transformed into the 3D space–time–frequency 
domain, and the data received by vector sensor arrays are nat-
urally higher dimensional. For MIMO communication sys-
tems, the data can be placed into a tensor form by accounting 
for diversities in space, time, frequency (including Doppler 
frequency), and polarization. As a result, tensor processing 
can be applied to solve many array signal processing prob-
lems directly without much adaptation. However, although it 
is recognized that tensors can keep the inherent data struc-
tures and therefore have the potential to provide improved 
performance compared to classic array signal processing 
methods and algorithms, further research is needed to dem-
onstrate the clear benefits of tensor processing and fully real-
ize its potential.

Quaternion-valued array signal processing
As a higher-dimensional extension of complex numbers, a qua-
ternion has one real part and three imaginary parts, and qua-
ternion calculus has been applied to a range of signal process-
ing problems related to 3D and 4D signals, such as color image 
processing, wind profile prediction, vector sensor array pro-
cessing, and quaternion-valued wireless communications [50], 
[51]. In addition to solving the classic array signal  processing 

Today, any process 
achieving enhancement 
of the desired signal 
while reducing the effect 
of interference can be 
considered beamforming.
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problems, such as DOA estimation and beamforming, one im-
portant development is the quaternion-valued MIMO array, 
where pairs of antennas with orthogonal polarization direc-
tions are employed at both the transmitter and receiver sides 
and a 4D modulation scheme across the two polarization di-
versity channels using a quaternion-valued 
representation is employed. Although the 
polarization states will change during trans-
mission through the channel, and there 
may be interferences between these two 
states, we can employ a quaternion-valued 
adaptive algorithm to recover the original 
4D signal, which inherently also performs 
an interference suppression operation to 
separate the original two 2D signals. For 
the MIMO array, reference signal-based and blind quater-
nion-valued adaptive algorithms can be employed for both 
channel estimation and beamforming. Signal processing has 
 experienced a revolutionary change from real-valued process-
ing to complex-valued processing, and we may be at the door-
step of a quaternion-valued world, and increasing interest in 
quaternion-valued sensor array signal processing is expected 
in the near future.

One-bit and noncoherent sensor array  
signal processing
Given the extremely high data rate and storage requirements 
for a fully digital large sensor array system, there has been 
significant work aimed at achieving a reasonable sensor array 
processing performance with 1-bit representation of the array 
signals; i.e., only signs of the data samples are reserved, while 
the magnitude information is removed [52]. This problem can 
be simply considered the normal case but with extremely high 
quantization noise, and we can perform normal array process-
ing irrespective of the number of bits per data sample; however, 
a more effective way is to try to achieve effective estimation 
of the statistics of the signals using the 1-bit data samples and 
then, based on the newly obtained statistics information, per-
form the corresponding tasks. Contrary to 1-bit array process-
ing, the signs of the data samples are removed, and only the 
magnitude information is kept, which leads to the so-called 
noncoherent sensor array signal processing problem, with the 
advantage of being robust against array phase errors. One rep-
resentative example is noncoherent DOA estimation and target 
localization [53], [54], [55], which can be cast into a phase re-
trieval problem; however, the difference is that there is usu-
ally only one snapshot in phase retrieval, while in array signal 
processing, multiple snapshots are available, which can be ex-
ploited by applying group sparsity to existing phase retrieval 
algorithms, such as the ToyBar and modified GESPAR algo-
rithms [53], [54].

Machine learning and AI for sensor arrays
Machine learning and AI have been applied to almost all ar-
eas of research in the signal processing community, and the 
SAM area is no exception. For example, machine learning and 

AI have been applied to DOA estimation, beamforming, and 
source separation successfully [56]. There are strong topical 
connections among sparsity-inspired array processing (see 
the “DOA Estimation” section), compressed sensing (see the 
“Sensor Location Optimization” section), and machine learn-

ing. Unlike in traditional machine learning 
and AI applications, where it is a challenge 
to acquire sufficient training data, in most 
of the array signal processing applications, 
the required training data can be obtained 
easily by simulation. Nonetheless, their ap-
plication to array signal processing also fac-
es some similar issues. For example, after 
training, the system may work very well for 
the targeted scenario, but it may struggle if 

there is change to the system and the environment, while the 
traditional array signal processing methods and  algorithms can 
cope with such changes well. Another challenge is how to ap-
ply machine learning and AI to distributed sensor arrays and 
networks effectively. As a hot topic, federated learning may 
prove to be a promising direction of research for the SAM 
community [57].

Array signal processing for next-generation 
communication systems
Antenna array design and signal processing is one of the funda-
mental techniques in 5G (and beyond) wireless communication 
systems since the two underpinning 5G/6G technologies—
massive MIMO/UM-MIMO and mm-wave/sub-THz/THz 
communications—are all based on antenna arrays [58]. It will 
continue to play a significant role in many other aspects in the 
future, such as the Internet of Things and integrated sensing 
and communication, both of which are hot topics for 6G wire-
less communications research, with extensive research activi-
ties in the community. Moreover, beamforming is essential to 
achieve effective communication over the THz and sub-THz 
frequency bands, as it is necessary to employ a large num-
ber of antennas for such high frequencies, while the widely 
studied reconfigurable intelligent surfaces can be considered 
semipassive antenna array systems [59]. To a great degree, ar-
ray signal processing will be a main focus of research for next-
generation communication systems and for the integration of 
sensing and communications, particularly at mm-waves [60].

Concluding remarks
Accompanied by intensive research activities and the sig-
nificant progress made in signal processing, the world now 
has stepped into the new era of AI, where multi-sensor-
based systems and techniques have become ubiquitous and 
indispensable to our daily life and will play an even greater 
role in our society in the very near future. This is an ex-
citing time for the SAM community, and we welcome new 
members at different levels to join the TC and work together 
to promote its activities, make a more extensive and deeper 
impact in the real world, and further enhance its standing in 
our wider society.

Signal processing has 
experienced a revolutionary 
change from real-valued 
processing to complex-
valued processing, and we 
may be at the doorstep of a 
quaternion-valued world.
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The signal processing community is currently witnessing 
the emergence of sensor array processing and direction-of-
arrival (DoA) estimation in various modern applications, 

such as automotive radar, mobile user and millimeter wave 
indoor localization, and drone surveillance, as well as in new 
paradigms, such as joint sensing and communication in future 
wireless systems. This trend is further enhanced by technology 
leaps and the availability of powerful and affordable multian-
tenna hardware platforms. 

Introduction
New multiantenna technology has led to the widespread use 
of such systems in contemporary sensing and communica-
tion systems as well as a continuous evolution toward larger 
multiantenna systems in various application domains, such 
as massive multiple, input-multiple-output (MIMO) com-
munications systems comprising hundreds of antenna ele-
ments. The massive increase of the antenna array dimension 
leads to unprecedented resolution capabilities, which opens 
new opportunities and challenges for signal processing. For 
example, in large MIMO systems, modern array processing 
methods can be used to estimate and track the physical path 
parameters, such as DoA, direction of departure, time delay 
of arrival, and Doppler shift, of tens or hundreds of multipath 
components with extremely high precision [1]. This para-
metric approach for massive MIMO channel estimation and 
characterization benefits from the enhanced resolution ca-
pabilities of large array systems and efficient array process-
ing techniques. Direction-based MIMO channel estimation, 
which has not been possible in small MIMO systems due to 
the limited number of antennas, not only significantly reduc-
es the complexity but also improves the quality of MIMO 
channel prediction as the physical channel parameters gen-
erally evolve on a much smaller timescale than the MIMO 
channel coefficients.

The history of advances in superresolution DoA estima-
tion techniques is long, starting from the early parametric 
multisource methods, such as the computationally  expensive 
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maximum likelihood (ML) techniques, to the early sub-
space-based techniques, such as Pisarenko and MUSIC 
[2]. Inspired by the seminal review article, “Two Decades 
of Array Signal Processing Research: The Parametric 
Approach” by Krim and Viberg, published in IEEE Signal 
Processing Magazine [3], we are looking back at another 
three decades in array signal processing research under 
the classical narrow-band array processing model based on 
second-order statistics. We revisit major trends in the field 
and retell the story of array signal processing from a modern 
optimization and structure exploitation perspective. In our 
overview, through prominent examples, 
we illustrate how different DoA estimation 
methods can be cast as optimization prob-
lems with side constraints originating from 
prior knowledge regarding the structure 
of the measurement system. Due to space 
limitations, our review of the DoA estima-
tion research in the past three decades is 
by no means complete. For didactic rea-
sons, we mainly focus on developments in 
the field that easily relate to the traditional 
multisource estimation criteria in [3] and 
choose simple illustrative examples.

As many optimization problems in sen-
sor array processing are notoriously difficult 
to solve exactly due to their nonlinearity and multimodality, a 
common approach is to apply problem relaxation and approxi-
mation techniques in the development of computationally effi-
cient and close-to-optimal DoA estimation methods. The DoA 
estimation approaches developed in the last 30 years differ in 
the prior information and model assumptions that are main-
tained and relaxed during the approximation and relaxation 
procedure in the optimization.

Along the line of constrained optimization, problem relax-
ation, and approximation, recently, the partial relaxation (PR) 
technique has been proposed as a new optimization-based 
DoA estimation framework that applies modern relaxation 
techniques to traditional multisource estimation criteria to 
achieve new estimators with excellent estimation performance 
at affordable computational complexity. In many senses, it can 
be observed that the estimators designed under the PR frame-
work admit new insights into existing methods of this well-
established field of research [4].

The introduction of sparse optimization techniques for 
DoA estimation and source localization in the late 2000s 
marks another methodological leap in the field [5], [6], [7], 
[8], [9]. These modern optimization-based methods became 
extremely popular due to their advantages in practically 
important scenarios where classical subspace-based tech-
niques for DoA estimation often experience a performance 
breakdown, e.g., in the case of correlated sources, when 
the number of snapshots is low, or when the model order is 
unknown. Sparse representation-based methods have been 
successfully extended to incorporate and exploit various 
forms of structures, e.g., application-dependent row- and 

rank-sparse structures [10], [11], that induce joint sparsity to 
enhance estimation performance in the case of multiple snap-
shots. In particular array geometries, additional structures, 
such as Vandermonde and shift invariance, can be used to 
obtain efficient parameterizations of the array sensing matrix 
that avoid the usual requirement of sparse reconstruction 
methods to sample the angular field of view (FoV) on a fine 
DoA grid [12], [13]. 

Despite the success of sparsity-based methods, it is, 
however, often neglected that these methods also have their 
limitations, such as estimation biases resulting from off-

grid errors and the impact of the sparse 
regularization, high computational com-
plexity, and memory demands as well as 
sensitivity to the choice of the so-called 
hyperparameters. In fact, for many practi-
cal estimation scenarios, sparse optimiza-
tion techniques are often outperformed by 
classical subspace techniques in terms of 
both the resolution of sources and compu-
tational complexity. From the theoretical 
perspective, performance guarantees of 
sparse methods are generally available 
only under the condition of the minimum 
angular separation between the source 
signals [9]. Therefore, it is important to be 

aware of these limitations and to appreciate the benefits of 
both traditional and modern optimization-based DoA esti-
mation methods.

The narrow-band far-field point source signals with per-
fectly calibrated sensor arrays and centralized processing 
architectures have been fundamental assumptions in the past. 
With the trend of wider reception bandwidth on the one hand, 
and larger aperture and distributed array on the other hand, 
the aforementioned assumptions appeared restrictive and 
often impractical. Distributed sensor networks have emerged 
as a scalable solution for source localization where sensors 
exchange data locally within their neighborhood and in-net-
work processing is used for distributed source localization 
with low communication overhead [14]. Furthermore, DoA 
estimation methods for partly calibrated subarray systems 
have been explored [15], [16].

Model structure, e.g., in the form of a favorable spatial 
sampling pattern, is exploited for various purposes: either to 
reduce the computational complexity and to make the esti-
mation computationally tractable or to generally improve 
the estimation quality. In this article, we revisit the major 
trends of structure exploitation in sensor array signal pro-
cessing. Along this line, we consider advanced spatial 
sampling concepts designed in recent years, including mini-
mum redundancy [17], augmentable [18], nested [19], and 
coprime arrays [20], [21]. The aforementioned spatial sam-
pling patterns were designed to facilitate new DoA estima-
tion methods with the capability of resolving significantly 
more sources than sensors in the array. This is different 
from conventional sampling patterns, e.g., uniform linear 

Model structure, e.g., in 
the form of a favorable 
spatial sampling pattern, 
is exploited for various 
purposes: either to 
reduce the computational 
complexity and to 
make the estimation 
computationally tractable 
or to generally improve the 
estimation quality.
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array (ULA), where the number of identifiable sources is 
always smaller than the number of sensors.

Signal model
In this overview article, we consider the narrow-band point 
source signal model. Under this signal model, we are in-
terested in estimating the DoAs, i.e., the parameter vector 

R, , ,N1 fi i i= 6 @  of N far-field narrow-band sources imping-
ing on a sensor array composed of M sensors from noisy mea-
surements. 

We assume that the DoA ni  lies in the FoV ,H  i.e., .n !i H  
Let ( ) ( ) ( ) ( )x A s nt t ti= +  denote the linear array measure-
ment model at time instant t where ( )s t  and 

( )n t  denote the signal waveform vector and 
the sensor noise vector, respectively. The 
sensor noise ( )n t  is commonly assumed to 
be a zero-mean spatially white complex cir-
cular Gaussian random process with a cova-
riance matrix .IMo  The steering matrix 

A( )A N!i  lives on an N-dimensional 
array manifold A ,N  which is defined as

 
A u( ), , ( )

, , .

A a a

n N1

and

for all

N N N n1 1f f

f

1 1 !j j j j j H= =

=

6 @"
,  

(1)

In (1), the steering vector ( ) , , ,a e ej j ( )( ) coscosd d21 fi = r ir i- -6  
e j ( )cosdM Rr i- @  denotes, e.g., the array response of a linear ar-
ray with sensor positions , ,d dM1 f  in half wavelength for 
a narrow-band signal impinging from the direction .i  The 
steering matrix ( ) ( ), , ( )A a a N1 fi i i= 6 @ must satisfy cer-
tain regularity conditions so that the estimated DoAs can 
be uniquely identifiable up to a permutation from the noise-
less measurement. Mathematically, the unique identifiabil-
ity condition requires that if ( ) ( ) ( ) ( )A s A st t( ) ( ) ( ) ( )1 1 2 2i i=  for 

, , ,t T1 f=  then ( )1i  is a permutation of .( )2i  Generally, this 
condition must be verified for any sensor structure and the 
corresponding FoV. Specifically, it can be shown that if the 
array manifold is free from ambiguities, i.e., if any overs-
ampled steering matrix A( )A K!i  of dimension M K#  
with K M$  has a Kruskal rank ( ( )) ,Aq Mi =  then N DoAs 
with N M1  can be uniquely determined from the noiseless 
measurement [3]. Equivalently, any set of M column vectors 

( ), , ( )a a M1 fi i" , with M distinct DoAs , , M1 f !i i H  is 
linearly independent. 

In the so-called conditional signal model, the wave-
form vector ( )s t  is assumed to be deterministic such that 

( ) ( ( ) ( ), ).x A s It tN MC+ i o  The unknown noise variance o  
and the signal waveform ( ), , ( )S s s T1 f= 6 @ are generally 
not of interest in the context of DoA estimation, but they 
are necessary components of the signal model. In contrast, 
in the unconditional signal model, the waveform is assumed 
to be zero-mean complex circular Gaussian such that 

( ) ( , ( ) ( ) ),x A PA It 0N H
M MC+ i i o+  where the noise variance 

o  and the waveform covariance matrix ( ) ( )P s st tE H= " , 
are considered as unknown parameters. We assume, if not 

stated otherwise, that the signals are not fully correlated, i.e., 
P is nonsingular.

Note that in practical wireless communication or radar 
applications, the received signal may be broadband. Such sce-
narios require extensions of the narrow-band signal model, 
e.g., to subband processing or the multidimensional harmonic 
retrieval, which is, however, out of scope of this article.

Cost function and concentration
Parametric methods for DoA estimation can generally be cast 
as optimization problems with multivariate objective functions 
that depend on a particular data matrix Y obtained from the 

array measurements ( ), , ( )X x x T1 f= 6 @ 
through a suitable mapping, the unknown 
DoA parameters of interest ,i  and the un-
known nuisance parameters, which we de-
note by the vector .a  Hence, the parameter 
estimates are computed as the minimizer 
of the corresponding optimization problem 
with the objective function ( ( ), )Y Af ; i a  
as follows:

 ( ) ( ( ), ).argmin min Y AA f 
A( )A N

;i i a=
!i

a
t  (2)

Remark that in (2), we make no restriction on how the data 
matrix Y is constructed from the measurement matrix X. For 
example, in the most trivial case, the data matrix Y can directly 
represent the array measurement matrix, i.e., .Y X=  However, 
for other optimization criteria, the data matrix Y can be the 
sample covariance matrix, i.e., /( )Y R XXT1 H= =t  as a suf-
ficient statistics, or even the signal eigenvectors Y Us= t  (or the 
noise eigenvectors )Y Un= t  obtained from the eigendecompo-
sition R U U UU HH

s s s n n nK K= +t t t t t t t  where ( , , )diag N1s fm mK =t t t  
contains the N-largest eigenvalues of .Rt  In Table 1, some 
prominent examples of multisource estimation methods are 
listed: deterministic ML (DML) [2, Sec. 8.5.2], weighted sub-
space fitting (WSF) [22], and covariance matching estimation 
techniques (COMET) [23]. 

As we are primarily interested in estimating the DoA 
parameters ,i  a common approach is to concentrate the objec-
tive function with respect to all (or only part of) the nuisance 
parameters .a  In the case that a closed-form minimizer of the 
nuisance parameters w.r.t. the remaining parameters exists, the 
expression of this minimizer can be inserted back to the origi-
nal objective function to obtain the concentrated optimization 
problem. More specifically, let ( )a it  denote the minimizer 
of the full problem for the nuisance parameter vector a  as a 
function of ,i  i.e., a( ) ( ( ), ).argmin Y Af ;a i i a=t  The con-
centrated objective function ( ( )) ( ( ), ( ))Y A Y Ag f; ;i i a i= t  
then depends only on the DoAs .i  Apart from the reduction 
of dimensionality, the concentrated versions of multisource 
optimization problems often admit appealing interpreta-
tions. In Table 1, the concentrated criteria corresponding to 
the previously considered full-parameter multisource criteria 
are provided. We observe, e.g., in the case of the concentrated 

The introduction of sparse 
optimization techniques 
for DoA estimation and 
source localization in the 
late 2000s marks another 
methodological leap in 
the field.
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DML and the WSF criteria, that at the optimum, the residual 
signal energy contained in the nullspace of the steering matrix 
is minimized. 

Due to the complicated structure of the array manifold AN  
in (1), the concentrated objective function ( ( ))Y Ag ; i  is, for 
common choices in Table 1, highly nonconvex and multimodal 
w.r.t. the DoA parameters .i  Consequently, the concentrated 
cost function contains a large number of local minima in the 
vicinity of the global minimum. This can, e.g., be observed 
in Figure 1, where the cost function of the DML estimator 
is depicted. While multisource estimation criteria generally 
show unprecedented asymptotic as well as threshold perfor-
mance for low sample size, signal-to-noise ratio (SNR), and 
closely spaced sources, their associated computational cost is 
unsuitable in many practical applications. The exact minimi-
zation generally requires an N-dimensional search over the 
FoV, which becomes computationally prohibitive even for low 
source numbers, e.g., .N 3=

In the past three decades and beyond, significant 
efforts have been made to devise advanced DoA estima-
tion  algorithms that exhibit good tradeoffs between perfor-
mance and  complexity. While some very efficient methods 
have been proposed in a different context and based on pure 
heuristics, in this feature article, we focus on optimization-
based estimators that stem, in some way or another, from 
multisource optimization problems for the classical array 
processing model (compare Table 1). Considering the array 
processing literature, a vast amount of estimators proposed in 

the past years can be derived from multisource optimization 
problems. Optimization-based estimators have the advantage 
that they are not only well-motivated but also intuitively inter-
pretable and flexible for generalization to more  sophisticated 

45° 90° 135°

45°

90°

135°

0

10

20

30

DML
Cost Functionθ1

θ 2
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FIGURE 1. An example of the DML cost function for two sources evaluated 
over the FoV. Multiple local minima are observed. Consequently, local 
optimization search cannot guarantee to converge to the global minimum.

Table 1. Conventional DoA estimators.  
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= -  denotes the orthogonal projector onto the nullspace spanned by the columns of A. The code for the different variants of the PR methods can be 

downloaded at https://github.com/PartialRelaxationMethods. 
*Conventional weighted MUSIC algorithm (e.g., see [2, eq. (9.258)]) applies the weighting on the noise subspace. This variant applies the weighting on the signal subspace.
**Note that the optimizer 2

svt  is the spectrum of the Capon Beamformer. The null spectrum of this estimator contains both the spectra of the Conventional Beamformer and the 
Capon Beamformer.
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realistic array signal models. Interestingly, some of the esti-
mators in Table 1 were initially derived by heuristics and are 
reintroduced here from the perspective of multisource opti-
mization problems.

Modern convex optimization for DoA estimation
The progress in modern convex optimization theory and 
the emergence of efficient constrained optimization solvers 
with the turn of the millennium, such as, e.g., the SeDuMi 
software for solving semidefinite programs, had a signifi-
cant impact on the research across disciplines in the sig-
nal processing, communication, and control communities. 
In fact, it comes as no surprise that the advances in sensor 
array signal processing of the past three decades are well 
aligned with this trend that facilitates advanced constrained 
optimization-based design approaches. Three closely related 
universal concepts have been intensively used in array sig-
nal processing to make  optimization-based estimation pro-
cedures numerically stable and computationally feasible. 
These are: 1) structure exploitation, 2)  approximation, and 
3) relaxation.

 ■ Structure exploitation: This refers to techniques that make use 
of particular redundancies in the measurement system to intro-
duce convenient data reorganizations and  reparameterizations. 
Examples are methods particularly designed for uniform, shift-
invariant, and coprime array geometries.

 ■ Problem approximation: These techniques provide local 
approximations of the multidimensional multimodal non-
convex objective function with the goal to decompose a 
complex problem into several subproblems. Each sub-
problem, whose minimizer is much generally simpler to 
obtain than that of the original problem, is solved in paral-
lel or sequentially, ideally in closed form. Examples are 
the expectation-maximization algorithm, the orthogonal 
matching pursuit (OMP), and the single-source approxi-
mation methods.

 ■ Problem relaxation: Problem relaxation techniques in 
DoA estimation aim at simplifying the complicated mani-
fold structure associated with the estimation problem. The 
manifold relaxation is carried out, e.g., to convexify the 
constraint sets in the associated optimization problems 
such that numerical methods can be applied.
Approximation and relaxation techniques have in com-

mon that they are used to deliberately ignore some parts of the 
problem structure at the expense of the optimality or perfor-
mance of the solution. The objective is to simplify the problem 
so that efficient suboptimal solutions can be obtained that, in 
many cases, are close to optimal and often even admit per-
formance guarantees. The DoA estimators reviewed in this 
overview article apply one or more of the aforementioned 
optimization concepts, as explained in more detail in the fol-
lowing sections.

Single-source approximation
Spectral-based DoA estimation methods, like the popular 
MUSIC algorithm, belong to the class of single-source ap-

proximation methods. In contrast to the full parameter search 
of minimizing the multisource objective ( ( ), )Y Af ; i a  over 
the N-source signal model with the array manifold AN  and 
nuisance parameter vector ,a  the optimization problem in 
the single-source approximation approach is simplified, and 
the optimization is carried out only over a single-source 
model with array manifold, i.e., A( ) ( )A a 1" !i i  and nui-
sance parameters .1"a a  It is important to note that, while 
the number of signal components considered in the opti-
mization is reduced in the single-source approximation ap-
proach, the data term Y in the objective remains unchanged. 
The locations ( )a it  of the N-deepest minima of the so-called 
null spectrum ( ( ), )Y af 1; ai  evaluated for all steering vec-
tors A( )a 1!i  with angles in the FoV are considered as the 
steering vector of the estimated DoAs. By using the com-
pact notation ( )argmin gN $  to represent the spectral search 
of the cost function ( )g $  for the N-deepest local minima, the 
single-source approximation is formulated as follows:

 ( ) ( ( ), ) .argmin mina Y af
A( )

1
a

N

1
1

; ai i=
!i

a

t" ,  (3)

For clarity, the concept of the single-source approximation and 
the corresponding spectral search are visualized in Figure 2. 
As summarized in Table 1, classical spectral search methods, 
such as the conventional beamformer, Capon beamformer, and 
MUSIC, can be reformulated as single-source approximations 
of the corresponding multisource criteria.

Partial Relaxation methods
Similar to the conventional parametric methods, the PR ap-
proach considers the signals from all potential source direc-
tions in the multisource cost function. However, to make the 
problem tractable, the array structures of some signal com-
ponents are relaxed. More precisely, instead of enforcing 
the steering matrix ( ), , ( )A a a N1 fi i= 6 @ to be an element 
in the highly structured array manifold A ,N  as in the multi-
source criteria in (2), without the loss of generality, we main-
tain the manifold structure of only the first column ( )a 1i  of 
A, which corresponds to the signal of consideration. On the 
other hand, the manifold  structure of the remaining sources 

( ), , ( ) ,a a N2 fi i6 @  which are considered as interfering sources, 
is relaxed to an arbitrary matrix B C ( )M N 1! # -  [4]. Mathemati-
cally, we assume that AA N! r  where the relaxed array mani-
fold AN

r  is parameterized as

 A Au( ) ( ), ( ) , .A a B a B C ( )
N

M N
1

1! !j j j= = # -r 6 @" ,  (4)

We remark that every matrix element in the relaxed array 
manifold AN

r  in (4) still retains the specific structure from 
the geometry of the sensor array in its first column, hence 
the name PR. However, only one DoA can be estimated from 
the first column of the matrix minimizer if the cost func-
tion of (2) is minimized on the relaxed array manifold AN

r  
of (4). Therefore, we perform the spectral search similarly to 
the single-source approximation in the “Single-Source Ap-
proximation” section as follows. First, we fix the data matrix 
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Y and minimize and concentrate the objective function in (2) 
with respect to B and other nuisance parameters a  to obtain 
the concentrated cost function. Then, we evaluate the con-
centrated cost function for different values of A( )a 1!j  to 
determine the locations of the N-deepest local minima. The 
concept of the PR approach is illustrated in Figure 3. Using 
similar notation as in the single-source approximation ap-
proach, the PR approach admits the following general opti-
mization problem:

 

( ) ( ( ), )

( ( ), , ).

argmin

argmin min min
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(5)

The rationale for the PR approach lies in the fact that, when 
a candidate DoA i  coincides with one of the true DoAs ,ni  
then with B modeling the steering vectors of the remaining 
DoAs, a perfect fit to the data is attained at a high SNR 
or large number of snapshots T. When the candidate i  is, 
however, different from all true DoAs ,ni  the number of de-
grees of freedom in B is not sufficiently large to represent 
the contribution of all N-source signals. By applying dif-
ferent cost functions to the general optimization problem in 
(5), multiple novel estimators in the PR framework are ob-
tained in [4]. A summary of estimators under the PR frame-
work and their relations with conventional multisource and 
single-source approximation-based DoA estimators are 
provided in Table 1.
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FIGURE 3. An illustration of the PR concept. The optimization is carried out 
over the relaxed array manifold A ,N

r  where the structure of the first column 
in ( )a 1i  is maintained and the structure of the remaining columns is 
relaxed to an arbitrary complex matrix, ( ), , ( ) .a a B C ( )

N
M N

2
1"f !i i # -6 @  

Unlike the single-source approximation, the influence of the remaining 
source signals during the spectral search is considered by the unstruc-
tured matrix B (depicted by gray columns in the mixing matrix), which 
generally leads to an improvement of the DoA estimation when sources 
are closely spaced.
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FIGURE 2. An illustration of the single-source approximation concept. 
The optimization is carried out only over a single-source model with an 
array manifold, i.e., A( )A a 1" !i i^ h  (note that the mixing matrix has 
only one nonzero column corresponding to the candidate DoA ( )) .a i  The 
influence of the remaining source signals during the spectral search is 
neglected, which is denoted by zero columns in the mixing matrix. The 
data term Y  in the objective function of the single-source approximation 
method is, however, identical to that of the corresponding multisource 
optimization problem.
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Sequential techniques
While the PR methods show excellent threshold performance 
in scenarios with a low number of uncorrelated sources, their 
performance quickly degrades as the number of sources in-
creases. This phenomenon can be explained in short as fol-
lows: the approximation error associated with the manifold 
relaxation of the interfering sources increases with the number 
of sources. The same holds true for the single-source approxi-
mation methods. As the approximation error increases, the ca-
pability of incorporating the influence of multiple structured 
source signals in the optimization problem decreases, and 
thus, a degradation in the estimation performance is  observed. 
To  overcome the degradation effect in scenarios with large 
source numbers, sequential estimation techniques have been 
proposed in which the parameters of multiple sources are esti-
mated one after the other. 

We revise three closely related and most widely known 
sequential estimation techniques: the MP technique, OMP, 
and the orthogonal least-squares (OLS) [24], [25] method. 
These methods have in common that the DoAs for N-sourc-
es are estimated sequentially and that the approximation is 
successively improved. In each iteration, the DoA of one 
additional source is estimated based on minimizing a func-
tion approximation of a given multisource criterion (compare 
Table 1), while the source DoAs estimated in the previous iter-
ations are kept fixed at the value of their respective estimates. 

Similar to the single-source approximation, the remaining 
sources whose DoA estimates have not yet been determined 
are ignored in the optimization. 

The three methods differ, however, in the way the nuisance 
parameters corresponding to each source are treated in the 
optimization and in the corresponding parameter updating 
procedure. Concerning the MP algorithm, in each iteration, 
the nuisance parameters corresponding to the new source 
DoA are fixed and inserted as parameters in the objective in 
the following iterations. In contrast, in the OMP algorithm, 
the nuisance parameters of all estimated sources are updated 
in a refinement step after the DoA parameter of the current 
iteration is determined. The nuisance parameters are then 
inserted as parameters in the objective for the following esti-
mation of the source DoA in the next iteration. The additional 
update step is generally associated with only a slight increase 
of the computational complexity. Nevertheless, this strategy 
effectively reduces error propagation effects. 

OLS yields further performance improvements at the 
cost of more sophisticated estimate and update expres-
sions. More precisely, in the OLS algorithm, the nuisance 
parameters corresponding to the sources of the previous 
and current iterations are treated as variables and optimized 
along with the DoA parameter of the new source in the cur-
rent iteration. In Table  2, we provide the sequential esti-
mation and update procedures of the MP, OMP, and OLS 
for the DML criterion (compare Table 1). At this point, 
we remark that the sequential estimation approach is gen-
eral and can also be applied to other multisource criteria 
in Table 1, hence the WSF and the COMET criteria. Fur-
thermore, sequential estimation can also be combined with 
the concept of PR that we introduced in the “PR Methods” 
section to further enhance the threshold performance and 
reduce the error propagation effects. As an example, we also 
provide the PR-DML-OLS method in Table  2. A numeri-
cal performance comparison of the sequential estimators is 
provided in Figure 4, where it can be observed that the OLS 
method shows improved performance as compared to OMP; 
however, both methods suffer from a bias. The PR-DML-
OLS method is, in contrast, asymptotically consistent, and 
its root-mean-square error (RMSE) is close to the Cramér-
Rao bound (CRB).

Sparse reconstruction methods
The nonlinear LS DML problem in Table 1 generally re-
quires a multidimensional grid search over the parameter 
space to obtain the global minimum. More precisely, the 
objective function is evaluated at all possible combinations 
of N DoAs on a particular discretized FoV. Clearly, the com-
plexity of this brute-force multidimensional search strategy 
grows exponentially with the number of sources. To reduce 
the computational cost associated with the nonlinear LS op-
timization, convex approximation methods based on sparse 
regularization have been proposed.

We assume that for a particular FoV discretization 
RK!iu  containing K M&  angles, a so-called oversampled 
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FIGURE 4. A performance evaluation of the sequential DoA es-
timation techniques for four uncorrelated source signals at 

R, , ,90 93 135 140° ° ° °i= 6 @  with an array composed of M 10=  sensors 
and SNR = 3 dB. OMP and OLS are biased as the first DoA is estimated 
according to the conventional beamformer, which cannot resolve two 
closely spaced sources at °90  and °93  regardless of the number of avail-
able snapshots .T  On the other hand, PR-DML-OLS is asymptotically 
consistent, and its RMSE is close to the CRB.
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dictionary matrix ( )A A i=u u  of dimensions M K#  is con-
structed and the DML problem is  equivalently formulated 
as the linear LS minimization problem with a cardinality 
constraint, i.e.,

  min X AS S Nsubject toF ,
S

2
2 0

CK T
#-

! #

u u u
u

 (6)

where #M mk 0, k2 0 2 !< < ; < <= ^ h" ,  denotes the ,2 0,  mixed 
pseudonorm of a matrix R, , ,M m mK1 f= 6 @  i.e., the num-
ber of rows mk  with nonzero Euclidean norm mk 2< <  for 

, , .k K1 f=  This is illustrated 
in Figure 5. Given a solution 
S*u  of the optimization prob-
lem in (6), the DoAs estimates 

( )A it t  are determined from the 
support of S ,*u  i.e., the loca-
tions of the nonzero rows. Sev-
eral approximation methods 
have been proposed to sim-
plify the problem in (6) using 
sparse regularization. Sparse 
regularization approaches are 
directly devised from the La-
grangian function of the opti-
mization problem in (6), i.e.,

min X AS SF ,
S

2
2 0n- +u u u

u
 (7)

where the hyperparameter n  
(also called the regularization 
parameter) balances the trad-
eoff between data matching 
and sparsity. For small values of ,n  the mismatch between 
the model and the measurements is emphasized in the min-
imization, whereas for larger values of ,n  the row sparsity 
of the solution is enhanced. Since the discretized FoV is 
given and, thus, the oversampled dictionary matrix Au  is 
constant, the data-matching term in the objective func-
tion of (7) is a simple linear LS function. Nevertheless, 
the sparse regularization term is both nonsmooth and non-
convex w.r.t. S,u  and thus, the problem in (7) is difficult 
to solve directly. In [26], a convergent iterative fixed-point 
algorithm is proposed that solves a sequence of the smooth 
approximation problems of (7).

To make the optimization in (7) more tractable, a common 
approach is to convexify the regularizer in (7) by approximat-
ing the ,2 0,  norm by the closest convex mixed-norm ,,2 1,  which 
is defined as mM , k

K
2 1 2< < < </= k 1=  for R, ,M m m .K1 f= 6 @  The 

resulting multiple measurement problem (MMP)

 min X AS SF ,
S

2
2 1n- +u u u

u
 (8)

is convex and thus can be solved efficiently [10]. One impor-
tant drawback of the formulation in (8) is that the number 

of optimization variables grows linearly with the number of 
snapshots T and, therefore, also the associated computational 
complexity. Interestingly, the MMP can be equivalently ex-
pressed as the Sparse Row-Norm Reconstruction (SPAR-
ROW) problem as follows [11]:

 .min I RADA D
T2

tr trH

DD
M

1n
+ +

!

-

+

u u u t u
u

cc ^m m h  (9)

We remark that in (9), the optimizing variable D=u  
( , , )d ddiag K1fu u  is a nonnegative diagonal matrix whose 

Source 3Source 2Source 1

=

X = A S

FIGURE 5. The concept of sparse reconstruction methods. In the  
noiseless case, the received signal X  is decomposable into a product  
of a fixed oversampled steering matrix Au  and a row-sparse source  
signal matrix .Su  The locations of the nonzero rows in Su  correspond  
to the DoAs.

Table 2. Sequential DoA estimators.

Iterative DoA Estimation Step Nuisance Parameters Update 

MP , ( )

, ( )

argmin min X A a
S

s

A A a

F

( ) ( )

( )

( ) ( ) ( )

s

k k

k

k k k

1

1 2

1

CT
i i

i

= -

=

R
!i

-

-

-

t t
t

t t t7

6 <

A

@ F , ( )argmins X A a
S

s

S
S
s

F

( ) ( ) ( )

( )

( )
( )

( )

s

k k k

k

k
k

k

1

1 2

1

CT

i= -

=

R

R

!

-

-

-

t t t
t

t
t

t
<

7 <

F

A F

OMP , ( )

, ( )

argmin min X A a
S

s

A A a

F

( ) ( )

( )

( ) ( ) ( )

s

k k

k

k k k

1

1 2

1

CT
i i

i

= -

=

R
!i

-

-

-

t t
t

t t t7

6 <

A

@ F , ( )argmin X A aS S
F

( ) ( ) ( )

S

k k k1 2

C Tk

i= -
!

-

#

t t t7 A

OLS , ( )

, ( )

argmin min X A a

A A a

S F
( ) ( )

( ) ( ) ( )

S

k k

k k k

1 2

1

Ck T
i i

i

= -

=

!i

-

-

#

t t

t t t7

6

A

@

PR-DML-OLS , ( )

, ( )

,argmin min X A a S

A A a

B F
( ) ( )

( ) ( ) ( )

B

S

k k

k k k

1 2

1

C

C ( )M N k

TN

i i

i

= -

=

!

!

i

-

-

#

#

-

t t

t t t7

6

A

@



100 IEEE SIGNAL PROCESSING MAGAZINE   |   June 2023   |

 dimension does not depend on the number of snapshots T. 
The first term in (9) can be interpreted as a data-matching 
term, while the second term induces sparsity. The optima 
S*u  and D*u  of the respective problems share the same sup-
port, and the diagonal elements of D*u  represent the scaled 

2,  row norms of .S*u  The SPARROW problem is convex 
and can be efficiently solved using, e.g., a block-coordinate 
descent (BCD) algorithm. Remarkably, the support of the 
solution of (9) and therefore also the so-
lution of the MMP (8) are fully encoded 
in the sample covariance matrix ,Rt  while 
the measurement matrix X is not explic-
itly required for the estimation of the 
DoAs. Making use of the Schur comple-
ment, the optimization problem in (9) can 
further be reformulated as the semidefi-
nite problem (SDP).

 
.

min UR D

U

I

I

ADA I

M

T

1

2
0

Tr Tr

subject to H

H

,D U

M

M

M
*n

+

+

t u

u u u

u
^ ^h h

> H 
(10)

An alternative SDP formulation also exists for the under-
sampled case, when the number of snapshots is smaller than 
the number of sensors, i.e., .M T$  While from a computa-
tional point of view, the SDP formulations quickly become 
intractable when the dictionary Au  becomes large and the BCD 
solution is preferable for large K, the SDP formulations admit 
interesting extensions for ULAs and other structured arrays 
that do not require the use of a sampling grid and the explicit 
formation of the dictionary A.u  The so-called gridless sparse 
reconstruction methods are motivated by the following obser-
vation: in the ULA case, the dictionary Au  is a Vandermonde 
matrix so that the matrix product ADAHu u u  with any diagonal 
matrix Du  can be substituted by a Toeplitz matrix ( )uToep  
with u denoting its first column. Inserting the compact Toeplitz 
reparameterization in the SDP problem (10) and making use 
of the property / /( ) ( )( ) ( )D uADAM M1 1Tr Tr Tr ToepH= =u u u u  
the SDP reformulation becomes independent of a particular 
choice of the dictionary A.u

Consequently, the off-grid errors are avoided. An impor-
tant question at this point is under which conditions the decom-
position ( )u ADAToep H= u u u  holds and whether the solution 
is unique. If such a decomposition exists with a unique 
solution, the gridless reformulation of the SDP is equiva-
lent to the original grid-based formulation. The answer to 
this question is provided by the well-known Carathéodo-
ry’s theorem, which states that the Vandermonde decom-
position of any positive semidefinite low-rank Toeplitz 
matrix is always unique. Hence, provided that the solu-
tion ( )uToep *  is positive semidefinite and rank deficient, 
it can be uniquely factorized as ( )( ) A D AuToep H=* * * *  
[27]. Given the generator vector u*  retrieved from a low-
rank Toeplitz matrix, the DoA estimates can be uniquely 

recovered, e.g., by solving the corresponding system of 
linear equations.

We remark that the gridless approach for sparse recovery in 
the MMP has first been introduced in the context of the atomic 
norm denoising problem [12], which can be considered as the 
continuous angle equivalent of the ,2 1,  norm regularized LS 
matching problem (8). The associated SDP formulation in the 
ULA case with Toeplitz parameterization can be shown to be 

equivalent to the gridless version of (10). 
We further remark that gridless sparse 

reconstruction methods are not limited to 
contiguous ULA structures. Also, other 
redundant array geometries can be exploit-
ed, such as shift-invariant arrays or thinned 
ULAs, i.e., incomplete ULAs with missing 
sensors (“holes”). In thinned ULAs, ambi-
guities may arise in the array manifold, 
and the model parameters may no longer 

be uniquely identifiable from the measurements. These ambi-
guities have, e.g., been characterized in [28], [29], and these 
references can provide guidelines for the choice of favorable 
thinned ULA geometries. Following a similar procedure as 
in the Toeplitz case, a substitution of the type Q ADAH= u u u  
can be introduced where Q is no longer perfectly Toeplitz but 
contains other structured redundancies that can be expressed 
in the form of linear equality constraints in the problem 
(10). In these cases, estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) or root-MUSIC can 
be employed to estimate the DoAs from the minimizer .Q*  
Even though unique factorization guarantees for Q*  similar 
to Carathéodory’s theorem do not exist, the generalized grid-
less recovery approach performs well in practice as long as 
the number of redundant entries in Q is sufficiently large. 

While we focused in our overview on sparse regulariza-
tion methods that are based on the DML cost function in 
Table 1 as the data-matching term, there exist numerous 
alternative approaches that use other matching terms. See 
[9] for a comprehensive overview of sparse DoA estimation 
techniques. A particularly interesting sparse DoA estima-
tion method is the Sparse Iterative Covariance-Based Esti-
mation Approach (SPICE) [8], which, as the name suggests, 
stems from a weighted version of the covariance matching 
criterion in Table 1. Remarkably, the SPICE formulation 
does not contain any hyperparameters to trade off between 
the data-matching quality versus the sparsity of the solu-
tion, which makes SPICE an attractive candidate among 
sparse reconstruction methods.

As mentioned previously, the traditional superresolution 
methods, such as the multisource estimation methods of 
Table 1 as well as the PR methods and MUSIC for uncor-
related sources, are capable of resolving arbitrary closely 
spaced source even with a finite number of sensors as long 
as the number of snapshots or the SNR is sufficiently large. 
It is important to note that such guarantees generally do not 
exist in convex sparse optimization methods [9], [12], [27]. 
Furthermore, sparse regularization-based DoA estimation 

Considering the array 
processing literature, a 
vast amount of estimators 
proposed in the past 
years can be derived from 
multisource optimization 
problems.
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methods are known to suffer from bias, which marks one of 
their most important drawbacks. First, the bias can be origi-
nated from the grid mismatch of the source DoAs in the for-
mation of the dictionary. Second, the sparse regularization 
term generally introduces a bias to the solution. While the 
former source of bias can be entirely avoided in the gridless 
sparse reconstruction formulations, the latter remains and 
can be reduced only by decreasing the regularization param-
eter ,n  e.g., in (7). This in turn leads to an 
enlarged support set whose sizes are much 
larger the true number of sources N. 

However, in the context of sparse reg-
ularization-based DoA estimation, if the 
model order N is known, it is often prefer-
able to use comparably small values of the 
regularizers n  and to perform a local search 
for the N-largest maxima of the recovered 
row-norm vector , ,d d dK1 f=* * * Ru u u6 @  in (9) 
to determine the DoA estimates. More specifically, the DoA 
estimates are the N entries in the sample DoA vector iu  that are 
indexed by .argmaxi dN

k k= *u" ,
In conclusion, sparsity-based methods have their merit 

in difficult scenarios with low sample size or highly cor-
related and even coherent source signals where the sample 
covariance matrix does not exhibit the full signal rank N. In 
these scenarios, conventional subspace-based DoA estima-
tion methods usually fail to resolve multiple sources. This is  
confirmed in the simulation example of Figure 6. Further-
more, sparsity-based methods can resolve multiple sources 
even in the single-snapshot case provided that the scene is 
sparse in the sense that the number of sources is small com-
pared to the number of sensors in the array. A simple but 
interesting theorem for robust sparse estimation with noisy 
measurements regardless of the chosen sparse estimation 
approach is given by [30, Theorem 5].

Another benefit of sparse regularization methods is that, 
unlike parametric methods in DoA estimation, the knowl-
edge of the number of sources N is not required for the 
estimation of the DoAs. In turn, the number of sources is 
implicitly determined from the sparsity of the solution. How-
ever, sparse reconstruction methods, with the exception of the 
hyperparameter-free SPICE method [8], are usually sensitive 
to a proper choice of the sparse regularization parameter .n  
Furthermore, the associated computational complexity of 
sparse regularization methods, in particular for the SDP for-
mulations in the grid-based and gridless cases, is higher than 
that of conventional subspace-based methods.

Exploitation of incomplete structural information
In many modern applications, such as the networks of aerial 
base stations, DoA estimation is carried out in a distributed 
fashion from signals measured at multiple subarrays, where 
the exact locations of subarrays are often unknown. Even in 
conventional centralized large sensor arrays, it is a challenging 
task to have a central synchronized clock among all sensors 
of the device and to maintain precise phase synchronization 

due to large distances in the array. Therefore, in practice, large 
array systems are partitioned into local subarrays, where due 
to the proximity, each subarray can be considered as perfectly 
calibrated, whereas the relative phase differences between sub-
arrays are considered as unknown. In this setup, it is common-
ly assumed that the narrow-band assumption remains valid; 
hence, the waveforms do not essentially decorrelate during the 
travel time over the array.

DoA estimation in partly calibrated 
sensor arrays has first been considered in 
shift-invariant sensor array systems, which 
are composed of two identically oriented 
identical subarrays separated by a known 
displacement .d  For this configuration, 
the popular ESPRIT algorithm has been 
proposed [31]. In shift-invariant arrays, the 
overall array steering matrix ( )A i  can be 
partitioned into two potentially overlap-

ping blocks, ( )A CM N1!i #  and ( ) ,A CM N2!i #  respectively, 
representing the array response of the reference subarray and 
the shifted subarray. For notational simplicity, we assume that 

.M M M2 21 2= =  Due to the shifting structure, the two subar-
ray steering matrices are related through right multiplication 
with a diagonal phase shift matrix ( ) , ,D z z zdiag N1 f=d d d^ h 
with unit-magnitude generators z e j ( )cos

n
n= r i-  that account 

for the known displacement d  measured in half wavelength, 
hence ( ) ( ) ( ).A A D zi i=

Interestingly, ESPRIT as well as the enhanced Total-LS- 
ESPRIT (TLS-ESPRIT) method [31] can be reformulated as 
subspace-fitting techniques according to Table  1. Similar to 
the PR approach, a particular form of manifold relaxation is 
applied that maintains some part of the array structure and 
deliberately ignores other parts of the structure to admit a 
simple solution. The ESPRIT and TLS-ESPRIT estimators 
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FIGURE 6. A performance evaluation of the sparse reconstruction-based 
DoA estimation techniques for two coherent sources at R,90 1 02° °i= 6 @  
with an array composed of M 6=  sensors and .10SNR dB=

Similar to the conventional 
parametric methods, 
the Partial Relaxation 
approach considers the 
signals from all potential 
source directions in the 
multisource cost function.
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are obtained from minimizing the subspace fitting functions 
( )U V A F

1 2
s< <i--t  [22] and ( )U A V ,F

2
s< <i-t  respectively, for 

nonsingular V, where the array manifold AN  of the fully cali-
brated subarray defined in (1) is relaxed to the ESPRIT manifold 

R R RA ( ) , ( ) , ,A A A D c A AC CN
M N M NESPRIT 1;! !j= =# #6 @"

/, ( ( ) )( ) .cos argc cCN 1! j rd= -- ,
We remark that in the ESPRIT manifold A ,N

ESPRIT  only 
part of the shift-invariance structure of AN  is maintained, 
and the particular subarray steering matrix structure in 

( ) ( ), , ( )A a a N1 fj j j= 6 @ is relaxed to an arbitrary complex 
matrix .A CM N1! #  In addition, the magnitude-one structure 
of the diagonal shift matrix ( )D zd  is relaxed to an arbitrary 
diagonal matrix ( ) .D c  This implies that in the ESPRIT and 
TLS-ESPRIT algorithms, neither the subarray geometry nor 
potential directional gain factors between the two subarrays 
need to be known as long as the subarrays are identical and 
subarray displacements are known. Due to this particular man-
ifold relaxation, the subspace fitting problems admit efficient 
closed-form solutions.

The concept of DoA estimation in subarray structures has 
been generalized in [32] to cover the case of multiple shift 
invariance arrays. In more general partly calibrated array 
scenarios, we assume that the sensor positions are generally 
unknown. Nevertheless, only several displacements between 
selected pairs of sensors in the array, the so-called lags of the 

array, are known. Let , , K1 fd d  denote known displacements 
in half wavelength in the array that are all pointing into the 
same direction. This is illustrated in Figure 7. The subarrays 
are flexibly defined by pairs of sensors that share a common 
lag kd  (or their summations). Depending on the number of 
known lags among the sensor arrays, one particular sensor can 
belong to one or more subarrays. 

For all known lags, we consider again the subspace 
fitting approach and apply the ESPRIT manifold relax-
ation technique. Hence, defining T V 1= -  and relax-
ing the structure of the subarrays, the objective becomes 

, , ( ) ,U T U T A I D z
F, ,

K
k k ks s

k/ - d
2

k 1=
t t8 6B @  where A k  is an 

arbitrary complex-valued matrix of known dimension that 
models the unknown subarray structure corresponding to the 
kth displacement kd  and .U ,ks

t  The matrix U ,ks
t  contains the 

corresponding rows of the signal eigenvectors in .U ,ks
t  Insert-

ing the LS minimizers /( ) ( )A U T U TD z1 2, , ,k k kLS s s
k= + ) dt t t` j 

back into the objective function, the concentrated objective 
function of the relaxed multiple shift-invariant ESPRIT is 
given by

( )

( ) .

T U U TD z T U U U U T

T U U TD z

Tr H H H H H
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FIGURE 7. The equivalence between the partly calibrated array setup and multiple shift-invariant setup. As depicted in the center, an exemplary partly cali-
brated array setup comprises three linear subarrays with unknown intersubarray displacements. The displacements between sensors in one subarray are, 
however, a priori known. From the known intrasubarray displacement, multiple shift-invariant structures between sensor pairs are exploited while formulat-
ing the optimization problem. Such exploitation allows reinterpretation of the RARE algorithm [15], [16] as a generalized multiple shift ESPRIT [31].
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Due to the diagonal structure of ( ),D z kd  the objective function 
in (11) is separable into N identical terms, one for each source. 
Hence the subspace fitting problem reduces to finding the N 
distinct minima of the rank reduction estimator (RARE) [15], 
[16] function ( ) ( )min t M tf H

t 1RARE i i= < <=  with respect to the 
DoAs !i H  where

( )M U U U U U U

U U

e

e

j

j

H H H

H

, ,
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and t  represents a particular column of T. The unit-norm con-
straint in the RARE problem is introduced to ensure that the 
zero solution t 0=  is excluded since the zero solution t 0=  
violates the constraint that T and V are nonsingular. The 
minimization of the RARE cost function w.r.t. to the vector 
t admits the minor eigenvector of ( )M i  as a minimizer. As 
a result, the concentrated RARE cost function is given by 

( ) ( ( )).Mf minRARE i m i=  Thus, similar to the single-source ap-
proximation approach, the DoAs are determined from the N-
deepest minima of the RARE function. This ensures that the 
corresponding transformation matrices T and V are nonsingu-
lar. We remark that the RARE estimator has originally been 
derived from a relaxation of the MUSIC function, and the min-
imum eigenvalue function can equivalently be replaced by the 
determinant of the matrix ( ).M i  The latter is, e.g., useful for 
developing a search-free variant of the spectral RARE algo-
rithm based on matrix polynomial rooting in the case that the 
shifts , , K1 fd d  are integer multiples of a common baseline.

Exploitation of array configuration
As mentioned in the “Signal Model” section, the number of 
signals N that can be uniquely recovered from DoA estimation 
methods with second-order statistics is strictly upper bounded 
by the Kruskal rank of the oversampled ( )K M$  steering 
matrix A ,A K!u  which, e.g., for ULA geometries is equal  
to the number of sensors. A direct consequence is that, using 
the conventional signal model in the “Signal Model” section, 
the number of uniquely identifiable sources N must be less than 
the number of sensors M. If further information on the source 
signals is available, e.g., that the source signals are uncorre-
lated, then the number of uniquely identifiable source signals 
can be improved.

This claim can be explained by comparing the number 
of equations and the number of unknowns, which are implied 
from the covariance model ( ) ( ) ( ) ,R A D p A IH

Mi i o= +  
w i t h  ( ) ( , , ).D p p pdiag N1 f=  We assume that the num-
ber of snapshots T is sufficiently high such that the covariance 
matrix R can be estimated with high accuracy. In addition, we 
remark that the structure of the covariance matrix depends on 
the geometry of the sensor array. For example, for a ULA, the 
covariance matrix is a Hermitian Toeplitz matrix. Conversely, 
if we assume that the sensor array does not exhibit any particu-
lar geometry, e.g., no ULA structure, then there is generally no 
relation between the elements in the covariance matrix. Conse-

quently, the covariance matrix R is parameterized by maximal-
ly .M M 12 - +  independent real-valued variables (note that the 
diagonal entries are all identical). Thus, the number of indepen-
dent equations from the covariance model is also .M M 12 - +

On the other hand, in the uncorrelated source case, the 
model on the right-hand side ( ) ( ) ( )A D p A IH

Mi i o+  con-
tains only N2 1+  unknowns (N DoA parameters in vector 

,i  N-source powers in R, ,p p p ,N1 f= 6 @  and the noise vari-
ance ) .o  This observation suggests that it is possible to signifi-
cantly increase the number of uniquely identifiable sources in 
an array from O( )M  to O( )M2  if the number of redundant 
entries in the covariance matrix is reduced. Therefore, from 
the viewpoint of improving the number of detectable sources 
for a fixed number of sensors, we should deviate from the con-
ventional ULA array structure. The reason is that the cova-
riance matrix in the case of a ULA and uncorrelated source 
signals is a Hermitian Toeplitz matrix, which contains only 
( )M2 1-  real-valued independent entries.

In fact, the covariance matching approach in Table 1 
combined with the concepts of sparse reconstruction in DoA 
estimation and positive definite Toeplitz matrix low-rank 
factorization has inspired an interesting line of research on 
nested and coprime arrays that aims at designing favorable 
nonredundant spatial sampling patterns [19]. These types of 
arrays include the class of minimum redundancy and aug-
mentable arrays whose design approaches rely on thinned 
ULA geometries. One example is the sparse nonuniform 
arrays with intersensor spacings being integer multiples of a 
common baseline .d  These geometries have the benefit over 
arrays with arbitrary noninteger spacings that they allow the 
use of search-free DoA estimation methods (compare the 
gridless sparse methods introduced in the previous section) 
and spatial smoothing techniques to build subspace estimates 
of the required rank. More precisely, given the stochastic sig-
nal model in the uncorrelated source case with source powers 
p, hence, ( ) ( ) ( )R A D p A I ,H

Mi i o= +  an equivalent single-
snapshot model is obtained from vectorization. 

Defining ( ) ( ) ( )C A A9i i i= )  as the steering matrix 
of a so-called virtual difference coarray, where 9  stands for 
the Khatri-Rao product, i.e., column-wise Kronecker prod-
uct, the vectorized covariance model reads ( )r Rvec= = 

( ) ( )C p Ivec Mi o+  [19]. For this model, the -,2 1, norm regular-
ized LS approach in (8) is a suitable candidate for DoA estima-
tion. An interesting alternative approach that does not rely on 
sparsity but on the nonnegativity property of the source power 
vector p is proposed in [33]. 

In the vectorized covariance model, the number of identi-
fiable sources is fundamentally limited by the Kruskal rank 
of the difference coarray steering matrix ( ).C i  Hence, the 
design objective for the physical array is to place the sensors 
such that, in the difference coarray, redundant rows of the 
difference coarray steering matrix ( )C i  are avoided and the 
number of contiguous lags is maximized. Avoiding redundant 
rows is equivalent to maximizing the diversity of the coarray, 
i.e., the number of different lags in the coarray. Maximizing 
the number of contiguous lags in the coarray corresponds to 
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maximizing the size of the largest “hole-free” ULA partition of 
the coarray, which in turn is directly related to the Kruskal rank 
of the ULA partition (and therefore also the Kruskal rank of the 
entire difference coarray) due to the Vandermonde property of 
the ULA steering matrix. 

Because of the Khatri-Rao structure of the difference coar-
ray steering matrix ( ),C i  the Kruskal rank and, thus, the num-
ber of uniquely identifiable sources, grows quadratically rather 
than linearly with the number of physical sensors M. While 
coarray designs allow one to significantly increase the number 
of detectable sources for a given number of physical sensors 
using standard DoA estimation algorithms, recent theoretical 
performance results reveal that, in the regime where the num-
ber of sources N exceeds the number of sensors M, the mean-
square estimation error of the MUSIC algorithm applied to the 
coarray data does not vanish asymptotically with SNR [34].

In the minimum redundancy array design, the number of 
contiguous lags in the difference coarray, and hence the size of 
the largest ULA partition, is maximized by definition, which 
generally requires a computationally exten-
sive combinatorial search over all possible 
spatial sampling patterns. The nested and 
coprime array designs, in contrast, repre-
sent systematic design approaches associ-
ated with computationally efficient analytic 
array design procedures [19]. Nested array 
and coprime arrays are composed of two 
uniform linear subarrays with different 
baselines. In the nested array structure, each subarray is com-
posed of M1  and M2  sensors with baselines d  and ( ) ,M 11 d+  
respectively, where the first sensor of the first subarray lies at 
the origin and the first sensor of the second subarray is displaced 
by .M1  It can be shown that, with an equal split (M M1 2=  and 
M M 11 2= +  for even and odd M, respectively), the difference 
coarray becomes a ULA with ( )M M2 1 12 1 + -  elements.

Coprime arrays represent more general array structures 
and comprise, as the name suggests, two uniform linear sub-
arrays with M1  and M 12 -  sensors, respectively, with M1  
and M2  being coprime numbers. The first and the second 
subarray have baselines L1d  and ,L2d  respectively, where 
L M1 2=  and /L M F2 1=  are coprime numbers and integer F 
is a given array compression factor in the range .F M1 1# #  

Furthermore, the subarrays are displaced by integer multiples 
of the baseline .d

In Figure 8, the nested and coprime array structures and 
their respective virtual coarrays are illustrated for the case of 
three sensors in each subarray. While the nested array struc-
ture yields a coarray with a maximum number of contiguous 
lags, the coprime array structure may often be preferable in 
practice as it can achieve not only a larger number of unique 
lags, i.e., degrees of freedom of up to / /( ) ,M M2 22 +  but also 
a larger virtual coarray aperture as well as a larger minimum 
interelement spacing of the physical array to reduce, e.g., mutu-
al coupling effects.

To further increase the estimation performance of DoA 
estimators in a coprime array structure, low-rank Toeplitz 
and Hankel matrix completion approaches have been pro-
posed to fill the “holes” and augment the data in sparse vir-
tual coarrays to the corresponding full virtual ULA [35]. 
This concept has been successfully applied in [36] in the 
context of bistatic automotive radar to improve the angular 

resolution without increasing the hard-
ware costs. Similarly, in [37], matrix com-
pletion for data interpolation in coprime 
virtual arrays has been used for subspace 
estimation in hybrid analog and digi-
tal precoding with a reduced number of 
analog-to-digital converters and radio fre-
quency chains in the hardware receives. 
Conditions under which, in the noise-free 

case, the completion from a single temporal snapshot is exact 
have been derived in [38].

Conclusions and future directions
In this review article, we revisit important developments in 
area sensor array processing for DoA estimation in the past 
three decades from a modern optimization and structure ex-
ploitation perspective. From several illustrative examples, we 
show how novel concepts and algorithms that have advanced 
the research field in the last decades are proposed to solve, 
in some way or the other, the same notoriously challenging 
multisource optimization problems, such as the well-known 
classical DML problem. Advances in convex optimization re-
search and the development of efficient interior point solvers 

for semidefinite programs made it pos-
sible to compute close-to-optimal ap-
proximate solutions to these problems 
with significantly reduced effort. 

In addition, we also show how par-
ticular structure in the measurement 
model has been efficiently exploited 
to make the problems computationally 
tractable, both in terms of an affordable 
computational complexity as well as in 
terms of well posedness of the problem 
for identifying the parameters of inter-
est. Nevertheless, we remark that our 
coverage of the sensor array  processing 

Sparsity-based methods 
have their merit in 
difficult scenarios with 
low sample size or highly 
correlated and even 
coherent source signals.
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FIGURE 8. Examples of the coprime and nested array structure consisting of two subarrays, each with 
three sensors. The baseline of each physical subarray is a multiple of the baseline of the virtual coarray.
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research of the past three decades is by no means meant to 
be exhaustive. Given the long history of array signal process-
ing, by now, this field of research can certainly be consid-
ered mature. Despite all the progress that has been made over 
the past decades, many important and fundamental research 
problems in this area have not yet been solved completely 
and require new ideas and concepts, and some of these are 
outlined next.

Harmonic retrieval in large dimensional datasets
One example is the extension of the parameter estimation in 
1D spaces, such as in conventional DoA estimation, to higher 
dimensional spaces, e.g., as required in the aforementioned 
parametric MIMO channel estimation problem. With the 
trend to massive sensing systems and high dimensional da-
tasets, the harmonic retrieval problem in extremely large di-
mensions gains significant interest. Due to the phenomenon 
known as the curse of dimensionality, where the computation 
workload increases exponentially with 
the number of dimensions, the extension 
of 1D DoA estimation methods to higher 
dimensions is not straightforward. Exist-
ing works on multidimensional harmonic 
retrieval either consider rather low dimen-
sions or rely on dimensionality reduction 
approaches, i.e., projecting the multidi-
mensional datasets into lower dimensions. 
This is, however, associated with a signifi-
cant performance degradation if sources are not well sepa-
rated in the projected domain.

Incorporation of signal properties as prior information 
The use of particular structures in the array manifold, which 
is considered in this review article, is only one form of in-
corporating additional prior information into the estimation 
problem. As more information is exploited, the parameter es-
timation task can be correspondingly simplified, and the es-
timation performance is enhanced. Theoretical investigations 
on the general use of additional side information incorporated 
in the DoA estimation problem as well as its estimation per-
formance bound are addressed in [39]. In modern applications, 
the received signals as well as the waveforms often exhibit ad-
ditional properties that can be exploited while designing novel 
DoA estimators. For example, constant modulus properties of 
the transmitted signals or signal waveforms with temporal de-
pendence as, e.g., in radar chirp signals, enable coherent pro-
cessing across multiple snapshots and dramatically enhance 
the resolution capabilities. Another example of signal exploita-
tion is the DoA estimation with quantized or one-bit measure-
ments, which has been studied in [40].

Robust sensor array processing 
In many real-world applications, the classical array signal 
model may be oversimplistic. This can lead to a severe per-
formance degradation of conventional high-resolution DoA 
estimation methods, which are known to be very sensitive 

to even small model mismatches. In recent years, significant 
efforts have been made to design DoA estimation meth-
ods that are robust to various model mismatches, including 
 array  imperfections due to miscalibration, impairments of the 
 receiver front ends, mutual coupling between antennas, wave-
form decorrelation across the sensor array in inhomogeneous 
media, and multipath environments as well as impulsive and 
heavy-tailed noise [41].

Combining model-based with data-driven  
DoA estimation
Recently, data-driven machine learning approaches have been 
successfully introduced in many areas of signal processing to 
overcome the existing limitations of traditional model-based 
approaches. Data-driven algorithms have the benefit that they 
naturally generalize to various statistics of the training data and, 
thus, are flexible to adapt to time-varying estimation scenarios. 
As such, data-driven algorithms are potential candidates to over-

come the aforementioned challenges in DoA 
estimation. However, typical off-the-shelf 
data-driven algorithms are known to be data 
hungry, which limits their practical use in 
many DoA estimation applications. Recent-
ly, hybrid model-and-data-driven methods 
were proposed in the context of deep algo-
rithm unfolding, which combine the benefits 
of both approaches. The hybrid algorithms 
inherit the structure of existing model-based 

algorithms in their learning architecture to reduce the number 
of learning parameters and therefore speed up the learning and 
improve the generalization capability of the algorithms [42].
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ireless communication technology has progressed dra-
matically over the past 25 years, in terms of societal adop-
tion as well as technical sophistication. In 1998, mobile 

phones were still in the process of becoming compact and af-
fordable devices that could be widely utilized in both devel-
oped and developing countries. There were “only” 300 million 
mobile subscribers in the world [1]. Cellular networks were 
among the first privatized telecommunication markets, and 
competition turned the devices into fashion accessories with 
attractive designs that could be individualized. The service 
was circumscribed to telephony and text messaging, but it was 
groundbreaking in that, for the first time, telecommunication 
was between people rather than locations.

There are now more than six billion subscribers worldwide, 
and the mobile phone remains the main wireless device, but 
much has changed. Traditional feature phones with physical 
keypads have been replaced by smartphones with large touch-
screens. Telephony today constitutes a negligible fraction of 
the traffic, the vast majority of which amounts to packets bear-
ing data for end-user applications. Video and audio streaming, 
social media, gaming, and a host of other apps, generate the 
bulk of the traffic. New services continue to arise and cement 
the smartphone’s central role in nearly every aspect of our 
lives. In parallel, nonhuman-operated devices are progres-
sively coming online to form the Internet-of-Things (IoT) as 
society continues to be digitized.

Wireless networks have changed dramatically over the past 
few decades, enabling this revolution in service provisioning 
and making it possible to accommodate the ensuing dramatic 
growth in traffic. There are many contributing components, 
including new air interfaces for faster transmission, channel 
coding for enhanced reliability, improved source compression 
to remove redundancies, and leaner protocols to reduce over-
heads. Signal processing is at the core of these improvements, 
but nowhere has it played a bigger role than in the development 
of multiantenna communication. This article tells the story of 
how major signal processing advances have transformed the 
early multiantenna concepts into mainstream technology over 
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the past 25 years. The story therefore begins somewhat arbi-
trarily in 1998. A broad account of the state-of-the-art signal 
processing techniques for wireless systems by 1998 can be 
found in [2], and its contrast with recent textbooks, such as [3], 
[4], and [5], reveals the dramatic leap forward that has taken 
place in the interim.

Fundamentals of multiantenna communications
Traditionally, a base station (BS) at a cellular network site fea-
tured antenna panels connected to a baseband unit (BBU) that 
managed the digital signal processing. These panels, in turn, 
were tall and narrow, containing multiple vertically stacked 
radiating elements. By emitting the same signal from such 
elements, constructive superposition was leveraged to create 
a radiation pattern, vertically narrow and horizontally wide, 
that covered a swath of ground in a predefined manner. This 
is illustrated in Figure 1(a), with each panel’s coverage region 
termed a cell sector.

At current BSs, the panels have been replaced with antenna 
arrays having a more symmetric aspect ratio, which results 
in radiated beams that can be narrow both horizontally and 
vertically. The signal transmitted from each antenna element 
is individually controlled by the BBU, which now has far 
stronger computational capabilities and can alter the physical 
shape of the produced beam over both time and frequency. 
Figure 1(b) illustrates such a setup, and how each beam is nar-
row enough to aim at a particular user. When these arrays are 
used in propagation environments with multiple widely spaced 
paths, each radiated signal loses its directional beam shape and 
is instead fine-tuned to make the paths superimpose coherently 
on a small region around the intended receiver.

Antenna arrays bring about three main categories of  
benefits:
1)  Beamforming gain: The transmit beam is focused on the 

receiver, whereby a larger fraction of the radiated energy 
reaches it. Likewise, multiple receive antennas can collect 

more energy from selected directions, reinforcing the beam 
at that end with a focus on the transmitter. The overall 
beamforming gain is proportional to the transmit and 
receive array sizes.

2)  Spatial diversity: There are generally multiple paths via 
which signals travel between the transmitter and receiver, 
and the ensuing signal replicas can combine destructively. 
This causes signal fading, which antenna arrays can mitigate 
by observing multiple fading realizations simultaneously.

3)  Spatial multiplexing: Multiple signals can be transmitted 
concurrently on different beams, either to a single user 
equipped with multiple antennas, or to multiple users, as in 
Figure 1(b). This provides a traffic multiplier or multiplex-
ing gain, provided the interference among the signals can 
be kept at bay.
Above, and in the sequel, the beamforming gain is taken as 

the increase in signal power at the receiver, yet a more nuanced 
description would further include the reduction in interfer-
ence to and from unintended users [5, Sec. 5.7]. With a careful 
design, beamforming can strike an optimum balance between 
increasing signal energy and reducing interference.

State-of-the-art in 1998
Some of the benefits of antenna arrays were understood well 
before 1998, but their technology readiness levels were much 
different than today. Marconi himself famously capitalized on 
beamforming to enable wireless transatlantic communication 
in 1901. That experiment relied on an array antenna, which 
achieves beam directivity by connecting multiple elements to 
the same signal generator. The geometry of the array antenna 
determines the direction in which the radiated signals super-
impose constructively. Hence, the beam direction is fixed and 
determined at the time of building and erecting the array. This 
is how the 2G antennas in Figure 1(a) were designed to cover a 
sector with a fixed beam.

A different beam direction than the one dictated by the 
array geometry can be realized by emitting the same signal 
from all of the elements, but with appropriate phase shifts. 
This concept was first observed experimentally by Ferdinand 
Braun in 1902, and it led to the phased array technology used 
for radar since World War II. The phase shifts can be varied 
over time, to scan for objects in different angular directions. 
Early field trials of phased arrays for 2G were conducted in 
1996 [6]. The possibility of pointing the beams to user loca-
tions opened the door to stronger directivities and higher gains, 
since a beam no longer had to cover an entire sector. The dif-
ference between array antennas and phased arrays is illustrat-
ed in Figure 2, which also depicts the digital antenna arrays 
featured in 5G, where each element is connected to a separate 
signal generator.

In parallel with the refinement of phased arrays for beam-
forming over several decades, the use of multiple receive 
antennas for diversity also became commonplace. Spatial 
diversity was conceived for signal reception as far back as the 
1930s [7] and builds on an intuitive principle: if the same sig-
nal reaches several physically separated antennas, it is unlikely 
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FIGURE 1. (a) A 2G deployment in 1998, consisting of fixed directive 
antennas that broadcast each signal into a sector. (b) A 5G deployment in 
2023, entailing antenna arrays that can exploit the three main multianten-
na benefits: beamforming gain, spatial diversity, and spatial multiplexing.
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that the multipath propagation environment causes destructive 
superposition, hence signal fading, at all such antennas simul-
taneously. By decoding a combination of the observations at 
the various receive antennas, the communi-
cation becomes much more reliable.

A wireless network must of course pro-
vide an uplink connection from users to 
BSs, as well as a downlink connection from 
BSs to users. Thus, diversity is desirable in 
both link directions, yet transmit diversity 
did not emerge until the 1990s [8]. In 1998, 
the Alamouti space–time block code for 
two antennas was proposed [9] and a more 
general framework for space–time coding 
with multiple transmit antennas was published soon thereaf-
ter [10]. The principle is to repeatedly transmit a block of data 
symbols while varying the spatial directivity in a predeter-
mined way (e.g., using different antennas); the receiver collects 
observations over a time interval and decodes them. Space–
time codes are carefully crafted to not only enable decoding, 
but to strike a satisfactory tradeoff between high spectral 
efficiency (i.e., bits per second per Hertz of spectrum), high 
diversity, and low complexity.

Altogether, beamforming gains and spatial diversity were 
known by 1998, and it was largely thought that these were the 
two main benefits of antenna arrays: beamforming gains in 
the case of coherent arrays, associated with tight antenna spac-
ings and cleanly defined directions of arrival and departure, 
and diversity gains in the case of arrays experiencing largely 
uncorrelated fading across the antennas, associated with wider 
spacings and rich multipath settings. The third, and ultimately 
the most powerful benefit of antenna arrays, spatial multiplex-

ing, was still largely under the radar. However, its seeds had 
already been planted in research efforts on interference-aware 
beamforming [11] and on communication concepts for linear 

channels that couple multiple inputs into 
multiple outputs [12]. Unlike beamform-
ing and diversity, which involved replicas 
of a single signal, these precursors of spa-
tial multiplexing entailed the transmission 
and reception of distinct signals simulta-
neously and on the same bandwidth. Par-
ticularly prescient was the transmission and 
reception with two orthogonally polarized 
antennas, subsequently extended in a piece 
that featured multiantenna transmitters and 

receivers with many of the ingredients required for true spatial 
multiplexing [13]. However, it was not until after 1998 that all of 
these pieces fell into place.

External technology developments
Three external trends have heavily guided and influenced the 
evolution of multiantenna technology over the past decades.
1) The explosion in wireless traffic, which has doubled every 

18 months as per Cooper’s law, along with a fundamental 
change in the nature of such traffic, was driven by new user 
behaviors and applications. An efficient network for tele-
phony had to support many simultaneous fixed-rate connec-
tions, while today’s data networks aim at maximizing the 
bit rate per user device (to support certain applications) and 
the bit rate per unit area (to accommodate many devices).

2) The exponential improvement and size reduction of inte-
grated circuits have led to systems-on-a-chip that combine 
radios, memory, and processors capable of advanced 
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FIGURE 2. There are three classical categories of arrays: (a) array antennas that generate fixed beams, (b) phased arrays that rely on phase shifters to 
control the beam direction, and (c) digital antenna arrays that have full control of the signal transmitted from each antenna element.

Wireless networks have 
changed dramatically over 
the past few decades, 
enabling this revolution 
in service provisioning 
and making it possible to 
accommodate the ensuing 
dramatic growth in traffic.
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signal processing on a tiny piece of silicon. While in 1998, 
a digital antenna array with M = 2 or M = 4 elements 
would consist of M external antenna elements connected 
to M radio frequency (RF) units and one BBU, current 5G 
BSs can integrate M = 64 elements and RF units into a 
single box. This development has also 
enabled smartphones to feature digital 
arrays, for now with M = 4 elements.

3) The gradual change in the signal wave-
forms: There were multiple 2G stan-
dards based either on time-division 
multiple access (TDMA) or code-DMA 
(CDMA). The first versions of 3G, 
finalized precisely around 1998, were entirely based on 
CDMA, which won the battle against the competing 
orthogonal frequency-DMA (OFDMA). For 4G, the shift 
to OFDMA finally took place, and 5G retained this same 
waveform after a handful of alternatives were evalu-
ated and discarded. While all waveforms are in principle 
compatible with antenna arrays, the choice does have a 
fundamental impact on what signal processing algorithms 
are required.

Five key areas of signal processing advances
We have identified five stages of signal processing advances in 
the evolution of multiantenna technology from 2G to 5G and 
beyond. The background, new solutions, and specific insights 
are expounded on in the following sections.

From spatial diversity to spatial multiplexing
One could argue that, all the way back to Marconi, beamform-
ing was motivated by the interest in extending the range of cov-
erage. In turn, diversity was motivated by the desire to increase 
reliability. By 1998, the exploding cost of radio spectrum ahead 
of 3G brought about a new and powerful necessity: increasing 
the spectral efficiency. The shift toward high bit-rate user ap-
plications further amplified this trend. The operational mode 
of antenna arrays that maximizes the spectral efficiency is spa-
tial multiplexing and, after 1998, the atmosphere was therefore 
primed for it to finally come to the fore.

The prerequisite for spatial multiplexing is a multiple-input 
multiple-output (MIMO) communication channel, where each 
input/output refers to an antenna element in a digital antenna 
array. There are two MIMO categories: single-user MIMO 
entails a multiantenna BS and a multiantenna user device, 
while multiuser MIMO encompasses a multiantenna BS and 
multiple user devices.

Arguably, the main catalyst for single-user MIMO was 
the work in [14], which set out to design the perfect trans-
ceivers from an information-theoretic standpoint. Starting 
with transmit and receive digital antenna arrays and no pre-
set conditions on how to employ them, it was found that, if 
the elements within each array exhibited uncorrelated fading, 
the optimum strategy was to have each radiate an indepen-
dent data-carrying signal. This was radically novel in that it 
sought to exploit, rather than counter, multipath propagation; it 

is the very existence of multiple paths that allows the receiver 
to observe a distinct linear combination of the transmit signals 
at each receive antenna, from where those transmit signals 
can be resolved. The number of signals that can be spatially 
multiplexed is then limited by the minimum of the number of 

transmit and receive antenna elements. In 
follow-up work, a specific architecture was 
proposed to effect such spatial multiplexing, 
the so called layered architecture, which 
was remarkable in that it could be built 
with off-the-shelf encoders and decoders 
and did not require the transmitter to know 
anything about the channel [15]. Additional 

results progressively solidified the theoretical underpinnings 
[16]. In particular, the idea of transmitting concurrent signals, 
one from each antenna element, was generalized to the trans-
mission of concurrent beams from all elements at once. Phased 
arrays cannot achieve such spatial multiplexing because they 
only create one beam at a time, and digital antenna arrays are 
decidedly necessary.

Multiuser MIMO can be traced back to signal process-
ing concepts for simultaneous uplink reception from mul-
tiple users [17] and simultaneous downlink beamforming to 
users in different angular directions [18]. Here, the number 
of signals that can be spatially multiplexed is not limited by 
the number of antenna elements per user, but rather across all 
users; even if each user features a single element, it is possible 
to spatially multiplex one signal to/from each one. This major 
advantage comes at the expense of the BS having to carefully 
arrange the transmit and receive beams, such that each one 
matches with the multipath characteristics of its intended 
user and there is minimal interference among them, as in  
Figure 2(b). With that, every user can transmit continuously 
and over the entire system bandwidth, rather than only in a 
time slot and/or frequency subband, reflecting the spatial 
multiplexing benefit. Multiuser MIMO is a generalization to 
multipath settings of classical space-DMA (SDMA), whereby 
users share a channel in space rather than in time or frequency. 
Interestingly, the SDMA concept is more than 20 years older 
than single-user MIMO [19], which showcases that establish-
ing many simultaneous user connections was long perceived 
more important in wireless networks than achieving high data 
rate per connection.

The potential of MIMO, in both its single-user and mul-
tiuser fashions, sparked a chain reaction that spread rapidly 
through academia and industry, bringing much excitement by 
the early 2000s. Cellular standardization bodies, in particu-
lar, the 3G partnership project (3GPP) adopted it in a limited 
fashion for late 3G releases and then as an integral part of the 
designs beginning with 4G. Even faster was the adoption with-
in Wi-Fi, with the first version including MIMO certified in 
2007 and supported by a multitude of devices, including lap-
tops, tablets, and smartphones.

MIMO harnesses the three dimensions of benefits shown 
in Figure 3: beamforming gain, spatial diversity, and spatial 
multiplexing. A clear understanding of how these benefits are 
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related has emerged over time. Fundamental tradeoffs have 
been identified, for given array configurations and channel 
conditions.

 ■  Beamforming is a special case of spatial multiplexing 
where a single beam is transmitted to a single user. This is 
in fact the optimum strategy when the signal-to-noise ratio 
(SNR) is low; maximizing the signal energy is then of the 
essence, and the best recipe is to concentrate all the radiat-
ed energy on the strongest beam. At high SNR, in contrast, 
energy is plentiful and can be spread over multiple beams, 
to the point that it is optimum to activate 
as many beams as the channel and 
antenna counts allow. This is represent-
ed by the blue plane in Figure 3.

 ■  Spatial diversity, roughly quantified as 
the number of independently faded sig-
nal replicas, and spatial multiplexing, 
meaning the number of concurrent 
beams, cannot be simultaneously maxi-
mized. These two quantities are rather 
subject to a tradeoff [20]. At the extreme points of this 
diversity-multiplexing tradeoff, one of the quantities is 
maximized while the other stands at a minimum. Various 
combinations are feasible at intermediate points of the 
tradeoff curve, which is cartooned on the yellow plane 
of Figure 3.
As mentioned, the choice between beamforming and spa-

tial multiplexing is dictated by the SNR, hence, by its under-
lying parameters (e.g., transmit power, channel attenuation, 
noise power). In turn, the mix of diversity and multiplexing 
depends on whether the priority is to increase reliability or 
spectral efficiency. However, the operating point should be 
selected holistically, and over the years this has caused the mix 
to shift toward less diversity and more multiplexing. Indeed, 
as successive system generations have spanned ever broader 
bandwidths, more and more diversity has been reaped in the 
frequency domain. The rewards of additional diversity rapidly 
saturate, thus the need for spatial diversity has abated [21]. This 
of course does not apply to narrowband control channels or 
to low-power short-packet IoT communication, where spatial 
diversity remains important, but it does hold for the user data 
channels that carry the bulk of the traffic in cellular networks.

From spatial multiplexing to massive MIMO
The basics of MIMO, developed under the premises of perfect 
channel state information (CSI) and rich scattering, indicate 
that an arbitrarily high spectral efficiency can be achieved by 
deploying sufficiently many antennas and serving many users 
at once. However, the practical challenges became apparent 
when the technology was first commercialized. The spatial 
multiplexing capability in single-user MIMO was often re-
stricted by limited scattering, while multiuser MIMO is re-
strained by imperfect CSI. Massive MIMO, a new form of 
multiuser MIMO that originated from [22], was developed 
in the 2010s to address these issues and is now at the heart 
of 5G.

The new aspects of massive MIMO are as follows. First, it 
relies on having many more BS antennas than spatially multi-
plexed users. This design choice renders the beams relatively 
narrow (e.g., in the sense of focusing on a small region around 
the intended receiver), hence there is likely to be little overlap 
among beams focused on distinct users. Moreover, by virtue of 
these favorable conditions, whatever little interference exists 
can be suppressed through low-complexity linear signal pro-
cessing: for example, regularized zero-forcing that fine-tunes 
each beam’s focal area to balance a strong beamforming gain 

with low interference [23]. At the same 
time, and again because of the excess BS 
antennas, the effective channels provided 
by these beams harden, meaning that they 
become very stable and subject to only min-
imal fading fluctuations.

Second, massive MIMO is tailored for 
resource-efficient CSI acquisition. The main 
estimation principle is to emit separate pre-
defined pilot signals from each antenna 

element and then gauge the channel coefficients from the 
observations of these pilots at the receive elements. Massive 
MIMO adopted time-division duplexing (TDD), where the 
same bandwidth is utilized, in alternating fashion, for uplink 
and downlink. Since, by virtue of reciprocity, the channel is 
then identical in both directions, it suffices to estimate its coef-
ficients in one direction. Specifically, the CSI required for both 
uplink and downlink is obtained from uplink pilots. The nec-
essary pilot resources are thus determined by the number of 
multiplexed users, with no dependence on the number of BS 
antennas. In contrast, many previous commercial implemen-
tations of multiuser MIMO were based on frequency-division 
duplexing (FDD), where the uplink and downlink channels were 
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FIGURE 3. There are three benefit dimensions of multiantenna communi-
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entirely different, or TDD operation without using reciprocity. 
The downlink operation then required the BS to transmit as 
many pilots as it has antennas, except in specific propagation 
scenarios where the channels can be parametrized using a few 
angles. Moreover, each user needed to quantize and feedback 
its channel estimates to the BS. In a typical 5G setup with  
M = 64 BS antennas that spatially multiplex K = 8 users, the 
FDD alternative would require M/K = 8 times as many 
pilots and a proportional amount of extra 
CSI feedback.

The TDD operation is particularly help-
ful in complex propagation environments 
with many paths per user, such as the one 
sketched in Figure 4, where the optimum 
downlink transmission spreads a user’s sig-
nal energy in many directions to match the 
reflecting objects. CSI acquisition through 
uplink pilots automatically captures these 
fine characteristics, without any prior chan-
nel knowledge or array calibration. In FDD operation, besides 
requiring vastly more pilot resources, essential channel details 
are lost in the feedback quantization. In cellular networks, pilot 
signals must be reused with care across cells to avoid pilot con-
tamination phenomena, whereby BSs inadvertently beamform 
toward pilot-sharing users in neighboring cells. This is par-
ticularly a concern in TDD operation, where uplink estimation 
errors also affect the downlink. A multitude of signal process-
ing and resource allocation schemes have been developed over 
the past decade to alleviate pilot contamination [3], [4].

Massive MIMO provides a solid foundation for practical 
signal processing design. While sophisticated information 
theory for multiuser MIMO existed already by the 2000s 
[24], it was largely limited to scenarios with perfect CSI. As 
CSI quality is the main limiting factor of multiuser MIMO 

performance, this constrained the practical usefulness of the 
available theory. Thanks to the reliance on linear signal pro-
cessing, massive MIMO analyses successfully handle imper-
fect CSI and hardware imperfections, resulting in rigorous 
and mathematically clean spectral efficiency expressions that 
not only predict actual performance accurately, but serve as 
effective tools for system optimization (e.g., pilot allocation, 
power control, and beamforming). Massive MIMO theory not 

only turned multiuser MIMO into a prac-
tically feasible technology, the analytical 
elegance also expanded the way informa-
tion theory for wireless communication can 
be taught [3], [4].

As mentioned, uplink–downlink reci-
procity in TDD operation is important for 
massive MIMO. Reciprocity holds for the 
over-the-air propagation as long as the chan-
nel impulse response remains constant: 
that is, provided the duplexing takes place 

within the channel coherence time. However, the transceiver 
hardware is generally not reciprocal between transmission and 
reception, for instance due to mismatches in the local oscilla-
tors. Such hardware nonreciprocity calls for a calibration pro-
cedure that phase-synchronizes the antennas within each array 
through occasional mutual measurements.

Today, 5G BSs feature almost exclusively massive MIMO 
configurations in TDD bands, with arrays of M = 32 
or M = 64 antennas being the most common. Early on, 
there were concerns that the signal processing would entail 
an exceedingly high energy consumption, but this concern 
was later dispelled, and dedicated systems-on-chip are now 
available that implement clever signal processing algorithms 
for the entire BBU, including massive MIMO, at reasonable 
energy costs.

A quest for more bandwidth at higher frequencies
Bit rate has long been the performance metric that users of 
wireless technology are most familiar with, and hence wireless 
technology has evolved to support higher values thereof. The 
bit rate enjoyed by a single device equals the product of the 
spectral efficiency and the spectral bandwidth. Therefore, be-
sides being driven higher by single-user MIMO, bit rates have 
expanded over time thanks to the allocation of new frequency 
bands. A 2G network typically had access to 20 MHz at car-
rier frequencies around 1 GHz, while current 5G networks pri-
marily span 100 MHz in the 3.5-GHz range, with the standard  
supporting in excess of 500 MHz.

The radio spectrum is a limited natural resource shared by 
a multitude of technologies, including those beyond the civil-
ian wireless communication arena considered in this article. 
While a few sub-6-GHz bands have been refarmed from out-
dated technologies to cellular networks, the strive for fresh 
bandwidth inevitably pushes systems toward ever higher fre-
quencies. In particular, millimeter-wave (mmWave) bands, nomi-
nally starting at 30 GHz, are now part of 5G. First-generation 
mmWave technology has been rolled out by a few telecom 
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challenging to estimate with sufficient accuracy to enable multius-
er MIMO communication, but the TDD CSI estimation approach in 
massive MIMO manages this.
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operators, while the bulk of them wait for the hardware to 
mature and for the 3.5-GHz band to become congested.

The field strength of a signal radiated from a point source in 
free space attenuates with distance in a frequency-independent 
manner. Then, the power captured from such an electric field 
is proportional to the receiver’s aperture and, since the size of 
an antenna element shrinks with the wavelength, an increased 
carrier frequency necessitates further antenna elements to 
maintain the desired aperture. Moreover, the channel condi-
tions in cellular networks become steadily more challenging 
as the frequency shifts up due to reduced scattering and dif-
fraction, and steeper penetration losses, all of which call for 
beamforming gains. Multiantenna technology is therefore 
paramount at mmWave frequencies.

At the same time, implementation becomes difficult, and 
not only because of the added hardware components and the 
huge dimensionalities in digital signal processing. When mov-
ing to higher frequencies and broader bandwidths, hence to 
faster sampling rates, power amplifier efficiency and dissipa-
tion in analog-to-digital converters (ADCs) are further issues 
that need attention. The signal processing community has 
explored two main ways to deal with the hardware and algo-
rithmic complexity [25].

The first option is to reduce the number of RF units, par-
ticularly converters, by designing transceivers as a mix of 
phased arrays and digital antenna arrays. The resulting hybrid 
analog–digital antenna array is illustrated in Figure 5, where 
each column is a phased subarray that is connected separately 
to the BBU, such that different signals can be transmitted and 
received. Each subarray can form a single beam and spatial 

multiplexing can then be applied through different linear 
combinations of those beams. If the channel features a small 
number of propagation paths, each subarray can focus a beam 
on one of those paths, and the communication performance of 
a digital antenna array can be attained with fewer hardware 
components. In the multipath scenario illustrated in Figure 4, 
five distinct beam directions are sufficient to communicate 
effectively. Hybrid antenna arrays can take other forms, but 
generally entail a semianalog beamforming implementation 
with more antenna elements than digital ports [26]. There are 
several prices to pay for abandoning the digital antenna array 
paradigm. One can only transmit as many beams as there are 
digital ports and the beamforming fidelity is crippled in wide-
band systems since combinations of the same beams must 
be used on all subcarriers. Channel estimation becomes 
more intricate since each phased array must sweep through as 
many beam directions as it has elements in order to excite all 
channel dimensions.

An alternative to reducing the number of RF units is digi-
tal antenna arrays with lowered ADC resolutions, as also 
illustrated in Figure 5. The energy consumption of an ADC 
grows exponentially with the resolution, hence enormous ener-
gy reductions are possible by moving from the conventional  
15 bits per sample down to, say, five bits per sample. And yet, 
since an array with M elements and b-bit ADCs collects a total 
of bM bits per sample period, the total number of ADC bits 
can still be sizeable even if b is small, explaining why a high 
spectral efficiency can be maintained [27]. The extreme case 
of uplink massive MIMO with b = 1 happens to be analytically 
tractable [28], which has facilitated the emergence of signal 
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FIGURE 5. Conventional digital antenna arrays incur a high energy consumption when implemented at mmWave frequencies. There are two main ways to 
circumvent this: (a) Reduce the number of components using hybrid analog-digital antenna arrays, consisting of multiple phased subarrays; (b) Design 
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processing algorithms that compensate for the ensuing quan-
tization distortion. The downlink counterpart involves low-
resolution digital-to-analog converters [29].

Reduced bit resolution is also viable for hybrid antenna 
arrays; if the analog signal combining prior to quantization and 
the digital postprocessing is properly opti-
mized for the communication task at hand, 
the signal content becomes more amendable 
to a low-bit representation [30].

The initial 5G mmWave products are 
based on hybrid arrays, but there are indica-
tions that the low-resolution approach might eventually become 
the preferred solution [31].

Further opportunities for dimensionality reduction
The joint evolution toward arrays with more antenna elements 
and wider bandwidths, requiring higher sampling rates, makes 
it essential not to overdesign the transceivers. As an alterna-
tive to scaling up a conventionally small digital array, Figure 5 
showcases two ways of increasing the antenna element counts 
while reducing the hardware complexity per element. Both 
approaches capitalize on the massive MIMO philosophy of 
having more antenna elements than multiplexed beams, which 
enables a reduction in the beamforming exactness because the 
beams are so narrow that interuser interference is low anyway. 
Further dimensionality reductions are possible by exploit-
ing the structure of the channel—say, sparsity in the angular,  
frequency, and time domains—or by exploiting the specific 
task the system is designed to address.

Besides being exponential in the resolution, the energy con-
sumption of an ADC is proportional to the sampling rate. A 
host of ideas based on sub-Nyquist sampling and compressed 
sensing have been proposed to reduce the sampling rate by 
exploiting various forms of channel structure that exist in 
many scenarios [32]. In mmWave channels with a small num-

ber N of propagation paths, there might be only roughly N 
nonzero taps in the channel impulse response regardless of the 
bandwidth. Such time-domain sparsity in the channel response 
can be leveraged to reduce the sampling rate [33]. The N paths 
are likely distinct also in the angular domain, given that BSs 

are usually deployed high above the envi-
ronmental clutter; reflections take place 
only locally around each user, subtending 
a small angular spread at the distant BS. 
Figure 6 illustrates such a scenario with 
N = 3 distinct paths, supporting three mul-

tiplexed signals. The line-of-sight path has a distinctly short 
delay, while the two remaining paths have similar delays but 
are clearly distinguishable in the angular realm. The joint 
channel sparsity is represented by the three colored entries in a 
time-angle matrix, with the vast majority of entries containing 
no propagation paths. Combining these forms of sparsity with 
modern compressed-sensing tools enables hefty reductions in 
sampling rates.

Many data services exhibit intermittent activity patterns; 
among the thousands of devices associated with a BS, only a 
small subset requires data transfers within a given time slot. 
Signal processing can enable these devices to transmit effi-
ciently without requiring a preceding access procedure. The 
key is to assign each device with a unique but nonorthogonal 
pilot sequence and then utilize sparsity in the user domain 
along and the large number of spatial samples obtained over an 
antenna array to enable user identification and channel estima-
tion [34]. The joint user and data detection problem has also 
been approached using compressed sensing methods [35]. 

Commercial massive MIMO products already exploit some 
elementary channel sparsity; for instance, the received signals 
over the many antennas might be transformed into an equal 
number of angular dimensions. The dimensions that contain 
little power are discarded in the early stages of the digital 

Path 1 (Line-of-Sight)

Path 2 (Reflected)

Path 3 (Reflected)

Angular Dimension

: Zero Coefficients

: Nonzero Coefficients

Channel
Taps

in Time

FIGURE 6. The channel in mmWave systems with large spectral bandwidths and antenna counts might exhibit sparsity in the joint time-angle domain. In 
this example, there are N = 3 paths that are distinct in both time and angle. The sparse impulse response can be exploited along with compressed sens-
ing techniques to reduce the sampling rate, thereby lowering power consumption.

The MIMO technology 
is now present in every 
smartphone and BS that 
enters the market.
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uplink processing to shrink the dimensionality of the remain-
ing computations. However, the more radical compressed sens-
ing solutions are yet to be brought to life.

Machine learning-based  
algorithmic refinements
One of the most active areas in contemporary signal processing 
is machine learning (ML). While this is a many decades-old 
discipline, the increased availability of large amounts of data 
and processing power has, in recent years, greatly enhanced its 
potential to transform the implementation of many signal pro-
cessing tasks from more traditional model-driven algorithms 
into data-driven ones. This transformation 
is also taking place in the context of signal 
processing for wireless communications, 
which has traditionally been very heav-
ily (and successfully) model-based. Several 
trends are driving this transformation. One 
trend is that, with the vast amount of IoT 
and machine-type connections that coexist 
with human-type broadband connections, 
wireless network traffic is becoming increasingly intricate to 
model accurately, thereby making network operation difficult 
to optimize. Another trend is that antenna arrays and other 
sensors are becoming pervasive on smartphones and other 
connected devices, hence the volume of data available for 
learning is swelling dramatically. Yet a third trend is that the 
amount of processing power distributed throughout wireless 
networks is growing rapidly, giving rise to paradigms such as 
fog and edge computing.

There is a confluence of ML and communications in the 
optimization of wireless networks. This is a very natural appli-
cation for ML since the operation of these networks involves 
a multitude of tasks that ML is good at addressing, including 

inferential tasks, such as channel estimation, signal detection, 
and data decoding, as well as decision-making tasks such as 
routing, access control, and resource allocation. ML-based 
solutions can capture practical characteristics that were over-
looked by the models, underpinning existing algorithms. How-
ever, to ensure that ML algorithms improve upon the existing, 
it is essential to initiate the training procedure judiciously.

The model-aided ML paradigm provides a structured way 
to transfer classical know-how from the signal processing 
community onto new ML algorithms [36]. Figure 7 exempli-
fies how an existing iterative algorithm can be transformed 
into an enhanced ML algorithm. The existing algorithm takes 

an initial input signal and processes/updates 
it iteratively until a predefined termination 
criterion is satisfied, at which point the final 
output is obtained. The specific processing 
is normally obtained through model-based 
algorithm design. Instead of expressing the 
algorithm as a loop, L iterations of the algo-
rithm can be expressed as a sequence of L 
identical processing layers. If a data-driven 

training procedure is employed to fine-tune these processing 
layers, which no longer have to be identical, what ensues is an 
ML algorithm that is guaranteed to perform better than the 
original model-based algorithm. This procedure is called algo-
rithm unrolling or deep unfolding, and it has in recent years 
been utilized to enhance various multiantenna tasks, including 
signal detection [37] and beamforming optimization for down-
link multiuser MIMO [38].

A peek into the future
Over the past 25 years, multiantenna techniques have gone 
from rudimentary designs for beamforming and diversity 
combining to a mainstream technology that uses massive 
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FIGURE 7. Many conventional model-based algorithms for optimization in multiantenna communication are iterative. Suppose one such 
algorithm can be expressed as an iterative processing loop that continues until a termination criterion is satisfied. An enhanced ML 
algorithm can be developed through algorithm unrolling; that is, writing the iteration as L separate processing layers and fine-tuning 
these layers through a data-aided training procedure.

Recent theoretical 
breakthroughs, including 
ML-based algorithms, 
are bound to continue 
sustaining the progress 
of the technology.
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spatial multiplexing to multiply the capacity of 5G networks. 
The MIMO technology is now present in every smartphone 
and BS that enters the market. Fast and capable signal process-
ing algorithms have enabled this leap forward, and are cur-
rently buttressing the emergence of low-power 5G mmWave 
transceivers where high-resolution hardware components are 
replaced with digital processing. Recent theoretical break-
throughs, including ML-based algorithms, are bound to con-
tinue sustaining the progress of the technology.

Indeed, we expect the multiantenna communication jour-
ney to continue. The insatiable growth in data traffic can only 
be met by deploying ever more antennas and ever more band-
width. The massive MIMO philosophy prescribes that the 
number of BS antennas, M, must scale proportionally to the 
number of active users, K. As the complexity of algorithms, 
such as regularized zero-forcing is proportional to MK2 [4], 
a linear scaling in both K and M implies a cubic complexity 
growth. Moreover, once the bandwidth surpasses 1 GHz, the 
sampling rates approach the clock speed of existing proces-
sors, which renders the implementation even more demanding. 
The compressed sensing algorithms described earlier might be 
suitable to address these challenges, but there is likely room for 
many new signal processing advances.

When adding ever more antennas to BSs, practical size 
and weight constraints might make new deployment prin-
ciples necessary, beyond the boxes-in-a-tower paradigm. One 
promising approach is to distribute the antennas over multiple 
physical locations while retaining the coherent transmission 
and reception processing, a concept rooted in cell cooperation 
and network MIMO ideas, as well as in the notion of remote 
RF units, and whose present embodiment is termed cell-free 
massive MIMO [39]. Apart from stronger beamforming gains, 
a distributed antenna deployment can provide improved spatial 
multiplexing capabilities and macroscopic diversity against 
the shadowing of large objects in the environment. The cur-
rent trend of shifting baseband computations from BS sites to 
edge-cloud computers will ease the adoption of this deploy-
ment approach.

After two decades of smartphones ruling the wireless eco-
system, other devices, such as extended reality eyeglasses, are 
predicted to take center stage. New services will surface, with 
renewed standards for the bit rates, latency, and reliability that 
users expect wireless networks to deliver. Other performance 
metrics might arise to dictate future technology development, 
particularly related to sustainability, environmental impact, 
and deployment costs, as well as to the digital divide between 
the digitized and far-from-digitized regions of the world.

Beyond the signal processing advances captured in this 
article, two emerging research topics build on multiantenna 
technology. The first is integrated communication and sens-
ing [40], which explores how large-scale antenna arrays 
can be simultaneously used for accurate radar sensing, 
localization, and communication. It seems natural that the 
deployment of massive antenna numbers for communication 
purposes can be the catalyst for other applications that ben-
efit from wireless measurements. Another related research 

direction is that of smart surfaces [41], whose signal reflec-
tion properties can be controlled by means of metamaterials 
with programmable impedance patterns. These reconfigu-
rable intelligent surfaces provide a sort of passive beam-
forming that is particularly useful to enhance propagation 
conditions over wireless channels.
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Beamforming is a signal processing technique to steer, shape, 
and focus an electromagnetic (EM) wave using an array 
of sensors toward a desired direction. It has been used in 

many engineering applications, such as radar, sonar, acoustics, 
astronomy, seismology, medical imaging, and communications. 
With the advent of multiantenna technologies in, say, radar and 
communication, there has been a great interest in designing 
beamformers by exploiting convex or nonconvex optimization 
methods. Recently, machine learning (ML) is also leveraged for 
obtaining attractive solutions to more complex beamforming 
scenarios. This article captures the evolution of beamforming 
in the last 25 years from convex to nonconvex optimization and 
optimization to learning approaches. It provides a glimpse into 
these important signal processing algorithms for a variety of 
transmit–receive architectures, propagation zones, propagation 
paths, and multidisciplinary applications.

Introduction
Beamforming is ubiquitous and essential to a multitude of ar-
ray processing applications, such as radar, sonar, acoustics, 
astronomy, seismology, ultrasound, and communications [1]. 
Recent advances in mobile communications, usage of large 
arrays, high-frequency sensors, near-field signal recovery, and 
smart radio environments open up interesting and novel signal 
processing problems in beamforming. These applications are 
driving the need for higher robustness, flexible deployment, 
and low complexity in beamforming algorithms and an em-
phasis on advanced signal processing that should be tailored 
for emerging application-specific requirements.

Early experiments with beamforming could be traced 
back to Guglielmo Marconi, who used a circular array with 
four antennas to improve the gain of trans-Atlantic Morse 
code transmission in 1901 [2]. A similar early demonstra-
tion of gains provided by a phased array to direct radio waves 
was in 1905 by Karl Ferdinand Braun, who shared the Nobel 
Prize in Physics with Marconi in 1909 for their contributions 
to wireless telegraphy [3]. In the 1940s, antenna diversity as a 
technique to overcome fading was developed for phased array 
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radars and radio astronomy [4]. By the 1950s–1960s, with the 
development of phased arrays for sonars, the steering of signals 
with antenna arrays was no longer restricted to EM waves [5].

Adaptive beamforming [6], [7] emerged in the late 1960s, 
wherein a processor at the antenna back end updates and com-
pensates the array weights. In particular, Bernard Widrow intro-
duced the least mean square algorithm to update the weights at 
every iteration by estimating the gradient of the mean-square 
error (MSE) between the desired and received signals [7]. Sub-
sequently, J. Capon proposed selecting the weight vectors, or 
beamformers, to minimize the array output power. The Capon 
beamformer is subjected to the linear constraint that the signal 
of interest (SoI) does not suffer from any 
distortion, e.g., direction mismatch, signal 
fading, local scattering, etc. [6], [8]. Hence, 
this technique is also usually referred to as 
the minimum variance (MV) distortionless 
response (MVDR) beamforming.

The performance of the Capon beam-
former strongly depends on the knowledge 
of the SoI, which is imprecise in practice 
because of the differences between the 
assumed and true array responses. The beamforming per-
formance is usually measured by the signal-to-interference-
plus-noise ratio (SINR). This may severely degrade even in 
the presence of small errors or mismatches in the steering 
vector [8]. In the past, numerous approaches were proposed 
to improve the robustness against errors/mismatches in the 
look direction [9], [10]; array manifold [11]; and local scatter-
ing [12]. These techniques were limited to only the specific 
mismatch they treat [13], thereby giving rise to early gen-
eralization of robust beamforming approaches, such as the 
sample matrix inversion (SMI) algorithm [14], robust Capon 
beamforming [15], eigenspace-based beamformer [16], worst 
case performance optimization [13], and general-rank beam-
former [17], [18].

In the late 1990s and early 2000s, significant progress was 
made toward robust beamformer design by exploiting convex 
optimization [19]. These methods typically consider minimiz-
ing the effect of mismatches in the array-steering vectors and 
the look direction based on the worst case performance opti-
mization [13], [15], [20]. Here, the optimization problem is cast 
as a second-order cone (SOC) program and efficiently solved 
by interior-point methods. It may also be desirable to design a 
robust MVDR beamformer by including the uncertainty in the 
array manifold via an ellipsoid or a sphere model for a particu-
lar look direction [15], [20].

During the late 2000s, certain applications of beamform-
ing that have nonconvex objective functions or constraints 
gained salience. These included robust adaptive beamforming 
with additional constraints related to the positive semidefinite-
ness (PSD) of the signal covariance matrix [18], norm of the 
steering vectors [21], [22], [23], [24], and stochastic distortion-
less response [25], [26]; multicast transmit beamforming [27]; 
and hybrid (analog/digital) beamforming [28]. The solution 
to these nonconvex optimization problems usually requires 

recasting the problem into a tractable form through the use of, 
for example, semidefinite relaxation (SDR), compressed sens-
ing (CS) [28], and alternating optimization [19]. Solving for 
beamforming weights is generally considered as a continuous 
optimization problem. However, there is a smaller body of lit-
erature [29], [30] on discrete/combinatorial techniques. Here, 
the beamforming weights are selected from a set of exponen-
tials with discretized angles.

In the last decade, with the advent of new cellular com-
munications technologies, beamforming has been extensively 
investigated for multiantenna systems [28]. The 4G networks 
(2009 to present) operating at 2.2–4.9 GHz use up to 32 anten-

nas in a multiple-input, multiple-output 
(MIMO) configuration. The 5G systems 
(2019 to present) offer support for larger 
antenna arrays as well as communication 
at frequencies above 24 GHz. Support for 
larger arrays is essential in millimeter-wave 
(mm-wave) systems to overcome shrinking 
antenna sizes [31]. To reduce the hardware, 
cost, power, and area in mm-wave massive 
MIMO systems, hybrid (analog and digital) 

beamforming has been introduced [28], [31]. Unlike a conven-
tional digital beamformer employing a single radio-frequen-
cy (RF) chain dedicated to each antenna, hybrid approaches 
employ a few (large) RF chains (analog components, e.g., phase 
shifters) to reduce the hardware cost. The hybrid beamformer 
design is also nonconvex because of the unit-modulus con-
straint owing to the use of phase shifters in the analog beam-
formers. This problem has been addressed through techniques 
such as sparse matrix reconstruction via CS [28], optimization 
over Riemannian manifolds [32], phase extraction [33], and 
Gram–Schmidt orthogonalization [34].

Very recently, data-driven methods, such as ML, have 
been leveraged to obtain beamformers. ML is a subset of 
artificial intelligence (AI) that allows neural networks (NNs) 
to learn directly from precedents, data, and examples without 
being explicitly programmed. Many beamformers involve 
nonlinear operations. In this context, NNs are particularly 
attractive because they successfully approximate nonlinear 
functions or predict the class of a function that is divided by a 
nonlinear decision boundary. Compared to the model-based 
techniques, ML has lower posttraining computational com-
plexity, expedited design procedure, and robustness against 
imperfections/mismatches [35], [36], [37]. The ML-based 
hybrid beamforming is also envisioned as a key to realize 
massive MIMO architectures beyond 5G communications 
[38], such as 6G systems operating at terahertz (THz) bands. 
This is largely because ML is helpful in processing copious 
amounts of antenna array data generated by massive MIMO 
systems employed at higher frequencies.

To shed light on the evolution of beamforming tech-
niques, this article presents an overview of the aforemen-
tioned approaches while focusing on major breakthroughs 
during the last 25 years. Specifically, the article aims at 1) 
highlighting the two significant leaps in this research, i.e., 
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convex to nonconvex optimization, and optimization- to 
learning-based beamforming; 2) depicting in detail the ana-
lytical background and the relevance of signal processing 
tools for beamforming; and 3) introducing the major chal-
lenges and emerging signal processing applications of beam-
forming. Figure 1 summarizes some important classes of 
beamformers discussed in this article.

Notation
Throughout this article, uppercase and lowercase bold let-
ters denote matrices and vectors, respectively. Also, ( )$ R  and 
( )H$  denote the transpose and conjugate transpose operations, 
respectively. For a matrix A CM N! #  and a vector ,a CN!  
[ ] ,A ij  [ ] ,A k  A0" , and ,A1" ,  and ai  correspond to the (i, j)
th entry, kth column, real and imaginary parts of A, and ith 
entry of a, respectively, while A@  denotes the Moore–Penrose 
pseudo-inverse of A, and I is the identity matrix of proper size. 

)( aa /
i i
N

2 1
2 1 2< < ; ;R= =  and ( )[ ]A AF

/N
i i
M

j j1 1
2 1 2< < ; ;R R= = =  denote 

the l2  norm and Frobenius norm, respectively.

Convex optimization for beamforming
Convex optimization recasts originally difficult-to-design beam-
formers as computationally attractive problems that yield exact 
or approximate solutions through algorithms, such as interior-
point methods. Its applications have traditionally advanced 
from the simple exact Capon approach to more complex trans-
mit, multicast, network, and distributed beamformers; see, e.g., 
[19] and the references therein for details. In the following, 
we summarize the techniques that yield exact solutions. The 

 approximate solutions are considered under nonconvex beam-
formers in the sequel. 

Capon beamformer
Consider an antenna array with N elements. Define ( )a CN!i  
as the array response to a plane-wave narrowband SoI ( ),s ti  

, , ,i T1 f=  where T is the number of snapshots arriving from 
the direction of arrival (DoA) angle .i  In particular, the steer-
ing vector ( )a i  is

 
R

( ) , , ,
N

e e1 1a
( )

sin
N d

2
1

j2 sin jd
fi = r

m
i r

m
i- -

-8 B  (1)

where d is the element spacing, and m  is the wavelength. Then, 
the N 1#  antenna array output is

 ( ) ( ) ( ) ( )t s t ty a ei i ii= +  (2)

where ( )te Ci
N!  denotes the temporarily and spatially white 

Gaussian noise vector with variance .2v

The received signals are multiplied by the beamforming 
weights, i.e., , , .w w CN1 f !  Therefore, the combined beam-
former output becomes

 ( ) ( ) ( ) ( ) ( )y t t s t tw y w a w eH H H
o i i i ii= = +  (3)

where R, ,w ww N1 f= 6 @  includes the beamformer weights. To 
recover the signal ( ),s ti  the beamformer weights are optimized via

 ( ) 1minimize subject to w R w w aHH
yw

i =  (4)
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FIGURE 1. The major classes of beamforming methods by (a) transmission range: far and near fields; (b) transceiver architectures: analog, digital, and 
hybrid beamforming; (c) paths: LoS and NLoS beamforming, wherein the NLoS path is controlled via joint active (transmitter) and passive (intelligent 
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where ( ) ( )( / ) t tT1R yy H
y i ii

T
1R= =  is the sample covariance 

matrix of the array output. The optimal solution for (4) yields 
the Capon beamformer [6]:

 ( ) ( ) ( ) .w a R a R aH
y y

1 1 1
opt i i i= - - -^ h  (5)

This beamformer requires the knowledge of ( )a i  and .Ry  
Therefore, its performance depends on the accuracy of the 
steering vector constructed from the estimate of i  as well as 
the sample covariance matrix .Ry

To stabilize the main beam response in the presence of a 
pointing error [9], additional constraints are added to the opti-
mization problem as

 minimize subject tow R w C w uH H
yw

=  (6)

where L many constraints are represented by C CL N! #  and 
.u CL!  For example, if it is desired to maximize the beam pat-

tern at 30° and place a null at 40°, then R( ), ( )° ° .30 40C a a= 6 @  
and R, .1 0u = 6 @  The solution to this constrained problem is 

( )w R C C R C uH
y y

1 1 1
C =

- - -  [10].

Loaded SMI beamformer
Even in the ideal case, wherein the SoI direction i  is accurately 
known, beamforming performance may significantly deterio-
rate because of a small training sample size T. This is mitigated 
by adding a regularization term c  to the objective function in 
(4) leading, to loaded SMI (LSMI) beamforming [14]:

 ( ) .1minimize subject tow R w w w aH H
y 2w

< <c i+ =  (7)

Its solution is ( ),w R aLSMI LSMI
1 i= -  where .R R Iy NLSMI c= +

Robust Capon beamformer
The exact knowledge of the SoI direction i  required by the Ca-
pon beamformer is not available in practice. This is addressed 
by robust beamforming, which provides tolerance against the 
inaccuracies in the estimated SoI direction and the correspond-
ing steering vector. A robust variant of Capon beamforming was 
introduced in [15], wherein the convex optimization problem is

 ,minimize subject tow R w w aH
y

1
2w

< < # e-- r  (8)

where ( )aa Ti= + ir  is the inaccurate steering vector for the 
mismatched direction .Ti + i

Beamforming with worst case performance optimization
A more general approach is considered in [13] by taking into 
account the distortions in the steering vector as ( ) ,a a aTi= +u  
where CN

aT !  represents the steering vector distortions. As 
a result, the optimization problem is based on the worst case 
beamforming performance. Relying on the bounded Euclid-
ean norm as 2aT< < # f  corresponding to the case of spherical 
uncertainty [13], the following convex problem is formulated:

 , ,1minimize subject tow R w w aH H
y 2w aT; ; $ < < # fu  (9)

for which the LSMI-based solutions may also be obtained [8], 
[19]. A similar approach, called robust MV beamforming, 
introduced in [20], is based on ellipsoidal uncertainty. Both 
spherical [e.g., ( )aa 2< < #i f-u  in (9)] and ellipsoidal [e.g., 
( ) ( ) ,a a V a aH # f- -u u u  where V CN N! #  is a PSD matrix] mod-
els are used to ensure robust solutions. The latter may naturally 
lead to a more accurate uncertainty description [20] than that 
with spherical models [20], [39] if more information than just 
the same uncertainty radius in all mismatch dimensions is 
available, and an uncertainty ball is replaced by an uncertainty 
ellipsoid. Assuming the availability of more information about 
the mismatch is, however, somewhat contradictory to the notion 
of robustness.

The structure of the beamformer design problem also 
depends on the noise model. Some beamforming techniques 
are based on the MV criterion mentioned earlier. However, this 
criterion is statistically optimal only when the SoI, interfer-
ence, and noise are Gaussian. The non-Gaussian case leads to 
a nonconvex problem as

 , ( ) 1minimize subject to Y w a wH H
p
p

w
< < i =  (10)

where ( ), , ( ) ,t tY y y CT
N T

1 f != #6 @  and ( ) ( ( ))t y ty /
n
N

i p
p

n i
p

1
1< < R= =  

denotes the p,  norm for .p 1$  Note that (10) reduces to Capon 
beamforming of (4) for .p 2=  The solution for (10) is achieved 
via iterative reweighted MVDR techniques [40]. In addition to 
generalizing the noise model, a specific choice of priors over 
the distribution of the beamforming weights may also be used 
in, say, sparsity-driven beamforming [41].

Beamforming for a general-rank source
In practice, the source signal is incoherently scattered such that 
the point-source assumption may not hold [17], and the array 
covariance matrix is no longer rank–1. Therefore, instead of a 
constraint on a single steering vector, the SoI covariance matrix 
is used. The corresponding MVDR-type optimization problem is

 1minimize subject tow R w w R wH H
y sw

=  (11)

where Rs  is the SoI covariance matrix [18]. The optimal solu-
tion to (11) is P ,w R Ry s

1
GR =

-6 @  where P $6 @ is the principal 
eigenvector operator.

Nonconvex beamformer design
Nonconvex beamformers [21], [22], [23], [24], [25], [26], [27], 
[28], [42] tackle the design problem by recasting or relaxing it 
into tractable convex forms. This may be achieved by dropping 
the nonconvex constraints or decoupling the beamforming de-
sign into multiple convex subproblems.

PSD-constrained beamforming
The general-rank beamforming solution in (11) requires the 
knowledge of signal covariance matrix ,Rs  which is not al-
ways available [17], [18]. The actual signal correlation matrix 
is, then, not guaranteed to be PSD and usually modeled as 

.R Rss sT= +u  To guarantee the PSD-ness of Rsu  decompose 
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it as R QQH
s =u  with the mismatch parameter QT  bounded as 

.QQ 2T< < # f  The resulting nonconvex problem is
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( ) ( )
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min 1

minimize

subject to 

w R w

w Q Q w

H

H H

y y

Q Q

w y y

Q Q

2

2

T

T T $

+

+ +

T

T

< < #

< < #

f

f

 
(12)

where ,yT  with ,y y2T< < # f  represents the mismatch in .Ry  
The efficient solution to the nonconvex problem in (12) is ob-
tained via the polynomial-time difference-of-convex functions 
algorithm [18].

Norm-constrained beamforming based on  
steering vector estimation
Apart from the uncertainty constraint (8) of the robust Capon 
beamformer [15], [21] considers an additional norm constraint 
for beamformer weights in a more general setting as

, Nminimize subject to w R w a a aH
a

1
2
2

w
< < # < <e- =-

2
t u  (13)

which is identical to (8) and convex without the constraint 
.Na 2

2< < =  The nonconvex problem in (13) is called doubly 
constrained robust Capon beamforming [21]. It is iteratively 
solved by interpreting the optimization as a covariance fitting 
problem. Thus, a robust beamformer is obtained by robustly 
estimating the array-steering vector. This formulation was fur-
ther improved in [23], where the difference between the actual 
and presumed steering vectors is iteratively estimated without 
making any assumption on either the norm of the mismatch 
vector or its probability distribution.

The solution developed in [23] has led to a formulation in 
[24] of a new constraint, which guarantees that an estimate of 
the source steering vector does not converge to any steering 
vectors of interference signals as well as their linear combina-
tions. This steering vector estimation problem is

 ,Nminimize subject to a R a Caa aH H1
2
2

0
a

T#=-t t t t t u t
t

 (14)

where the last constraint is new; a CN!t  is the estimate of 
a; ( ) ( )y dC a aHi i i= H
u

u  Hu  is the complement of the angular 
sector ,min maxi iH = 6 @ where the desired signal is located; 
and 0T  is a uniquely selected value for a given ,H  that is, 

( ) ( ),max a aCH
0T _ i i!i H u  representing the boundary line to 

distinguish approximately whether or not the direction of a is 
in the actual signal angular sector .H

To account for gain perturbations in the steering vector, [22] 
added the double-sided norm constraint to the problem (14) as
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(15)

where ( ),a a0 0i=  /( ) 2max min0i i i= +  is the middle value of 
the region ;H  V CN N! #  denotes a generalized similarity con-
straint together with a0  and ;ue  y ( ) ( ) ;dC a aHi i i= H  and ,1T  

,1h  and 2h  are selected values. In (15), the generalized similar-
ity condition implies that imperfect knowledge of the desired 
steering vector at  is described as in a convex set (in particular, 
an ellipsoidal set when V  is of full row rank).

All of these problems are nonconvex but can be often 
exactly solved through SDR, iterative SOC program, quadratic 
matrix inequality, and bilinear matrix inequality approaches.

Chance-constrained beamforming
In many applications, it is more natural that the distortionless 
constraint is satisfied with a certain probability. This leads to the 
chance-constrained robust adaptive beamforming problem [25]:

 Pr p1minimize subject to w w wR aH H
w

$ $t u$ .  (16)

where p is a certain preselected probability value, and Pr $" , 
stands for the probability operator. This problem corre-
sponds to minimizing the beamformer output power subject 
to the stochastic constraint that the probability of the sig-
nal distortionless response is greater than or equal to some 
selected value p. The constraint may also be viewed as a 
nonoutage probability constraint where the outage probabil-
ity p p1out = -  is defined as that of violating the inequal-
ity 1w aH $u  for a random au  that consists of a presump-
tive steering vector and the mismatch that is assumed to be 
random. Problem (16) is nonconvex and specified by the 
mismatch distribution. The solutions of (16) for the case of 
Gaussian-distributed mismatch of the signal steering vector 
and for the worst case distribution are well approximated by 
the corresponding SOC programs [25].

In [26], a chance-constrained nonconvex formulation of 
robust adaptive beamforming considers a more practical scenar-
io, wherein both interference-plus-noise covariance matrix Ri n+  
and the true steering vector a  are not precisely known. It also 
shows the chance-constrained beamformer to have a higher out-
put SINR than other convex (LSMI) and nonconvex (worst case 
optimization) beamformers [26]. Considering both Ri n+  and a 
as random variables, the robust adaptive beamforming becomes
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where  E EG G1 2$ $^ h" ", ,  denotes the statistical expectation 
under the distribution G1  ( ),G2  and S1  S2^ h is a set of dis-
tributions G1  ( )G2  for random matrix Ri n+  (random vector a) 
as, respectively,
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where M1  and M2  are sets of all probability measures; Z1  
and Z2  are Borel sets; S0  is the empirical mean of ,Ri n+  
that is, the sample covariance matrix ;Ry  and PrG1 $" , is the 
probability of an event under the distribution .G1  Assume the 
mean a0  and covariance matrix 0(R  of random vector a 
under the true distribution G2r  are known. Then, the set S2  
includes all probability distributions on Z2  that have the same 
first- and second-order moments as .G2r  This problem is called 
 distributionally robust beamforming because it considers dis-
tributional uncertainty in both the steering vector and .Ri n+

Multicast transmit beamforming
In wireless communications, multicast beamforming is used 
for broadcasting data streams ( )s ti  toward multiple radio re-
ceivers. Consider a transmitter with an N-element antenna 
array that aims to deliver a signal to U single-antenna users. 
Denote the wireless channel between the transmitter and the 
uth receiver by .h Cu

N!  Then, for the beamformed transmit-
ted signal ( ) ( ),t s tx wi i=  the received signal at the uth user is 

( ) ( ) ( ),y t t e th xH
u i u i u i= +  where ( )e tu i  is the noise signal with 

variance .u
2v  Then, the multicast beamforming problem is [27]

, , ,u U1 1minimize subject tow w hH
u2w

f< < $ !u " , (20)

where /h h ,minu u u
2t v=u  is the normalized channel vector 

with the minimum received signal-to-noise ratio (SNR) ,min ut  

and the noise variance u
2v  for the uth receiver. The optimiza-

tion in (20) is a quadratically constrained quadratic program-
ming problem with nonconvex constraints. A rigorous solution 
is based on reformulating the problem using SDR. To this end, 
define an N N#  rank-one matrix .M wwH=  Then, the rank 
constraint is removed to recast the problem in a convex form as

,1 0minimize trace subject to traceM MD Mu
M

$ *" ", ,  (21)

where ,D hh H
u u u= u u  and the beamformer weight is obtained via 

eigenvalue decomposition of M. A more accurate solution to 
(20) is obtained by rewriting M w wH

1 2=  and then alternat-
ingly solving for w1  and w2  using an iterative procedure until 
convergence [30].

Hybrid analog/digital beamforming
Compared to analog- and digital-only beamformers, hybrid 
analog/digital beamforming architecture may have a lower 
hardware cost while also providing satisfactory spectral effi-
ciency (SE) and multiple beams (Figure 2). In fact, for massive 
antenna array processing applications, such as 5G commu-
nications, hybrid beamforming has emerged as the preferred 
means to realize large arrays with only a moderate increase in 
baseband signal processing [31], [33].

Consider a hybrid beamforming scenario, wherein the 
transmitter employs N antennas and NRF  RF chains to send NS  
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FIGURE 2. The transmitter architectures for (a) analog, (b) digital, and (c)–(f) hybrid beamforming. Analog beamforming generates only one beam 
because it employs a single RF chain. On the other hand, multiple beams are obtained via digital beamformers but at the cost of multiple RF chains. It is 
possible to generate multiple beams with fewer RF chains in the hybrid approach through configurations such as (c) subarray connected, (d) fully con-
nected, (e) sparse antenna-selective, and (f) wideband architectures. IFFT: inverse fast Fourier transform. 
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data streams. Denote the analog and digital beamformers by 
matrices F CN N

RF
RF! #  and ,F CN N

BB
RF S! #  respectively. Here, 

each element of FRF  has a constant modulus because they are 
realized by phase shifters, i.e., / N1F ,i jRF =6 @  for , , ,i N1 f=  

, , .j N1 RFf=  The transmitted signal is .x F F sRF BB=  The 
goal is to maximize mutual information 

( ) log det
N

,F F I HF F F F HI H H H
N

n
2 2RF BB

S
RF BB BB RFS

v

l= +` j

where H CN NR! #  is the wireless channel matrix, NR  is the 
number of antennas at the receiver, l  is the average received 
power, and n

2v  is the noise power [28]. The hybrid beamform-
ing problem is

 

( )

, [ ]N
N
1

maximize ,

subject to ,

F F

F F F

I

F ,i j

,
RF BB

RF BB S RF

F FRF BB

< < ; ;= =
 

(22)

which is nonconvex because of the constant-modulus con-
straint. The product ,FRF  FBB  also makes this problem non-
linear. Recast (22) to an equivalent form by minimizing the 
Euclidean cost between the hybrid beamformer F FRF BB  and 
the unconstrained baseband-only beamformer F CN N

C
S! #  as
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where FC  is obtained from singular value decomposition of the 
channel matrix H [31]. In the wideband scenario, subcarrier-
dependent (SD) digital beamformers are used, and the result-
ing signal is transformed to the time domain via the inverse 
fast Fourier transform (Figure 2). Then, subcarrier-indepen-
dent analog beamformers are employed for all subcarriers 
because the direction of the generated beam does not change 
significantly with respect to subcarriers in the mm-wave band  
[31], [43]. The hybrid beamforming problem for a wideband 
system with M subcarriers is
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(24)

where [ ]mFBB  is the SD digital beamformer that corresponds 
to the mth subcarrier, , , .m M1M f! = " ,

For the nonconvex hybrid beamforming formulated in 
(23), the traditional route is to alternately optimize each  
(FRF  and )FBB  beamformer iteratively while keeping the 
other one fixed [28], [32], [33]. This has been shown to 
provide satisfactory SE performance, often close to that of 
digital-only beamformers, i.e., FC  [28], [32]. During these 
alternations, while estimation of digital beamformer FBB  
is straightforward as ,F F FBB RF C= @  the analog beamformer 
FRF  is difficult to obtain. Often FRF  is obtained in terms of 
the steering vectors via CS-based techniques, e.g., orthogo-

nal matching pursuit (OMP). Here, a dictionary of possible 
steering vectors or atoms is employed, and the beamform-
ers are iteratively selected from these atoms based on the 
similarity between the dictionary and the measurements 
(i.e., channel data) [28]. In manifold optimization (MO)-
based approaches [32], the search space of FRF  is regarded 
as a Riemannian submanifold of CN  with a complex circle 
manifold to account for the constant-modulus constraint. 
Then, the analog and digital beamformers are alternatingly 
optimized. This method aims to solve the unconstrained 
optimization problem ( ),min f xx  x Cn!  where ( )f x  is the 
cost function, and vector .vecx FRF= ^ h  To ensure global 
convergence, the cost function is defined over the Rie-
mannian manifold , , , .x x n N1 1x CM N

n n f! ;= = =)" ,  
Then, x is iteratively computed and the solution becomes 

( )( ),fRetr gradx xk k k1 xk a= -+  where Retr is the retraction on 
,M  and ( )fgrad xk  denotes the Riemannian gradient [32].
The implementation of hybrid analog/digital beamform-

ing imposes another constraint in the system design: a limited 
number of phase shifters and analog-to-digital converters 
(ADCs). Although the power consumption of phase shift-
ers is typically lower than that of baseband beamform-
ers, their number increases with the number of antennas. 
The implementation of hybrid analog/digital beamformers 
becomes more complex and expensive at higher frequen-
cies (e.g., the upper mm-wave and THz). As an alternative, 
lens-based beamformers have been proposed [44]. Instead 
of using a phase shifter network, they use lenses to generate 
a directional beam from the EM sources placed at the focal 
points of the lenses. Thus, lens-based beamformers offer 
reduced computational complexity when compared with 
phase shifter-based architectures. Lens-based beamform-
ers, though, only realize directional beams and not more 
sophisticated beam patterns, as may be useful in a spatial 
multiplexing or interference cancellation setting. A low-
power design in [45] suggests using Butler matrices, which 
consist of an N N#  matrix of hybrid couplers and fixed 
phase shifters.

Low-resolution ADCs
Low-resolution (1–3-bit) ADCs for digital beamformers bring 
down the overall power consumption and hardware cost. In 
particular, 1-bit ADCs do not require hardware components, 
such as automatic gain control and linear amplifiers. Hence, the 
corresponding RF chain is implemented cost-efficiently [46]. 
Denote the received signal at the receiver and the correspond-
ing beamformer matrix to be r CNR!  and ,W CN N

RF
R S! #  

respectively. Then, the received signal sampled by low-resolu-
tion ADCs is ( ),Qr W rH

q b RF=  where ( )Qb $  is the quantization 
operator with b-bit resolution. The received signal rq  is then 
used to design the receiver via zero-forcing or maximum-rate-
combining techniques [42], [46].

Finite-resolution phase shifters
In practice, continuous-valued phase angles are expensive to 
implement, and finite-resolution phase shifters may be used 
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with low-resolution ADCs. Here, the beamformer weights are 
selected from the finite set W , , , , ,1 2 2 1b

f~ ~ ~= -" ,  where

j2r

N
e1

2b~ =

and b is the number of bits. Then, the constant-modulus con-
straint in (23) is replaced by W[ ] .F ,i jRF !  A feasible solution 
to hybrid beamforming with finite resolution is to first solve 
(23) under the infinite resolution assumption and then quantize 
the phase elements of the beamformers [33].

Figure 3(a) shows the comparison of fully digital beam-
forming and hybrid beamforming with low-resolution phase 
shifters. The hybrid architecture with MO-based design has 
a performance very close to that of fully digital  beamformers. 
The OMP with b 5-bit=  phase shifters performs closest to 
infinite-resolution phase shifters. The gap from the fully digi-
tal performance is larger for OMP-based techniques compared 
to MO-based beamforming.

Learning-based beamforming
Lately, as has been the case with many signal processing 
problems, beamforming has also not remained untouched by 
ML techniques. In learning-based hybrid beamforming, the 
problem is approached from a model-free viewpoint by con-
structing a nonlinear mapping between the input data (e.g., 
the channel matrix and array output) and output (beamform-
ers) of a learning model [35], [36], [37]. This method has the 
following advantages over model-based techniques: 

 ■ The model-free/data-driven structure of a learning-based 
approach yields a robust performance in terms of SE 
against the corruptions (e.g., a mismatched number of 
received paths or imperfectly estimated channel gain and 
path directions [36], [37]) in the input.

 ■ Learning techniques extract feature patterns in the data. 
Hence, they easily update incoming/future data and adapt 
in response to environmental changes. The model-based 
beamformers lack these abilities and may employ statisti-
cal predictive algorithms [see Figure 3(c)].
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FIGURE 3. The SE performance of various hybrid beamforming approaches: (a) low-resolution phase shifters, (b) learning-based and model-based 
techniques, and (c) offline and online learning. Here, the channel is realized with three paths, the number of BS antenna elements N = 100, the number of 
users U = 8, and the number of user antennas NR = 16. 
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 ■ Learning exhibits lower computational complexity in the 
prediction stage than optimization. 

Through parallel processing, ML significantly (~10-fold 
[36]) reduces the computational times. On the other hand, a 
parallel implementation of conventional convex/ nonconvex 
optimization-based beamforming is not straightforward. 
 Beginning from the earlier simpler networks, such as mul-

tilayer perception, to more complex deep learning models 
like convolutional NNs (CNNs), ML has come a long way 
in successfully performing feature extraction for analog 
and digital beamformers [47]. Table 1 summarizes various 
learning models, including the well-known unsupervised/
supervised learning (UL/SL) and the more recent federated 
learning (FL).

Table 1. Learning models.

Network Model Data Application in Beamforming 
Unsupervised Learning

Unlabeled Neural Network
Dataset

Beamformers
Dataset

Be

Unlabeled Fast beamforming: Minimize a given optimization objective to 
implicitly obtain the beamformers. Unsupervised learning is 
useful, especially for mobile transmitters, where labels are not 
available. 

Supervised Learning
Labeled Neural Network
Dataset

Beamformers
Dataset

Be

Labeled Uplink/downlink beamforming: The network is trained to con-
struct a nonlinear relationship between the input and the 
labeled data (beamformers). 

Reinforcement Learning
Unlabeled Deep Q Network
Dataset Action

(Beamformers)State

Reward
Environment: Beamformer

Design Problem 

Unlabeled Uplink/downlink beamforming: The network learns the beam-
formers based on a reward/punishment mechanism in accor-
dance with optimizing the overall system’s SE. 

Centralized Learning

.--------------

Cloud Server

Datase
ts

Estimated

Beamformers

.--------------

ud Server

Datase
ts

Estimated

Beamformers

Labeled/ 
unlabeled 

Uplink multiuser beamforming: The training datasets are trans-
mitted to a centralized cloud server, wherein the model is 
trained. Posttraining, each user sends the input data (channel) 
to the server that sends the output (estimated beamformers) to 
the users. 

Federated Learning

Cloud Server Updated Local Model

Estimated Beamformers

Agg
re

ga
te

d 
M

od
el

loud Server Updated Local Model

gggggggggggggr
eg

at
ed

 M
od

el

Labeled/ 
unlabeled 

Downlink multiuser beamforming: Instead of transmitting the 
whole dataset to the cloud server, each user processes its own 
local dataset, computes the corresponding model update, and 
transmits only the updates to the server. Then, the server broad-
casts the aggregated model updates to the users, which can 
estimate their own beamformers. 

Offline
Dataset

Untrained
Layers of ML
Model

Online Learning 
Pre-trained ML
Model on Offline
Dataset

Freeze Lower
Layers to Keep
Learned Features

Update Only
Higher Layers
With Online Data

Trained
Layer

Untrained
Layer

Updated
Layer

Online
DatasetOffline

Dataset
Trained
Layer

Untrained
Layeyy r

Updated
Layer

Online
Dataset

Labeled Adaptive beamforming: The learning model is updated when 
the prediction performance degrades because of deviations in 
the input compared to the training data. 
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UL, SL, and semi-supervised learning
UL studies the clustering of unlabeled data into smaller sets 
by exploiting the hidden features/patterns derived from the 
 dataset, for which an answer key (label) is not provided before-
hand. Hence, the “distance” between the training data sam-
ples is optimized without prior knowledge 
of the “meaning” of each clustered set. In 
SL, however, the labeled data are used for 
model training while minimizing the error 
between the label and the model’s response. 
The cost function of the training is generally 
the MSE, but other functions (e.g., the mean  
error, mean absolute error, cross entropy, 
and Kullback–Leibler divergence) may also 
be used. Note that beamforming may be 
cast as either a regression (the output is the 
beamformer weights) or a classification (the output is an in-
dex of a vector from a predefined set of possible beamformers) 
problem. SL is widely used for several applications of beam-
former design in radar and communications [43].

Define RX Nin!  and RY Nout!  as the input and label data 
of a learning model whose real-valued learnable parameters 
are stacked into the vector .RQ!H  Then, the relationship 
between the input RX Nin!  and output RY Nout!  is repre-
sented by a nonlinear function , :f R RX N Nin out"H^ h  such that 

;fY X H= ^ h The input data are, say, the vectorized elements of 
the channel matrix H as R R R, ,vec vecH HX 0 1= 6 @" " " ", , , ,  
and the labels are beamformers. In the case of the unit-modu-
lus constraint, it suffices to represent the beamformers in terms 
of only the angle, i.e., .FY RF+= " ,  Note that the baseband 
beamformers are readily computed as F F FBB RF C= @  [28].

Apart from hybrid beamforming, ML techniques have been 
applied to other applications, such as robust beamformers [35]. 
Here, the sample covariance matrix is fed to a CNN whose 
output is the beamformer weights. The labels are obtained 
by solving the robust Capon beamformer problem in (8). The 
training dataset was , , ,D D DJ1 f= " ,  where ,D X Yi i i= ^ h 
denotes the ith input–output sample for , , .i J1 f=  The model 
is trained by minimizing the MSE cost 

;
J

f1 Y Xi i
i

J

1
2
2

H-
=

^ h/

over .H  Posttraining, the learned parameters are used for pre-
diction purposes for beamforming.

The acoustic beamformers in [48] are obtained via semi-
supervised learning (SSL), where both labeled and unlabeled 
data are used. When a small set of labeled data are available in 
addition to a large volume of unlabeled data, using both sets in 
SSL is more advantageous than SL alone.

Reinforcement learning
In reinforcement learning (RL), the learning model is initial-
ized from a random state, and the algorithms learn to react to 
the channel conditions on their own [49]. The model accepts the 
analog and baseband beamformers of the previous state as input 
and then updates the model parameters by taking into account 

the corresponding average rate as a reward. In general, RL has 
autonomous AI agents that gather their own data and improve 
based on their trial-and-error interactions with the environment. 
It shows a lot of promise in basic research. However, so far, RL 
has been harder to use in real-world beamformer applications 

because its dataset does not include labels. 
Consequently, RL requires longer training 
times for learning the features of wireless 
channels, especially in dynamic, short-co-
herence time scenarios.

Online learning
The online learning (OL) algorithm involves 
a learning model whose parameters are up-
dated when there is a significant change in 
the received input data. For example, con-

sider the beamformer design for a wireless communications 
system [Figure 3(c)], wherein the user is moving away in the 
DoA domain from the base station (BS). Then, the received 
array data become significantly different from the collected 
offline training data, thereby degrading the network perfor-
mance. Here, hybrid beamforming and channel estimation 
may be performed jointly because the beamformer weights 
are directly related to the channel matrix. Moreover, OL is a 
suitable choice for this problem [36]; it updates the model pa-
rameters when the normalized MSE of channel estimates is 
higher than a predetermined threshold. From Figure 3(c), the 
learning model requires retraining every °4+  for a massive 
MIMO scenario.

FL
Compared to centralized learning (CL), FL is more suited 
for multiuser scenarios. Using the same NN structures, CL 
has a better performance than FL because the former has ac-
cess to the whole dataset at once, whereas the latter employs 
 decentralized training. The FL is ideal for downlink, wherein 
the trained model is available to the user at the network edge. 
As an example, consider a downlink scenario wherein U com-
munications users collaborate to train a model with learn-
able parameters H  with local datasets ,D X Y( ) ( ) ( )u u u= ^ h for 

, , .u U1 f=  Here, the output data Y ( )u  are the beamformer 
weights corresponding to the uth user. The FL-based training 
problem minimizes the averaged local cost 

min
U
1 Lu

u

U

1

H
H

=

^ h/

where , ,i J1 uf=  and J D( )
u

u=  denotes the number of sam-
ples in ,D ( )u  over .H  Different than the cost in the “UL, SL, 
and Semi-supervised Learning” section, the local cost here is 

;
J

f1L X Y( ) ( )
u

u
i
u

i
u

i

J

2

2

1

u

H H= -
=

^ ^h h/  

for the uth user. This is efficiently solved by iteratively apply-
ing gradient descent, which updates the model parameter at the 
tth iteration as 

Using the same NN 
structures, CL has a 
better performance than 
FL because the former 
has access to the whole 
dataset at once, whereas 
the latter employs 
decentralized training.
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U
1

t t u
u

U

t1
1

bhH H H= -+

=

^ h/

where tH  is the computed model parameter vector at iteration 
t, RLu t u t

Qd !b H H=^ ^h h  is the gradient vector, and h  is the 
learning rate. Figure 3(b) compares the performance of FL and 
CL with model-based techniques, such as OMP, and the fully 
digital beamformer in terms of SE [50]. Both CL and FL out-
perform OMP, but the performance gap between CL and FL 
increases with the nonuniformity of the local dataset.

Emerging applications
Research in beamforming continues to be highly active in light 
of emerging applications and theoretical advances. For exam-
ple, the hybrid approach of a model-driven network or deep 
unfolding for beamforming [51] allows for bounding the com-
plexity of algorithms while also retaining their performance. 
Convolutional beamformers are gaining salience in acoustics 
[52] and ultrasound [53] as a means to combine multiple, usu-
ally nonlinear, operations with beamforming. There is also 
recent interest in beamforming for biomimetic antenna arrays 
that are based on the direction binaural mechanism of humans 
or animals [54], [55]. Synthetic apertures across a wide variety 
of applications, including quantum Rydberg sensing, present 
unique beamforming challenges [56]. Holographic beamform-
ers [57] are currently investigated as attractive solutions for 
multibeam steering for future wireless applications. In the fol-
lowing, we illustrate a few major applications in the context of 
radar and communications.

Joint radar communications
For several decades, sensing and communications systems 
have exclusively operated in different frequency bands to mini-
mize interference with each other at all times. However, this 
conservative approach for spectrum access is no longer viable 
because of the demand for wider bandwidth for the improved 
performance of both systems. In the last few years, there has 
been substantial interest in designing joint radar and commu-
nications (JRC) [58] to share the spectrum. From a beamform-
er design perspective, the problem settings of communications 
and sensing are combined in JRC. Recall the hybrid beam-
forming for a communications-only problem as explained in 
(23). The sensing-only beamformer composed of the steering 
vectors corresponding to, say, K sensing targets is F CN K

R
T! #  

[43]. Then, similar to (23), the hybrid beamformer for a sens-
ing-only system is obtained by minimizing the Euclidean dis-
tance between F FRF BB  and F PR  as

, , , ,N
N

i j1

minimize

subject to

F F F P

F F F PP IH

F

F ,i j K

, ,
RF BB R

RF BB S RF

F F PRF BB

6

< <

< < ; ;

-

= = =6 @
 (25)

where the unitary matrix P CK NS! #  is an auxiliary vari-
able to account for different dimensions of F FRF BB  and FR  
without causing any distortion in the radar beam pattern. 
Define F CN N

CR
T S! #  as the unconstrained JRC beamformer 

( )1 ,F F F PCR C Rg g= + -  where 0 1# #g  provides a tradeoff 
between radar and communications performance. Then, the 
JRC hybrid beamformer is obtained by solving the following 
optimization problem [43]:
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N
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subject to

F F F

F F F PP IH

F
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RF BB CR

RF BB S RF
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= = =6 @
 (26)

Radar and communications can be combined in other ways, for 
example, leveraging the radar information in a different band 
to reduce the overheads of configuring the beamforming for 
communication [59].

THz communications
THz-band (0.1–10-THz) wireless systems have ultrawide band-
width and very narrow beamwidth. The signal processing for 
these systems must address several unique THz challenges, 
including severe path loss arising from scattering and mo-
lecular absorption. In general, THz communications systems 
employ ultramassive antenna arrays, which may be various-
ly configured as an array of subarrays or group of subarrays 
[43] (Figure 4) to achieve even higher beamforming gain than 
mm-wave systems. The wideband beamforming required at 
THz uses a single analog beamformer for all subcarriers for 
a hardware-efficient and computationally inexpensive de-
sign. However, this leads to beams generated at the lower and 
higher subcarriers pointing at different directions, resulting in 
the beam-squint phenomenon [43]. For comparison’s sake, the 
angular deviation in the beam space due to beam squint is ap-
proximately 6° (0.4°) for 0.3 THz with a 30-GHz (60 GHz with 
a 1-GHz) bandwidth, respectively. One approach to deal with 
beam squint is to use time-delayer networks, which is classi-
cally known as space–time filtering. Alternatively, one may 
design a single analog beamformer while passing the effect of 
beam squint into the subcarrier digital beamformers.

Consider the problem in (24), where the analog beamform-
ers are subcarrier independent but the mitigation of beam 
squint implies their SD-ness. Define [ ]mFBBu  as a beam-squint-
aware digital beamformer. This is obtained via [ ]mFBB =u  

[ ] [ ],m mF F FRF RF BB
@ r  where [ ]mFRFr  is the SD analog beam-

former derived from FRF  for m M!  [43].

Intelligent reflecting surfaces
An intelligent reflecting surface (IRS) is composed of a large 
number of (usually passive) metamaterial elements, which 
reflect the incoming signal by introducing a predetermined 
phase shift [60]. Thus, IRS-assisted beamforming allows the 
BS to reach distant/blocked users/targets with low power con-
sumption (Figure 4). Here, joint optimization of the beam-
formers at the BS as well as the phase shifts of IRS elements 
is necessary. Consider an IRS-assisted scenario, wherein the 
IRS is equipped with NIRS  elements, and the BS has N an-
tennas. The transmitted data symbol s C!  is received at the 
user as ,y s eh H h fH H

IRS IRS BS D}= + +^ h  where ,h CN
IRS

IRS!  
,h CN

D !  and H CN N
BS

IRS! #  are the user–IRS, user–BS, 
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and BS–IRS channels, respectively; the diagonal matrix 
, ,diag CN

N N
1 IRS

IRS IRSf !} } }= #6 @" ,  represents the IRS 
phase elements; f CN!  is the beamformer vector at the BS; 
and e C!  is additive noise. The joint active/passive beam-
former design becomes

 
,p 0 2

maximize

subject to

h H h f

f

H H

,

n

2

2

IRS BS D
f

< < # # #

}

} r

+
}

r

^ h
 

(27)

where pr  denotes the maximum transmit power, and 
, , .n N1 IRSf=

Near-field beamforming
Depending on the operating frequency, the wavefront of the 
transmitted signal appears to have different shapes in accordance 
with the observation distance. The wavefront is a plane wave in 
the far-field region. In the near field (Figure 4), where the trans-
mission range is shorter than the Fraunhofer distance, i.e., 

R
c
A f2 c

0

2

NF =

with A being the array aperture, the wavefront takes a spherical 
form. As a result, unlike the far field, the near-field beam pat-
tern is range dependent. For example, the array response vector 
for uniform linear array (ULA) is a function of both direction 
i  and range r as

R

( , ) , ,r
N

e e1a r r2 2j j( ) ( )N1

fi = m
r

m
r- -8 B  

where (( ) ) ( ) ( )sinr r n d n dr r n1 2 1 1( ) /n 2 2 1 2
.i= + - - - - -6 @  

,sind i  ( , , )n N1 f=  is a range-dependent parameter cor-
responding to the receiver and the nth transmit antenna. 

Hence, the beamformer design needs to account for this 
spherical model.

Summary
The many beamforming algorithms, their possible variants, 
and their relative advantages provide a Swiss-knife approach to 
choosing the most appropriate technique for a specific applica-
tion. We presented an overview of those algorithms that had 
a considerable impact on signal processing and system design 
during the last 25 years. We focused on radar and communica-
tions applications while also mentioning in passing the devel-
opments in beamforming for ultrasound, acoustics, synthetic 
apertures, and optics.

A typical use case of convex beamforming is to allow 
robustness against various sources of uncertainties, such as 
a small number of snapshots, mismatched SoI direction, and 
mismatched steering vectors. In nonconvex beamforming, 
each of the problem settings imposes different constraints on, 
e.g., PSD-ness (general-rank beamforming), the probability 
distribution (chance-constrained robust beamforming), con-
stant-modulus (hybrid beamforming), and received SNR (mul-
ticast beamforming).

Each learning algorithm offers specific advantages of its 
own. The most common SL (UL and RL) admits labeled (unla-
beled) datasets. Furthermore, the inherent reward/punishment 
mechanism in RL to optimize the learning model for a pre-
defined cost function yields better performance than UL. FL 
is particularly helpful for multiuser scenarios, whereas CL is 
preferred if the dataset is small compared to the size of the 
learning model. When data are updated over time, then OL is 
beneficial. Note that SL, UL, and RL may also be combined 
with FL, CL, and OL depending on the problem and data; 
examples abound, such as federated RL, online RL, online 
CL, centralized RL, and so on.
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FIGURE 4. A summary of beamforming in emerging applications. In mm-wave wideband beamforming, the generated beams are squinted while pointing 
to the same direction, but, at THz, these beams are squinted in considerably different directions. In a JRC scenario, a joint optimization of the beam 
pattern for both communications users and radar targets should be considered. For IRS-assisted wireless systems, the beamformer weights at the 
transmitter and the phase shifts of the IRS elements are jointly designed. When the users are in the near-field region of the transmitter, range-dependent 
beamforming is considered for spatial multiplexing.
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JUNE
IEEE International Conference on Acoustics, 
Speech, and Signal Processing (ICASSP)
4–9 June, Rhodes Island, Greece.
General Chairs: Petros Maragos,  
Kostas Berberidis, and Petros Boufounos
URL: https://2023.ieeeicassp.org

IEEE Conference on Artificial  
Intelligence (CAI)
7–8 June, Santa Clara, CA, USA.
General Chairs: Piero Bonissone and Gary Fogel
URL: https://cai.ieee.org/2023/

15th International Conference on Quality of 
Multimedia Experience (QoMEX 2023)
20–22 June, Ghent, Belgium.
General Chairs: Maria Torres Vega  
and Katrien De Moor 
URL: https://sites.google.com/view/
qomex2023?pli=1

JULY
IEEE Statistical Signal Processing  
Workshop (SSP)
2–5 July, Hanoi, Vietnam.
General Chairs: Karim Abed-Meraim and 
Nguyen Linh Trung
URL: https://avitech.uet.vnu.edu.vn/ssp2023/

IEEE International Conference on  
Multimedia and Expo (ICME 2023)
10–14 July, Brisbane, Australia.
General Chairs: Ambarish Natu, Shan Liu,  
and Zhu Li
URL: https://www.2023.ieeeicme.org/

SEPTEMBER
31st European Signal Processing  
Conference (EUSIPCO)
4–8 September, Helsinki, Finland.
General Chairs: Esa Ollila and Sergiy A. Vorobyov
URL: http://eusipco2023.org/

12th Conference of the Sensor  
Signal Processing for Defense  
(SSPD) Series
12–13 September, Edinburgh, UK.
General Chairs: Mike Davies, Stephen 
McLaughlin, Jordi Barr, and Gary Heald
https://sspd.eng.ed.ac.uk/

IEEE 33rd International Workshop on 
Machine Learning for Signal Processing 
(MLSP 2023)
17–20 September, Rome, Italy. 
General Chairs: Danilo Comminiello, Tulay 
Adali, and Aurelio Uncini
URL: https://2023.ieeemlsp.org/

IEEE International Conference on Quantum 
Computing and Engineering (QCE23)
17–22 September, Bellevue, WA, USA. 
General Chair: Hausi Müller
URL: https://qce.quantum.ieee.org/2023/

International Symposium on Image  
and Signal Processing and Analysis  
(ISP 2023) 
18–19 September, Rome, Italy. 
General Chairs: Marco Carli, Federica Battisti, 
and Sven Lončarić
URL:  https://www.isispa.org/home

IEEE 24th International Workshop on  
Signal Processing Advances in 
Wireless Communications (SPAWC 2023) 
25–28 September, Shanghai, China.
General Chairs: Zhi Tian and Xin Wang 
URL: http://2023.ieeespawc.org/

OCTOBER
IEEE International Conference on Image 
Processing (ICIP 2023)
8–11 October, Kuala Lumpur, Malaysia. 
General Co-Chairs: Norliza Mohd, Gaurav 
Sharma, and Mohan Kankanhalli
URL: https://2023.ieeeicip.org/

IEEE Workshop on Applications of Signal 
Processing to Audio and Acoustics  
(WASPAA 2023)
22–25 October, New Paltz, NY, USA.
General Chairs: Minje Kim  
and Nicholas J. Bryan
https://waspaa.com/

Asilomar Conference on Signals, Systems, 
and Computers (ACSSC 2023)
29 October–1 November,  
Pacific Grove, CA, USA.
General Chair: Marco F. Duarte
URL: https://www.asilomarssc.org/

Asia Pacific Signal and Information 
Processing Association Annual Summit and 
Conference (APSIPA ASC 2023) 
October 31–November 3, Taipe, Taiwan. 
General Chairs: JIng-Ming Guo, Gwo-Giun Lee, 
Shih-Fu Chang, and Anthony Kuh
URL: https://www.apsipa2023.org

DECEMBER
9th IEEE International Workshop on 
Computational Advances in Multi-Sensor 
Adaptive Processing (CAMSAP 2023)
10–13 December, Costa Rica.
General Chairs: M. Haardt and André de Almeida
https://www.tuwien.at/etit/tc/en/camsap-2023/
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New benefit from the IEEE Signal Processing Society

SPS Resource Center
The SPS Resource Center is the new home for the IEEE 

Signal Processing Society’s online library of tutorials, lectures, 
presentations, and more. Unrestricted access to our fast-

growing archive is now included with your SPS membership.

http://rc.signalprocessingsociety.org

We accept submissions, too!
Interested in submitting your educational materials?

sps-resourcecenter@ieee.org
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MATLAB 
FOR AI
Boost system design and simulation with explainable and 
scalable AI. With MATLAB and Simulink, you can easily train 
and deploy AI models.

mathworks.com/ai
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